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Nonlocal charge of the CP" ' model and its supersymmetric extension to all orders
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We prove that the conservation of quantum nonlocal charge of the CP" ' model is

spoiled by an anomaly calculable to a11 orders in the 1/n expansion, while for its supersym-

metric extension it is restored.

I. INTRODUCTION

Two-dimensional nonlinear cr models (chiral
models, for short), defined on symmetric spaces,
have in recent years aroused considerable interest
among field-theoretical physicists. This interest is
partly justified by the numerous analogies of the
chiral models with four-dimensional Yang-Mills
theories, ' analogies which include "gauge" content,
nontrivial topological structure, instantons, and so
on. They become even more striking if we go to
loop space; there is impressive evidence that Wilson
loops can be interpreted as chiral fields in loop
space.

One of the most important properties of these
models is their classical integrability, which leads to
an infinite number of nonlocal conservation laws
(there are also local conservation laws, but they will
not concern us in this paper). These conservation
laws were first discovered in the O(n) nonlinear 0
model, " and subsequently generalized to various oth-
er models. They can also be described as Noether
currents associated with a nonlocal field transforma-
tion leaving the action unchanged.

At the quantum level, the conservation of the
nonlocal charges also imposes severe restrictions on
the dynamics of the models. This is exemplified by
the O(n) o model, for which it has been shown that
they imply the absence of pair production and the
factorization equation. As is well known, these are
fundamental blocks for the construction of the exact
S matrix.

For all these reasons we think it is very important
to study "in extenso" the properties of two-
dimensional 0. models. In this sense, we have in two
recent papers discussed the construction of the
quantum nonlocal charges in the CP" ' model and
its supersymmetric extension.

The results obtained can be summarized as fol-
lows:

(a) The would-be quantum nonlocal charge of the
CP" ' model is not conserved. Therefore, the ex-
act S-matrix program cannot be completed follow-

ing this thread. Of course, the absence of an S ma-
trix, for the quanta of the basic CP" ' field, is in-
tuitively expected from the confining properties of
the model. ' An examination of the local charges
shows a similar result. "

(b) In contrast to (a), quantum nonlocal conserved
charges seem to exist if fermions are coupled to the
CP" ' field in a minimal or supersymmetric way,
preserving the classical structure of the models. 'i
The mechanism by which this happens is the same
as the one which is responsible for mass generation
in the Schwinger model': vacuum polarization
from the coupling fermions. This gives mass to the
topological gauge field (thus liberating the basic
CP" ' quanta) and also provides an additional,
Adler-type anomaly' which cancels the one coming
from the pure CP" ' model. Similarly to the O(n)
o model, ' the existence of the quantum conserva-
tion laws justifies the construction of exact S ma-
trices for these models. '

So far, the above results were obtained only in the
dominant order of the I/n expansion whereas we
would expect them to hold in all orders. In this
communication we will show this to indeed be the
case. Our result follows from a conjunction of gen-
eral arguments with a detailed graphical analysis.

The content of the paper is organized as follows.
In Sec. II we show the absence of radiative correc-
tions to the anomaly of the pure CP" ' model. In
Sec. III we prove the conservation of the quantum
nonlocal charge in the supersymmetric case to all or-
ders. In Sec. IV we present some conclusions. Vari-
ous technical details are relegated to two appendices.

II. ABSENCE OF RADIATIVE CORRECTIONS
TO THE ANOMALY OF THE PURE CP" ' MODEL

We begin by listing some basic properties of the
CP" ' model (all calculations will be done in Eu-
clidean space). This is the theory of an n-

component complex field z;, described by the La-
grangian density
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W =DpzDpz,

where

D„z =B„z—A„z

with the constraint

zg zl

(2.1)

(2.la)

(2.1b)

where a is the Lagrange multiplier field which en-

forces the constraint zz=n/2f .The mass m is
dynamically generated and is given by
m =p e ",where JM is the renormalization point.
Remember that on the quantum level the topological
gauge field has acquired the status of an indepen-
dent field.

The simplest nonlocal charge is classically given

by

The Feynman rules for the I/n expansion are found
in Ref. 17. They are Q"= f dy1dy2&(y1 —y2}JO'(&y1)JO'(t y2}

PIJPv
A& propagator: 5&,——

z f J'((t,y)dy, (2.3)

X (p'+41n2)&(p) ——1 (2.2a} where

Z propagator: (p +m )

a propagator: [A(p}]

with

A(p)= [p (p +4m )]2'
( 2+4 2)1/2+( 2)1/2

Xln
(p2 +4n22)1/2(p2)1/2

(2.2b)

(2.2c)

(2.2d)

JpJ =z'apzJ+2A pz'zJ (2.3a)

is the classical (traceless) Noether current generating
isospin rotations in the plane ij.

In the quantum case, to give a proper definition
of (2.3) we need to consider the singular short-
distance behavior of the product of the traceless part
of the two currents. To leading order of I/n we
showed in Ref. 8 that the following expansion holds:

[J„(x+e),J„(x)]'/=Cp„(e)JJ(x)+D~(e)d+'i(x)+Ep„(e)z;z F (x),

where

(2.4a)

—nCP
2'

8pvEP ~pEv 8vEp spEve
+ 2 + 2 + 2

(2.4b)

po n
D~~ ——

27r

5„E ep 5 e„ep
1

1
1PI s (~g~p ~~~p )

V p p V

~pvE~E ~pEy6 5vEpE EpEv'E

2~2 2E2 2E2 (e.2)2

r

n E'Q Ep6

2K

(2.4c)

(2.4d)

(2.5b)

with

Note the absence of the normal product of two currents in Eq. (2.4a) as a consequence of our renormalization

procedure (zz=0) discussed in Ref. 8 [after Eq. (3.18)]. This result can be used to verify that the quantum

charge
g'J=hmg, 'J, (2.5a)

S~o
where the cutoff charge

gs'= —f "y1"y2e(y —y2)JO (&y1}Jo'(ty2}—Zs f dyJi'(t y)

n e~-'pS
2~" 2

(2.5c)



27 NONLOCAL CHARGE OF THE CP" ' MODEL AND ITS. . . 827

is well defined. However, instead of being conserved it satisfies

dQ&J 2 ao

2&z.Fipdg
dt m

(2 6)

Therefore Luscher's construction cannot be applied.
Although derived in the lowest order of the 1/n expansion, (2.6) is nevertheless valid to all orders. This re-

sult can be stated more precisely as follows.
Let J&(x) be the current generating isospin rotations in the plane ij, so that the following Ward identity

holds:

(x) J (y)l'JX 10& = 2—n5(x —y)&0
I
TJ'J(y)X

I
0

x —xl)&0l T[J '(y)z'(x) J' (y}5 'z"(x)]X;, l0

+ +5(x —y~)(0l T[5 z (x)J„"J(y) 5J—,'(y)z (x)]X& l0) .
m, k

HereX= g& z, (xi)zp (y ) andX- [X& ] means thatz, (xi) [z~ (y )] istobedeleted.

Furthermore, the current normalization is given by

&o~ yy'„'(xlz'ty)x ~o&=, " o ox''(y~ ——o'4'ty) x o)+on~(* —y)l
—1 (x y)v

2m (x y) +—i0

(2 7)

(2.8)

in accordance with (2.7).
With these assumptions, it follows that (2.4a)—(2.4d) hold in a weak sense (i.e., for time-ordered products

and discarding convergent surface terms) in all orders of the 1/n expansion.
We would like to remark that the Green's functions of the basic CP" ' field are infrared divergent. Thus in

(2.8) and in equations containing non-gauge-invariant operators, we implicitly assume that an infrared regula-
tor for the propagator of the Ap field is used.

The above result is proved in two steps. First, we employ methods completely analogous to those of Ref. 7,
namely, we use arguments such as covariance (under Lorenz transformation, charge conjugation, parity, time
reversal) and current conservation, to determine the coefficients C~&, and D~&„. This is done in Appendix A.
Next, to find the remaining coefficients E„„weargue with more detailed graphical methods.

From (2.4a) and using C~» C~~& (see A——ppendix A) we have

J d p e "~ (0
l T[f&(p),J,(0}]zk(q)zl(r}Ai (k)

l

0)i'""
a q=r =k =0

—(p~v) .

=[D~ix„(e) Df„(e)]—
&k

(0
l
TB~J~(0)zk(q)zi(r)Ai (k)

l

0)~"~
a q=r =k=0

4A( )
5k

(0
l
T( ' J~ )(0) k iAi. (k)

l
0)

e q=r =k=0
(2.9)

where the tildes indicate Fourier transform and prop
means proper. Assuming that our normal products
are normalized at zero external momenta, the right-
hand side (rhs) of (2.9) turns into

2(D D) —4iA(e )—(5 5 ——5„5 ) .

(2.10)

Note that 5&5„—5„5„=—e»e and therefore

Ef„=A (x )e»e~

Because of current conservation, A (x ) is a constant

I

which remains to be determined.
Only the graphs in Fig. 2 contribute to the left-

hand side (lhs) of (2.9). To verify this notice that
the. graphs contributing to
(0

l T[J&(e),J„(0)]zizkAi
l
0) have the general

structure shown in Fig. 1. It is easily seen that the
analysis for more general diagrams reduces to the
one for the simplest diagram shown in Fig. 1. Now
if the derivative 8/Bk does not act directly on the
momentum factors associated with the current ver-
tex, we obtain a result symmetric under the ex-
change p~v. Therefore this type of term [Fig. 1(a)]
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VD'DDZXA

where

D„z =a„z — (z a„z)z,
2

n

n
ZZ =

(3.1a)

(3.1b)

yz=zy =0. (3.1c)

(a)

V/ D/D'/ 18 PllllDP/3

FIG. 1. Graphs contributing to the lhs of Eq. (2.9).
Dot means derivative with respect to the momentum. In

case (a) the derivative acts on all places except in the

upper two vertices.

The 1/n expansion as well as the Feynman rules
were derived in Ref. 10. We follow the graphical
notation of Ref. 9 to which the reader is also re-
ferred for details. To enforce the constraints (3.1b)
and (3.1c), one introduces the a and c fields, respec-
tively. The quadrilinear interactions are reduced to
bilinear ones by introducing the auxiliary fields n., P,
Xp 0

Our strategy will be the same as for the pure
CP" ' case but the technical details are more com-
plicated.

The model has a classical nonlocal charge speci-
fied by's

g"= f dyidy2e(y y2)~0'(r yi Vo'(t, y2)

3' Ji+~~&

+E f dytz;z (Ale))('r, y),

where

will not contribute to the lhs of (2.9).
On the other hand, if the derivative acts on the

momentum factors at the current vertex, the only
graphs which contribute are those of Fig. 2. For the
graphs of Fig. 1(b) and 1(c) this happens because the
insertion of a zero-momentum external wavy line
will produce a result proportional to the derivative
with respect to the loop momentum p. [The graph
of Fig. 1(d) is trivially zero.] Thus after integration
we will get zero except for the graphs of Fig. 2, in
which case there will be nonvanishing surface terms.
But these terms have already been computed in Ref.
8, so that the result (2.4a) holds in every finite order
of the 1/n expansion.

(0)

III. CONSERVATION OF THE SUPERSYMMETRIC
QUANTUM NONLOCAL CHARGE TO ALL ORDERS

The formal Lagrangian density that couples the
CP" ' model supersymmetrically to fermions is

W=D„zD„z+g(g y„zB„z)g—
+ 2„PA')'+(AA')' (er 4)'I—

(c)

FIG. 2. Nonvanishing lowest-order graphs of Fig. 1.
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J„'J=z'D„z +pty„f'= (j„+i„}',
D„z =B„z—A„z .

(3.2a)

(3.2b)

To give a correct quantum definition of (3.2) we
have, as before, to examine the short-distance
behavior of the product of two currents.

A priori there will be a huge number of local
operators, of dimension equal to or less than two,
which appear in this Wilson expansion. (As in
Luscher's case we argue that asymptotic freedom re-
stricts the dimension of the local operators to be
&2.) However, as shown in Appendix B, PT,
charge conjugation, charge conservation, and general
graphical arguments strongly restrict the number of
allowed candidates and we are left with

Cp»(e }=
277

5q„e~ 5~qe„5~eq2+ 2+ 2

D~»(e) = , CP»—e +D)eP(e„5„e,5—„)
+D2e (e„5P+e„5Pp),

(3.4a)

(3.4b)

is the fermionic current as specified in (3.2a}.
Now using the same arguments as in the pure

CP" ' case we see that only the lowest-order graphs
contribute. The coefficients Cp» and Dpp are the
same as those of Sec. II, while for CPp, and DpP, we

have the result in Ref. 9, E~» being zero in all or-
ders. Explicitly,

[Jp(x +e),J„(x)]=CP»j p+2CP»ip

+Dp~y d~Jp +2Dp~B~lp

+EPp„z;zJFp~+N [J„,J,],
(3.3)

where jp is the pure CP" ' current and i =g y f;

where

8 2 n 1
(e Di)=-

8&2 81T ~2

2~ n 1

2
(& Dz)=+

(je2 Sn ez

It follows that the quantum-nonlocal charge

(3Ac)

I

Il ikQs'= —
~ „~,sdy)dyz~(y) —yz)J(')"(ty&)Jo (tyz) ——f dy[j, (t y)+2i, (t y)]"+—f dy(zzjpy, p)(y, t)

lg n
(3.5)

is conserved to all orders of 1/n.

IV. CONCLUSIONS

We have proved that to all orders in the 1/n ex-

pansion, conservation of the nonlocal charge in the
pure CP" ' model is spoiled by an anomaly with a
calculable coefficient while for its supersymmetric
extension it is restored. In this last case, this means
that the quantum 8 matrix can be calculated, using
standard procedures such as factorization equations,
justified by the nonlocal charge conservation. It is
worth mentioning that although the pure CP"
model has an anomaly canceled by another one com-
ing from the coupling with fermions, the pure fer-
mionic model is anomaly free. ' This is a conse-
quence of the fact that the anomaly roots in the in-

teractions between fermions and bosons and not in

the fermions self-coupling itself.
The case of the pure CP" ' model is more in-

volved. Here, the existence of the anomaly is in ac-
cord with the confining' properties of the model.
The next question concerns the scattering of bound
states. We conjecture that the anomaly will not con-
tribute (with the same implications as above) if the
relevant asymptotic states are constructed from the
vacuum by application of operators which commute
with the anomaly.

We remark also that our results are valid to all or-
ders of the 1/n expansion but neglect nonperturba-
tive aspects such as 8 vacuums and pseudoparticles.
The existence of an anomaly in the pure CP"
model and its absence in the O(n) o model puts for-
ward the following question: What are the funda-

mental properties determining the possibilities of
anomalies in quantum nonlocal charges?

As already shown, the absence of an anomaly in

the purely bosonic nonlinear o models, defined on

symmetric spaces G/H, can be traced back to the
fact that H is simple.

Finally, we would like to remark that CP' is

anomaly free: the would-be anomaly is a total
derivative which can be absorbed into a redefinition
of the charge. '

APPENDIX A

In this appendix we determine the coefficients
CP„and D~p„of Eq. (2.4b) using general ProPerties
such as parity, time reversal, and current conserva-
tion. This will give us nonperturbative information
also about the coefficient Fp„of the Wilson expan-
s1on.
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Ct„'„(—e )=—C~, (&),

D~t'„( e—) =D~~„(e),
Et„'„( e) =—E~„(e)

(Ala)

(A lb)

(Alc)

(ii) Charge conjugation

The results obtained in this way are listed below.
(i) PT:

C~„(e) = —C~q ( —c ), (A2a)

E~„(e)=—E~„(—e) . (A2c)

(iii) Current conservation U. sing (2.4a) we have

D~„(e)= —D~„(—e)

—[Cq„(—e)e~——,5t' C„~(—e)eg],

(A2b)

a&[(O
I
T[J&(x+&»J,(x)]"X

I
o&]=5".C',.(0

I TJ,"(x»10&+5"D',:«)(01»&g«)X
I
0&

+8"E~y(e)(0
~

Tz'zJFp~(x)X
~
0& . (A3)

As a consequence of (2.7), the term containing
5(e) on the lhs is given by

I

~e obtain, for e&0 (prime denotes derivation with

respect to e ),

—2n5(e)(0
~
J,t(x)X

~

0& .

Thus we require that

d"C&~„(e )= —2n5(e)5~,

(A4)

(Asa)

(A5b)

C, +2x'C,'+3C, =0,
C$ +C2 +x C3 +2C3 —0

2x D)+2D)+ —,C) -——0,

(A7a)

(A7b)

(A7c)

Now, we use that the above coefficients have the
following tensorial decomposition:

C 't( )e= C( e)g„,et'+C2(e )(e„5~+e„5t„')

+C3(e )e„e„e (A6a)

D~q„(E)=Dt's (eq5~ e,5q~)—

—2Di —2D2+ 2 C3 ——0,
C2—D) —Dp — ——C( ——C3x 04 4

2x D2+2D2+ —,C2 ——0,
A'=0.

(A7d)

(A7e)

(A7f)

(A7g)

+D'art'(e„5, E„5„)—
+ —,(Cq„e —, g CN, et, )—,

Et„'„(E)=A (e )e„„et'

(A6b)

(A6c)

The above equations are not enough to fix the C's
and D's. To get more information we proceed as
follows.

From (2.4a) we have

5„"(0)T[J (y),J„(x)]'Jz (x')X )0&=d„'C~z„(—x+y)(0) TJ' (x)z (x')X (0&

+C~z, (y —x)B„"(0
(
TJg(x)z'(x')X

)
0&

+5„"D~„(y—x)(0[ Ta~,'J '( ')X [0&

+d„"E~„(y—x)(0
~
T(z;z~F~ )(x)z'(x')X

~
0&

+O(ln(x —y) ) . (A8)

In computing the lhs of (A8) we will retain only terms involving 5 functions of (y —x) or (x —x ).
Using (A5a) and (A5b) we get, for p =1 (at x =y ),

—5(x —x')(0
~

T[J', (y)5'Jz (x') —5' z'(x')J
~ (y)]

~

0&

=[C,„B"(0~TJ"( ) '( ')X ~0&+a D„„a.(O~ TJ,'( ) '( ')X ~0&] [

=Cq(e )eiB"(0
i
TJ„'(x)z'(x')X

i
0&,

P —x =E'

(A9)



NONLOCAL CHARGE OF THE CP" ' MODEL AND ITS. . . 831

so that

(0(T[y',"(y)z (x(50—y'((y(z'(x)]X
~

Oi C=(z (z, 5"(0 T 5yz'(x) ——50z(x( X 0
n

(A10)

From (A10) and (2.8}we obtained, finally,

Cz(x )=
2'll

(Al 1)

C, (e )=+2 n 1

2'
and from (A7b) we find

(A12)

Having found C2, C& is evaluated with the help of
(A7a);

The value of A, above is fixed by imposing (A5a),
which gives

C3(e )=
(~2)2

(A14)

Dy =
2

lIlp E'

8m@2
(A15}

Using the equations (A7c)—(A7f) we find D~ and
D2,

(A13)
D2=

2 1Ilp E' ++n p 2 n

8m@ 4m g2
(A16)

TABLE I. Allowed operators in the Wilson expansion for the commutator of two currents.
Listed are the behaviors of the coefficients under PT and charge conjugation.

Coefficient
No.

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Operator

Jp
lp

~aJp

B~lp
zgZJF~p

Zg ZJ 7T

z;zing
z zj(tyysg
z zj4'yp(('

z;zji('g

4g4
itjysA
z;g~c

zi 1' Ysc
()p(z;zjgys g )

a (ZZ K)
()p(z;zj(tl )

a,(z,zjt(y, q)
zjc5((;

zjcysg;
a,(z,zjqy)
Zg ZJ Bp&

Zg BpZJ 7T

Bpzg ZJ IT

z;zjBp(gysg)
z,zjyy, apily

apz;zjqy, q
z;apzjyys5)l
z;zj()pP

z;Bp~g
()p;zjP
z;zj 57typ'(3~

z,zja,(qy.q)
apz;zjqy (t(

Coefficient

Cp„,(e)

E„P,(e)
E„'„(e)
F„,(e)
F„'„(~)
GP„„(e)
6„' (e)
H„,(e)
Hq„(e)
I„„(e)
Iq„(e)
JP„,(e)

Ig P„„(e)
K„'~(e )

L„(e)
Lq, (e)

N„'P„(e )

pp (e)
p„'p(e)
QPp, (&)
Q„'P(&)

Rqp (e)
S~(e)
Sqp (e)

PT

—Cp„( —e)
—C„'p( —e)
+D„p( —&)
+D„'„p(—e)
+E„P(—e)
+E„'„(—e)
+F„„(-~)
+F„',( —&)
—GP„(—e)
+6„'„(—e)
+H„„(—e)
+Hq„( —e)
+I„,( —&)

+I„',( —~)
—JP„(—e)
—Jqp( —e)
—Kp„,( —e)
+K„'p ( —e)
+L„(—&)

+L„'„(—~)
MP ( p)

—M„'P( —e)
—NP„( —e)
—N„'P( —e)
+Op„( —e)
—Oqp( —e)
—pp ( —e)
—p„'p( —e)
—QP„( —&)

—Q„'P( —&)

+R„P ( —&)

+Sp„(—e)
+s„'~(—~)

Charge conjugation

—Cpq( —e )

—E P( —&)
—E' ( —e)
+F„„(—&)
—F'„(—&)
—Gp„( —&)

+G'„(—e)
+H„„(—e)
—H'„( —e )

I„„(—~)=L„„(~)
I„'„(—e)=—L„'„(e)
—JP„(—e )

J'P( g )

Kp„( —e)
—E„'~(—e)
L „(—&)=I„(&)
L„'„(—e) =I„'„(e)

+MP„(—~)
—M„'P( —e)
NP„( —e)= —N„P„(e)
N„'P( —~)= —NP„.(~)
—Op„( —e)
+O'P( —&)
ppq( —e)= —pqp(e)
p„' p( —~)=—pp„„(~)
+QP„(—&)

RP„(—e) =Q„'P„ie)
+R„'P ( —e)

S,'qp ( —e)= —Tp (e)
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APPENDIX B

In this appendix we show that the short-distance
expansion for the product of two currents of the
CP" ' supersymmetric model is given by (3.3). To
prove this we note that the local operators contribut-
ing to the commutator [J&(x+e),J,(x)]'J have at
most dimension 2. Therefore the a11owed candidates
are those listed in Table I, which shows also the
behavior of the coefficients under PT and charge
conjugation.

Using Table I we analyze whether each of the
coefficients contribute to the Wilson expansion or
not. Since the first five will survive we begin the

E„',(» ) = —E„'„(e)

so that

(B1)

E„' (&)=e„„f(e'). (B2)

Because of current conservation f(e ) is a con-
stant f. The normalization condition gives (our nor-

mal products are always normalized at zero external
momenta}

discussion with the coefficient number 6.
Coefficient number 6/E„'„(e)j. By PT and charge

conjugation (CC) we conclude that

fe„„=(0
~
Tz;(p)zj(q)sr(r)[J„(e),J,(0)]

~
0)

The graphs contributing to the rhs of (B3) have the structure shown in Fig. 3. Thus we have

(B3)

TABLE I. (Continued. )

Coefficient
No. Operator Coefficient PT Cha, rge conjugation

35
36
37

38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

z;apzjyyÃ
z~zJ.Bp( Pg )

z;zjg Bpg

z;Bp, gti
Bpz;zj PP
a,~q, q, )

y, apA

~p(PgrsA)

V,r a,V,

z;zJ sr/
z;zj.nays/.
z;zjnfypg.
z;zj srgf
z zty4rsg
z zj /gyp/'
z;zj PjP
z zj PrsP0pf
z zjfrsPgQ'
z zj frpPA'
srkgrsA
~4gr 0

gNjsA

As&grsk
Prsfk~A
SrpkfgrsA
frpffj4

O'pe%
Zg ZJ 8 7T

z;zjgg
zzjfrs&rsP
%rpPfrA'
z zjfgfg

T~(e)
TqP„(e)

U~q„{e)
U„'P„(e)
VP (&)
V~P„(e)

X~„(e)
X„'P„(e)

Z~„(e)
Z„' (e)

~„'P„(~)
F„(e)
~„' (e)

b„'„(~)

c„'„(e)
d„„(e)
d„'„(e)
f„ (e)
f„„(e)
g„ (e)
g„' (e)
h„„(e)
h„'„(e)
i„„(e)
„'( )

j„(&)
j„' (&)
k~(~)
k„'~(e)

+T~( —e)
—T„'P( —&)

UP ( ~)
—U„'„(— )
—vP„( —~)

V'P( &)
—XP„(—e)
—X„'P(—e)
+ZP„(—e)
+Z„' ( —&)

+ 8'q„( —e)
—8"P( —e)
+ F„„(—e)
+ F„'„(—&)
—aPq, ( —e)
+a„'„(—e)
—bP„( —&)

+b„'„(—&)
—cP„(—e)
+c„'„(—e )

+d„(—e)
+d„' ( —e)
+f„„(—e)
+f„' ( —e)
+g~„(—& )
—g„' ( —e)
—h„„(—e)
+h„',( —e)
+i„(—e)
+i„'„(—e )

+j„„(—~)
+j„' ( —e)
+kP„„(—e)
+k„'P ( —e)

S„'P„{e)

Vq„(e)
„'P(&)

TP„(—e)=-
+T„'P( —e)

UI ( p)
U„'P( —e }=
vP„( —~)= U

+ V„'P( —e)
—XP„(—e )
—X„'qP( —e)
+ZP„(—e)
—Z,'„(—e)
+ 8'„„(—e)
+ 8'„'~P( —e)
—F„(—e)
—F„'q( —e )
—aPq( —e)
+a„'„(—e)
+bP„(—e)
—b'„(—&)
—cP„(—e)
+c„'„(—e)
—d„„(—e)
—d,'„(—e)
+f.„(—e)
+f'„(—e)
—g ( —~)
+g„'„{—~)
—h„„(—e)
—h„'„{—e)
+i„„(—e }
+i„'„(—e)
+j„„(—&)

+j'„(—~)
+k~~( —e)
+k„'P ( —e)
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dzk
Fig. 3= I ei '(k+2p)&b(k p, r)(k+p+r+q)„

(2n. ) p=q=r=0
(B4)

where the 6(k,p, r) factor can be made explicit using the Feynman rules. The equation (B4) is symmetric under
the interchange p~v, and we conclude, therefore, that E„'„(e)=0. The same arguments can be applied to
show that the coefficients numbers 8, 12, 14, 20, 44, 47, 48, 52, 55, 56, 59, and 62 also vanish.

Coefficient number 7(F»(e)J. Taking the adjoint of the Wilson expansion one readily sees that F»(e) must
be purely imaginary. On the other hand,

dkF»(e)=(0
~
Tzizjg[J„(e),J„(0)]

i
0) = J e' 'g„,(k),

(2n. )' (B5)

where by inspection g»(k) is real. (Although the fermion propagators have both imaginary and real parts,
only products of an even number of imaginary parts contribute. ) It follows that

F„„( e) =—F„'„(e)= F„„(e—) .

By PT,

F»(e)=F„„(—e),

(B6)

(B7)

(B8)

where g~, g2, and g3 are constants.
Using that (up to logarithmically divergent terms)

8,"(0
[ T[J„(y},J„(x)];i'"(x')X

~

0.) =i}„"G~„(y—x)(0
~
T(; Py P)(x)g "( ')X

~

0)

+G~q„(y —x)B„"(0
~
T(z;zj gyp')(x)i' (x')X

~
0)

+"r}„"K„'~(y —x)(0
~

Td (z;z~gyog)(x)P"(x')X
~
0) + other terms

(B9)

and we conclude that F&„(e)=0. An identical argument can be used for the coefficients numbers 10 and 11.
Coefficients numbers 9 and 18 (G~z„(e) and K&~ (e)J Firs.t of all, due to PT, CC, and current conservation,

gpv& &pgv+ &A'p, &p, &v&p p p P

G»(e)= gl z +gz z +gz z z(e )

However, current conservation implies

Ji»(e)=j (e»ei' e„e„+e„e„)- (Bl 1)

we see that the lhs provides terms linear in the Jz,
i', and X fields (X denotes a products of the Z's, g~s,
and their adjoints), but no term proportional to
z;zjfyzg. These linear contributions cancel those
coming from C&i„' on the rhs, but no contributions
arise which are able to cancel G~&„(e}. So we con-
clude that Gi„'„(e) is equal to zero.

It is straightforward to see that this implies
Kq™(e)=0.

Coefficients numbers 13 and 19 fI„,(e) and
L»(e)J. Taking the symmetric and antisymmetric
parts of the coefficients (which have definite
transformation properties under charge conjuga-
tion), we see that both parts are zero, using the argu-
ments of the cases numbers 1 and 2.

Coefficient number 15 IJ&~„(e)J By PT, .CC, and
P we get, for this coefficient,

J»(e)=j i(e )e»ei'+j z(e }(ei„'e„e~i'e„). —
(B10)

I

which tends to zero as @~0. The situation is analo-
gous for the coefficients numbers 16, 22, 25, 26, 43,
46, 51, and 60.

Coefficient number 17 IKi„'„(e)J. PT and CC en-
force

Ki„'„(e)=k(ez)(e„g~ e„g„)— (B12)

and this is consistent with current conservation only
if K~»—0. The same argument holds for coeffi-
cients numbers 21, 29, 36, and 40.

Coefficients numbers 23 and 24 [N~„(e) and
N„'i„'(e)J First we ta.ke the symmetric and antisym-
metric parts which have definite transformation
properties under charge conjugation. Combining the
arguments used in the last two cases we get that
these parts are zero. For the pair (27 and 28) one
can use the same argument.

Coefficients numbers 30 and 31 I'g&~(e) and
Ri'„(e)J. For this pair we use a combination of the
arguments of the second [F»(e}]and the sixth case
[K~„(e)]

Coefficient number 32 IR&~(e)J. The graphical
contribution is shown in Fig. 4. %e have
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P~ +q
(p

I~

FIG. 3. Graph corresponding to the coefficient number
6 [Eq. (84)j.

FIG. 4. Graph corresponding to the coefficient number
32 [Eq. (815)].

Rq~ (e)=y~p — (0~ Tzt(p)zl(q)pg (r)Pk (s)[Jq(e),J„(0)]
~
}

Br Bs p=q=r=s=O

d k
2 k&(k+p+q+r+s)„yeti — f~p(p, k,s, r)e' '

(2m ) Br Bs~

2

p=q=r=s=O J

(B13)

which is antisymmetric under the interchange e~—e. But this is forbidden by PT. The same
holds for the coefficient number 37.

Coefficient number 33 /S~&„(e)J By PT,. CC, and current conservation,

S~~ (e ) =sep~e

On the other hand,

(B14)

Si„'„(e)=try — f kq(k +r +s +p +q)„f(p, k, r,s)e'"'
dr Bs~ (2~}' " 6~—E' (B15)

d k;k,s =tr (k„g~e' '
(2m )

k„gt„'e ' )e"'—ypysf(k) (B16)

In view of Eq. (B14), only the antisymmetric part
survives and the derivatives act only on the
k&(k +r +s +p +q)„ factor. After multiplying
e&"ep, we get

I

which is antisymmetric under e~—e, violating I'T.
Coefficients numbers 34 and 35 (S'~ (e) and

T& (e)J. For the symmetric part of this pair we use
jLCV

the same argument as in the case of R„'t,' (e) (num-
ber 32). The antisymmetric part of the argument is
the same as in the case of S~~„(e) (number 33).

Coefficients numbers 38 and 39 IU&~(e) and
Vt„'„(e)J. Taking the antisymmetric part of this pair
we use the sixth argument. For the symmetric part
we see that

UI&I'„}(e)=tr —
2 (k +2p)z(k +p +r +s +q)„fe'"'8 8 d2k

(2~)'P P p =q=r =s=O

=tr f k„k„— f(e' ' e' ')+ — 2(g&k„e' ' g„k&e ' '}f .—
(2ir)' "

&q &p (2m )'

The first integral is convergent, whereas the second one yields

UI~„}(e)=Q (e }(g~e~+gfe~) .

(B17)

(B18)
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At this point current conservation is enough to imply UI&„}(e }=0.
Coefficient number 42 (X~&„(e)J W. e have

X~i'„(e)=tr —
2 y„I'(p, q)y, e' '

i}pp dqp (2~}' "
p=q=o

(819)

where, in general,

I (p,q) =b(p, q)+c(p, q)y5+tt (p,q)y", (820)

giving us three terms:

dkai„'„(e}=J k„k„f(k)(e'"'—e '"') .
(2m )

(826}

tr(y yfJy elks y yt/y e
—IkE)f (k}

which is zero because try„y&y„=0;

try5(yqy„e' ' y„—yqe
' )f(k),

(82 la)

(821b)

which is proportional to e„„,which is forbidden by
P;

Each of the terms above is logarithmically diver-
gent so that their difference is finite. This argument
can also be applied to coefficient number 53.

Coefficient number 6I (h~&„(e)J We h. ave

dk
h~q„(e }=tr f i [yqf(k}y„e' '

(2n. )

y eike y y e i')f—(k} (821c} y„f(k)y—„e '"'], (827)

This has the tensor structure

X~„(e)=x (e')g„„et', (822}

and, again, current conservation requires X„„(e)=0.
This argument can be used for the coefficients

numbers 54, 57, and 58.
Coefficient number 42 /X&~(e)J By PT,. P, and

charge conjugation,

X~~(e)=x(e )(e~qe„+e~eq) (823}

and current conservation implies X„'~(e }=0.
Coefficient number 45 fW»(e)J. PT and CC im-

ply

W~~(e)=toi(e }gp~+toi(e )eye» ~

On the other hand,

(824)

d'k
W„,(e)= I k„k,f(k)e'"'

(2n }i

(825)

which is antisymmetric under e=-==, violating P.
The same argument holds for coefficients numbers

50, 64, 65, 66, and 68.
Coefficient number 49/a~&„(e)J. We have

and using the cyclicity of the trace,

d k
h~~„(e)= f 2

(y„y„e'"' y„y—„e ik')f (k) .
(2ir )

(828}

But

'Vp, 'Vv =gpv+&pv'V5 ~ (829)
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where the last term does not contribute due to P and
for the first term we use the same argument as for
coefficient number 49 [a~&„(e)]. The same holds for
coefficient number 63.

Coefficient number 67 Ik~&„(e)J. Here we have a
product of two traces but the procedure is similar to
the preceding cases.
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