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Light-cone pathology of theories with noncausal propagation
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Couplings of fields with spin values 0, 2, and 1 are examined in light-front coordinates.

It is found that all theories which have noncausal modes of propagation in ordinary space-

time suffer from loss of constraints.

I. INTRODUCTION

The first example of noncausal propagation in a
relativistic field theory was discovered by Velo and
Zwanziger' in the case of the minimally coupled
spin- —, Rarita-Schwinger field. This theory, though
consistent in the free-field case, was already known
to be plagued with indefinite-metric trouble when
second quantized with minimal electromagnetic cou-
pling. Subsequently, other couplings of the Rarita-
Schwinger field have been considered and in each
case both inconsistencies, namely the existence of
noncausal modes at the classical level and the ap-
pearance of indefinite metric in the second-
quantized theory, have been encountered. Indeed,
the appearance of both difficulties is indicated by
the occurrence of the same expression involving
external fields, and it is believed that the two prob-
lems go hand in hand. It is also believed that all La-
grangian theories of fields with spin greater than 1

suffer from these defects in the presence of interac-
tions7 as an example of which the minimally cou-
pled spin-2 theory has been shown to have noncausal
modes. What is even more interesting perhaps is
the fact that noncausal modes have also been shown
to exist for various couplings involving fields of spin

1
values 0, —,, and 1.

Recently, various couplings of the Rarita-
Schwinger spin- —, field have been studied in terms
of light-front coordinates. '3' It was found that un-
less the external fields are subjected to noncovariant
conditions, the interacting field suffers from a loss
of constraints, thereby exhibiting more degrees of
freedom than are possessed by the free field. Subse-
quently, the same "pathology" was shown to exist
for the minimally coupled massive spin-2 field. 's

It is natural to ask whether this behavior on the
light cone is another manifestation of the Velo-

Zwanziger pathology. To this end we examine vari-
ous couplings involving "lower-spin" fields (i.e.,

1

fields with spin values 0, —,, and 1). It is found that
all theories which have noncausal modes in ordinary
spacetime indeed suffer from a loss of constraints on
the light cone.

The next two sections deal with nonderivative, bi-
linear, external field couplings of the spin-0 and
spin-1 fields, respectively. Section IV deals with
couplings of a spin-1 field to the Dirac field.

II. THE SPIN-0 FIELD

The spin-0 field is described by a five-component
object comprising a scalar p and a vector p„. The
free Lagrangian

+~'a„V C'a„p-
leads to the equations'

(la)y„—a„y =0,
Bt'P„—m P

—=(};P;—t}+P —t) P+ —I $ =0 .

(lb)
Equation (la) for is= + and Eq. (lb} are equations
of motion for P and P, respectively, whereas Eqs.
(la} for p=1,2, . . . , are constraints which deter-
mine P and P in terms of P. One of the con-
straints, namely,

y —a y=o,

2a y +m'y —a,y, =o. (2)

Equation (2) serves to determine the remaining com-
ponent P+. Thus the free scalar field on the light

connects only the dynamical components P and P
and hence, in conjunction with the equations of
motion leads to a secondary constraint, namely,
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front has only one degree of freedom.
The most general Lorentz-invariant interaction

with external fields, which is bilinear in P and P&, is
given by

~ = &0'0+Pdi W+ T""4'p0.

+ A„(0""0 O'—W)+BI (K*0+0'0") .

d&fq~ m—P =0 .

It is useful to note at this point that (at least in
the massive case with nonderivative couplings) the
Takahashi-Palmer' spin-1 field is completely
equivalent to the Proca field. The former is obtain-
able from the above Lagrangian via the substitution

Here a,p are scalar fields, A&pz are vector fields,
and TI'"=GI'"+iHI' is a traceless second-rank ten-
sor field with symmetric and antisymmetric parts

6» and II», respectively. The field equations are

(1+P)f„+T„.0" D, —0=0
and

Dq+'P" (m a—)P =—0,
where

D„'-"=(a„—iA„+B„).

(3b)

III. THE SPIN-1 FIELD—
INTERACTIONS WITH EXTERNAL FIELDS

The spin-1 field can be described by the first-
order Proca formalism involving an antisymmetric
tensor 1i» and a vector p„. The free Lagrangian

&0——, g„"„g"' mP' —P Pq„—d"P"—

Once again P and P are seen to be the dynamical
components. When the Tz term is present, howev-

er, the three equations of constraints, namely, Eqs.
(3a) for p+ +, are seen to contain P+ as well as P;.
The constraints thus define these components in
terms of P and P, the latter being left as an in-
dependent degree of freedom. It is thus seen that
the tensor couplings lead to an increase in the de-
grees of freedom. In ordinary spacetime these same
couplings lead to noncausal behavior. '" The
remaining couplings (which are known to be
causal '") remain consistent on the light front as
well.

Ppv = epvap P
aP

2

and the subsequent elimination of P~.
Returning to the free-field equations (4} and (5),

one notices that six of the ten components, namely,

;, and P + are dynamical, i.e., they
satisfy equations of motion, these being Eq. (4) with
p=+, and Eq. (5) with a& —.The remaining
choices of indices in Eqs. (4) and (5) yield con-
straints. These read

$12 ~1((2 ~251

(7}

a, y;+a 1( ym'y =o. (8)

Wl P" P T~p+itP——"""P C q, ig""P' C q„—

+ iP P fpvcp

Equation (6) serves to determine the dependent com-
ponent Piq,

' Eqs. (7} and (8) on the other hand in-
volve only dynamical variables, thereby reducing the
number of independent components to three, as
desired. Used in conjunction with the equations of
motion, the x+ derivatives of Eqs. (7) and (8) result
in secondary constraints which determine the
remaining components f+, and P+.

Next let us consider the most general (nonderiva-
tive) bilinear coupling to external fields, via the La-
grangian

+O'"a e„„
leads to the equations

1(»=a„4„—aA„ (4)

where the field C &„ is antisymmetric in p,v, and

f&~p is antisymmetric in each of the pairs of in-

dices p,v and a,p. These external fields are decom-

posed into their SL(2,C) irreducible components as
follows:

Tag =+ay +SQap +gap+,(i) . (i)

C~l, (C~q +id~~ )+e»~p(Up+iVp)+ i'~(A +iB ) ig (A +iB ) (10)
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1 (2) ~ (2) (2) . (2)
fpvup= fpvap+ 2 (g~agvp gvug ~p)I'+&»apZ+gpa(Svp+ imp ) gvu(Spp+&ayp )

+gvp( pa+ pa ) gyp(Sav +iava )+&(&»N2Sp —e'»piS+ —Ezp&2S» +Earp„2S& ) .(2) ~ (2) (2) ~ (2) (3)A, (3)A, (3)A, (3)X

All the irreducible fields are arranged to be real; of these X, I; and Z are scalars, A&, 8&, U&, and V& are evi-

dently vectors, a" ' are antisymmetric, and S" ' ' are symmetric and traceless, corresponding to the represen-
tation (1,1). Finally, C „., and d „„correspond to ( —,, —,}+ ( —,, —,},and f„„pcorresponds to (2,0) + (0,2).

Once again P;, P, f;, and g+ satisfy equations of motion. Therefore, one must have three equations of
constraint involving these variables alone. The primary constraints have the form

(1+2fi2i2)fi2 —2fi2 kPPk —2iC i2(( =(&i/2 —&2/i) —22Cki2gk+22C+i2$ +2fi2+k1t k,

(f,»4» f, ,—4+, ,—0+)+(,, —f,+,)P,=a A a, 0 —2iCJ—, N, +2ic+,0
2(iC' g iC*—»P» , T——P+)=8 g+ +(m +T )P —T;P;+(8; 2iC—*;)g; .

(12)

(13)

(14)

Insofar as (12) will always contain the dependent
component 1(i2, it should be possible to remove all
the dependent components from Eqs. (13) and (14).
This is possible only if these components appear in
the same linear combination as in Eq. (2). In view
of the tensor nature of the external fields f, C, and
T, this condition is seen, after some thought, to
reduce to the requirement that none of the depen-
dent components should appear in Eqs. (13) and
(14},i.e., one must have

f 12 0 f —i '—2 C——— C—12

(15}

It is immediately verified from Eqs. (9)—(11) that
this condition is identically satisfied, in the case of
couplings to any of the scalar fields, to the antisym-
metric tensor a'p' and to the vectors A& and 8&,
while the remaining types of couplings lead to the
violation of (15) in some Lorentz frame.

Let us compare the consistency of the light-cone
theories with the causal behavior in ordinary space-
time in the case of each of the couplings. The exist-

ing results for various couplings are as follows.
(i} The self-coupling of the Takahashi-Palmer

field, a coupling of the type f, is noncausal. '

(ii) The "minimal coupling" of the Takahashi-
Palmer field, as studied in Ref. 12, is easily seen to
involve a term of the a' ' type with a&„' ~ F&„,and is
noncausal. When the a' ' term is subtracted, one
gets a theory equivalent to the minimally coupled
Proca field, which is indeed causal.

(iii) Coupling to a symmetric tensor S"' is found
to be noncausal in Ref. 10.

(iv) The anomalous "quadrupole moment" cou-

pling studied in Ref. 10 involves terms of the types
C and S'" and is noncausal.

(v) The minimal coupling as well as the Pauli mo-
ment terms of the type a"' are known to be causal
(cf. Ref. 10).

We see that one again, theories with noncausal
modes suffer from a loss of constraints on the light
cone, while those which remain causal do not. Thus
one would suspect that couplings involving terms of
the types d~», S„',' ', U~, or V~ lead to noncausality
whereas those involving 8& or any of the scalars X,
Y, and Z remain causal. Rather straightforward
calculations along the lines of Refs. 10 and 12
indeed verify this conjecture

IV. SPIN-1 FIELD COUPLED
TO THE DIRAC FIELD

In the previous section, all the fields other than
the Proca field were treated as external. The con-
sistency situation may change if these are also re-

quired to satisfy their own field equations. It is
clear that if a certain coupling leads to inconsisten-
cies in the external-field case, the situation will not
be remedied by including the dynamics of these
hitherto external fields. On the other hand, cou-
plings which are consistent in the external-field case
may become inconsistent when additional equations
are imposed.

In fact, several interactions of the Proca field P„
with a Dirac field g were examined by Shamaly
and Capri' from the viewpoint of causal propaga-
tion. They found the interactions given by

g0 6"0 igk, fy5y"0, g0,0"4P ig0, 0"6's4
ggy"$$, 8„$', and gPai'"g(B„P„) to be causal, and
the ones corresponding to iggy&y&g(B&$„$'),
gpss(B„Q"), and iggyqg(B„Q") to be noncausal

We now analyze these interactions on the light
cone. The situation is seen to be as follows. The
Dirac equation

( iy~a„+M)y=
al(

is decomposed into the upper and lower corn-
1

ponents' by multiplying by —,y and —,y+, respec-
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—ia 1(& '~ —,y+( —iy;a;+M)y'+'= —,y+1

ay

(17)

Thus the two-component object g'+' represents the
dynamical part of the Dirac field, while f' ' in-
volves the two dependent components and is defined

by the constraint (17). As for the Proca field, the six
dynamical components are the same as in the free-
field case, so one again needs three constraints in-

volving these alone. Equations (6} and (7) are un-

changed; however, Eq. (8) becomes

tively, resulting in

aw,—tt) 0'+'+ , y—(—iytt)t+M)tt' '= , y-
a@

(16)

couplings listed above; the details will be omitted.
One finds that in each case (except for the
interactions g ttp&PPP and ig P&PPysP) the
correspondence between loss of causality and loss of
constraints on the light cone persists. In the case of
the remaining two interactions, one finds that Eq.
(18), upon the elimination of g' ', contains the
dependent component P+, and therefore the Proca
field has four degrees of freedom. These
interactions, however, are "singular" in ordinary
spacetime. To see this, one notes that the effect of,
e.g., the first of these interactions is to make the
substitution

m ~m —ggttt=—M2(x)

in the equations for the Proca field. At the space-
time points where M (x}=0 the Proca field becomes
effectively massless, and there are no equations to
determine the longitudinal components of Pk or Po.

ti;1(t t+t) 1(t+ +m P
a

(18)
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