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We present a complete study of geodesic motion in Godel's universe, using the method of
the effective potential. A clear physical picture of free motion and its stability in this

universe emerges. A large class of geodesics have finite intervals in which the particle

moves back in time {dt/ds &0) without violation of causality. Godel's geometry produces

the important property of confinement for a large class of geodesics. We use this property
to discuss the construction of a gravitational container. This structure is highly stable, since

there is no singularity in its interior, and is independent of the energy of the particles con-

tained in it.

I. INTRODUCTION

In this paper we analyze some remarkable proper-
ties of free motion of particles in a rotating universe.
The most important feature of a rotating universe is
that matter rotates with a nonzero angular velocity
in the local inertial frames of its comoving ob-
servers. We limit our considerations here to Godel's
geometry' although our results could well be extend-
ed to other rotating Godel-type models. Geodetic
motion in Godels cosmos has been analyzed in-

dependently by Kundt and by Chandrasekhar and
Wright ' more than 20 years ago, in which they
found some weird properties of trajectories of the
particles. In our search to understand completely
the main features of Godel's cosmos we decided to
consider this problem from a different standpoint.
The basic difference between our treatment and the
previous ones ' rests in our use of the method of the
effectiue potential by means of which we obtain not
only their results but also gain a simpler characteri-
zation and a clear physical image of the structure of
free motion of particles (massive and massless) in
this space-time geometry.

We divide the paper as follows. In Secs. II and
III we present the equations of motion and the first
integrals and we introduce the effectiue potential
The main properties of the effective potential, whose
parametrization characterizes distinct families of
geodesics, are presented. Section IV deals with the
important property of confinement which Godel's
geometry produces, for a large class of geodesics. In
Secs. V, VI, and VII we give the complete system of
integrated expressions for geodesic curves and we
draw some illustrative graphs of the trajectories in
the (r,P ) plane. Also, the property of traveling back

in time along a piece of some curves is examined.
We conclude with Sec. VIII, where we discuss some
fundamental properties of Godel's geometry related
to geodetic motion and possible applications.

II. THE EQUATIONS OF GEODESIC MOTION

In the cylindrical coordinate system (t, r, P,z) the
fundamental length of Godel-type geometry is given

by
ds =a I [dt+H(r)dg] dr dz— —

—R (r)dg~j . (2.1)

For the case of Godel's cosmos the functions R (r)
and H (r) take the form

R (r) = sinhr coshr,

H(r)=V2sinh r,
(2.2a)

(2.2b)

where a =4/co and co is a measure of the constant
rotation of the matter flow of the model. Coordi-
nates t, r, and P are defined on a three-dimensional
hyperboloid H (up to identification of certain point
sets), ' with range —oo &t& oo, 0&r & oo, and
0(P &2n.. The coordinate z is defined on the real
line R. The manifold of the model has structure of
H )&R (up to identification of certain points) and is
completely covered by the above coordinate system.

The geodesic equations of motion are expressed as

v (i„v =0, (2.3)

where V"=(t,r', P,z) is the vector field tangent to
the curve parametrized with parameter s, and where
an overdot denotes a derivative with respect to s.
Equations (3) have the set of independent first in-

teg rais
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t+H0 =Ao

(H2 —R')P+Ht =So, (2.4b)

t( t+HP )+P[Ht+(H2 R2—)P] r'2 —=
2 +Co

This allows us to obtain directly many results of
Sec. V and also gives us a deeper insight into the
global properties of motion in Godel s space-time.

III. THE EFFECTIVE POTENTIAL

z=CQ,

(2.4c)

(2.4d)

Equation (2.7d) can be expressed as

=Ao —V(r), (3.1)

where Ao, Bo, and Co are integration constants and
e =1,0 accordingly if the geodesics are timelike or
null, respectively. For Godel's geometry these equa-
tions reduce to V( ) W2A

slnhr 0

coshr sinhr coshr
+DQ ~

where the effective potential V (r) has the form

t+v 2sinh'rP =Ao,
v 2sinh rt+( sinh r —sinh r)p =&o,

(2.5a)

(2.5b) Here we denote

(3.2)

z =Cp, (2.5c)

r'2=t +2M 2sinh rtP+( sinh r —sinh r)P

—(Co +e/a2) . (2.5d)

From a direct inspection of Eq. (2.3) we single out
the two families of geodesics characterized by

V"=A, 1,0,0, 1 ——1
(2.6a)

V"=A(1, ,0 01), (2.6b)

2sinh r
t=Ap 1 —

2 +
cosh2r

respectively, timelike and null-like curves, in which
A, is a positive arbitrary number. For A, =1 the
congruence determined by (2.6a} are the world lines
of the matter content of the model. The sets (2.5}
and (2.6) exhaust all possible solutions of the equa-
tion of geodesics.

We can rewrite Eqs. (2.5) as

v 2Ao Bo
(2.7a)

cosh r sinh r cosh r

v2@,
(2.7b)

cosh r

D 2 C 2+e/a2 (3.3)

R is given by (2.2a) and we note that this expression
is analogous to the equation of a charged particle in
the presence of the vector potential A =a(r). In
what follows we shall briefly refer to Ao as the "en-
ergy" of the particles (geodesic trajectories).

Now using Eq (3.1) w. e can make a complete
characterization of the motion into three distinct
cases, Bp &0, Bp ——0, and Bp &0, as the correspond-
ing potentials V(r) are basically distinct. Let us de-
fine the parameters

From the above equations we can easily see that Ap
is the square of the total energy in case of photons
(null curves, e =0) and the square of the total energy
per unit of mass for massive particles (timelike
curves, e = 1). Also Bo is interpreted as the total an-
gular momentum of the trajectories. In fact, intro-
ducing the momenta p& ——g&

i" we have pp ——Ap,
P„= r', Pt, ——Bo, P,—=—Co, and Eq. (2.7d) can be
put into the form

[py —( )]'
Po =Pr +Ps + +e/a

z=Cp, (2.7c) }'=&o/Ao O'=Do'/Ao' (3.4)

slnhr p
r =Ap —Dp — v~p

coshr sinhr coshr

'2

(2.7d)

Although Eqs. (2.7) can be directly integrated (a task
which we postpone for Sec. V) let us investigate here
the general behavior of the geodesic families by us-

ing the powerful method of the effective potential.

For physical particles we must have 0&p2& 1.
potential V(r) is depicted in Figs. 1(a), 1(b), and 1(c).
We have actually plotted V(r) PAo and, i—n the
case of p2=0, the graphs represent V(r} directly.
For p2~0, V(r) is obtained by an upward shift of
the graphs. Let us discuss the three distinct cases of
the above figures. The radial coordinate r oscillates
in the allowable classical domain r] &r&r2, the
turning points being

P2+ ( 1 P2)1/2[(2y+ i/2)2 ( 1 +P2) ]1/2
sinh r;=

2(1+P')
(3.5)
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FIG. 1. Graphs of the effective potential.

respectively, for i =1,2, and for which r' =0
[equivalently V(r) =A0 ]. Since the total "energy"

2
A0 is a fixed quantity for each geodesic the trajecto-
ry is kept within the cyhndrical shell r ~ & r & r2. We
show later that the trajectories are closed in the
(r,i'�)plane. We now consider the following.

Case I:y &0. The case P =0 corresponds to pho-
ton trajectories in a z = const plane. For massive
particles or photons with non-null momentum along
z (P &0) the width of the cylindrical shell dimin-
ishes and goes to zero for P =1. Indeed, this limit

p =1 corresponds to an upward shift of A02 for the
potential of Fig. 1—the new minimum of the curve
V(r) is now equal to A0. This implies that the
width of the shell is zero, localizing the r coordinate
of the particle at

2VZ
rmin arc sinh y .

IV. CONFINEMENT

We now show that for y &0 the potential V(r)
produces a confinement of all the trajectories within
the cylinder r & r„with sinhr, =1.

Case 2: y=0. For P =0 it is remarkable that the
maximum radial distance which any of these (y=0)
photons can attain is given by sinhr, =1. This fact
was also noticed in Ref. 2. Remarkably enough this
value r =r, has been defined by Godel as a limiting
value separating causal from noncausal regions of
the space-time. In fact, the form of the potential
V(r) given in Fig. 1(b) shows that for any value of
the total energy A0 the photons are always confined
inside the cylindrical surface r =r, . But we see that
this result holds also for massive particles although
they are never able to attain the limiting wall.

Case 3: y&0. From Eqs. (3.2} we obtain that
V(r) has a minimum [cf. Fig. 1(c)] at

On the other hand the value of r corresponding to
the minimum of the potential ( sinh r = —,v 2y)
makes /=0 [cf. Eq. (2.7a)] for any P &1. This is
actually a necessary condition for the motion of the
particle to occur inside the cylindrical shell as this
guarantees that the extremum /=0 always occurs
inside the shell. For P =1 we have P =0 always,
and the particle moves only in the z direction, which
corresponds to the solutions (2.6a} and (2.6b) for
e = 1,0, respectively.

Finally we should notice that from the depen-
dence of r; on the parameter y we can see that the
cylindrical shell can be located at any distance from
the axis r =0, for different values of y. We remark
also that geodesics with yp0 are not allowed to
reach the origin r =0. The form of the potential is
highly stable with respect to variations of the total
"energy" A0 of the particles, and as a consequence
its properties are vahd for all finite values of A0 .

——,'v Zyr;„=arc sinh
1+ 2y

(3.6)

Vmin P AO = 4~0 +1
y

However from Eq. (3.1) we must have

~min &~O (3.7)

This implies that the permissible range of negatiue
values of y is bounded,

~2+ ( 1 +P2)1/2
&@&0, (3.8)

the lower bound

Contrary to the two previous cases the minimum of
2 2'

V—p A0 is never zero but has the non-null value
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—~&+(1+@')' '
V dmin 2

corresponding to the equality in (3.7). Contrary to
the two previous cases, in which V;„=HO is
equivalent to P =1, /=0, the limiting situation
Vm;„=Ho leads to values P & 1 and /&0. Thus in
this limit the orbits will have r =r;„=const with

y =ym;„and P = const&0. These are circular orbits
[more precisely the projection of the orbits in the
plane (r, P ) are circular] and it is clear that the only
possible case of circular orbits corresponds exactly
to the lower bound of y.

We remark that for any case the allowable range
of y is given by

i/2+(1+P2)1/2
%/goo .

By substitution of the value

v/2+( 1+P2)1/2
Ymlll 2

in (3.6) we obtain the radius of the circular orbits
given by

(3.9)

(1+@2)l/2
sinh'r =

2 1/22(1+}t3 )
(3.10)

vZ
cosh2r = (1+P')'"

and (2.7a) and (3.10) give P =2AO(1+P )' . From
(3.10) we find that for all circular orbits

I

r & —, arccoshv 2&r„ the maximum radius corre
sponding to null geodesics, as pointed out in Ref. 3.
We find also that for y &0,$ &0 always, that is, P
cannot change sign along these trajectories. More
generally froin (3.5} we see that r2 &r, for y&0,
which confirms our previous statement that all or-
bits with y&0 are confined inside the cylinder
r =r, . In other words, the gravitational field of
GodeVs cosmos selects a whole class of particles
(photons or massive particles, with y &0} and iso-
lates them inside the region r & r, .

z —Cos +zo ~ (5.1)

To integrate Eqs. (2.7d) or (3.1) we introduce the
variable p defined by

p= sinh r . (5.2)

Equation (3.1) is then reexpressed as

p =420 [—(1+/ )p2+(1+2V2y P2)p P]—, —

(5.3)

a solution of which is given by

V. THE INTEGRATION OF
GEODESICS EQUATIONS

To obtain more information about the geodesic
motion in Godels universe, let us now integrate
completely the system of equations (2.7).

Equation (2.7c) can be immediately integrated to

2
( 1 2)1/2p(s)=, +, [(2y+i 2)' —(I+p'))' 'cos2Ae(l+p )' '(s —sll) .

2(1+P ) 2(l+P )
(5A)

(3.5}

This solution corresponds to having chosen so such that p is maximum at s =so.
We reobtain now a number of results which have been obtained in Sec. III from Eq. (3.5) and the analysis of

Figs. 1(a), l(b), and 1(c), showing the power of the method of the effective potential. The values of p,„and
p;„drawn from (5.4) are obviously the roots r; given in (3.5), namely,

1+2~2)/ P2+(1 P2)1/2[(2y+i/2)2 (1+$2)]1/2
2(1+0')

From (3.5) or (5.4) we must have

(2y+i/2)'& ( I+P') . (5.5)

1/2 ~(1+P2)1/2
(ii) y=

2

1/2+(1+P2)I/2 (g( oo, (3.9)

This inequality together with the obvious condition
p&0 implies (cf. Ref. 6)

from (3.5) taking p,„=p;„,or from (5.4). Case (i)
gives p=(1/2/2)y which implies /=0. These are
curves with p, P = const, and a velocity vector field
along the z axis. Case (ii) corresponds to the lower
limit of y [cf. (3.9)] and we have

the lower limit corresponding to the equality in
(5 5).

We also have that p is a constant for the cases

(i) P =1,

( 1+P2)1/2
2(1+@2)l/2

or, equivalently,

(3.10)
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v2
cosh2T =

2 1/2(1+@ )

which for 0 & P & 1 implies 1 & cosh2r & v 2 as al-
ready mentioned. Also P = const=2Ao(1+P2)'~2
and it is clear that this is the case of "circular" or-
bits (actually spatial helices if Co +0).

We also remark that for both eases (i) and (ii) the
orbits (r = const) are stable, since they are located at
the ininimum of the potential r = 'dV/dr —=0.

Of course all the above results are contained in
Eq. (5.4), which shall be used in what follows. We
now turn to the integration of $(s}. Our choice of
solution (5.4) corresponds to taking from Eq. (5.3)
the root

Using

~
Av2p y-

p(p+1)
we have

(2.7a)

dP
dp 2p(p+1) [—(2p —y)'+(1 —P')p(p+1)]'"

which can be immediately integrated to

2(p —$0)=A +B,
where $0 is an integration constant, and

(5.7)

p= —2AO[ —(1+0')p'+(1+2~2y —P')p —P']' ' .

(5.6)

(1—P +2& 2y)p —2y

p&i-P'[(2y+~2)' —(1+P')]'" '

[2y(v 2+y)+1 —P'](p+1)—2(v 2+y)'p
(p+1)&1—P'[(2y+ v 2)' —(1+P')]'~'

Equation (5.7) yields

(5.8)

(5.9)

(2y+ 2)p+y (5.10)
[(2y+~2)' —(1+P')]'~'p(p+1)

for cosA cosB &0. The case cosA cosB &0 is compatible only for y=0 in which case the solution coincides
with (5.10). From (5.10) and (5.4) we can easily conclude that the trajectories are closed in the (p, ((}) plane. We
remark that the expression (5.10) is not valid for the orbits with p=const [cases (i) and (ii) above].

The equation for t (s) can also be integrated to

v2
tan [t+Ao(s —so)]

2

1+@ +V 2(2y+ V 2) —(1—P ' [(2y+ V 2) —(1+P )]'~2

2(y+ ~2)(1+P')'

For the two limit cases (i) P = 1 and (ii}
y= —,[—~2+(1+P )'~ ], expression (5.11) can be
simplified and yields

(i) t=AO(s —so),

(ii) t=AO[(l+p )'~ ——,V2](s —so) .

An alternative expression to calculate t(s) is ob-
tained by noting that, for a given geodesics charac-
terized by Ao, Bo, and Co, we have

Aot(s) F( ( r))$+ Bg(o)——$Coz(s)

—e(s —so) =0, (5.12)
where

F(r) = I dr [AO V(r)]'—
which is an obvious integral of p&Vj"=e. %e re-
mind one that a = 1,0 for timelike and null-like geo-
desics, respectively.

cos(P —$0)=+1
for p=p,„;„[cf.(3.5)]. More specifically

if y & 0: cos(P —$0)=+ 1 forp,„,p;„,
if y & 0: cos(P —$0)=+ 1 forp,„,

cos(P —$0)= —1 forp .

(6.1)

(6.2)

(6.3)

On the other hand, expression (2.7a) defines the
value

(6.4)

VI. GRAPHS OF TRAJECTORIES IN
THE (p, P ) PLANE

With the aid of the results of the previous sections
we can now have a general picture of the projection
of geodesic trajectories of particles on the (p, p)
plane. From expression (5.10) it follows that
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FIG. 2. Graphs of geodesic trajectories in the (p, P ) plane.

such that P ~& z
——0. We also note that P &0 atP=Py

p=pm, x. This results in

~ fl
&j' p & 0' pmin &pp &pmax ~

if 'Y &0' pmin &pmax ~

P &Oalways,

Y 0 pmin

1 P2

1 +P2

(6.5)

(6.6)

(6.7)

1 ( 1 +P2
)

1/2

2 (pmax+pmin)~
1+P 2$

(6 9)

We remind readers once more that for
y= —,[—V 2+(1+P2)'~ ] (the lower limit of y
values) we have circular orbits with p =[V 2
—(1+P )'~ ]/2(1+P )'~ . The graphs of Fig. 2 are
illustrative. As y becomes large

2(1 P )'~2
pmax pmin~

1+P
(6.8)

and

In other words, as y —+00 the angle a goes to zero
and the ellipse of Fig. 2(a) is located at an infinite
distance from the origin [cf. (6.9)]. From (6.8) we
have to distinguish three cases: (i) for fixed P, as
y~no the ellipse is stretched infinitely along the
direction P =go', (ii) if y increases as ko/(1 —P )'~
for P2~1, the ellipse is stretched along the direction

P =go in an interval of length ko, (iii) if y increases
as 1/(1 —P ) for P —+1, where k & 1, the ellipse
reduces to a point at an infinite distance of r =0
along the direction P =(()o.

We depict several curves for increasing y (Fig. 3).
%e remark that the trajectories all have the same
counterclockwise direction.

VII. HOMOGENEITY IN SPACE- TIME—TRAVEL
BACK IN TIME

From the above picture we can now make a com-
ment about the homogeneity properties of free
motion in Godel's universe. It is suggestive that the
structure of curves that occur around r =0 is repro-
duced at any point r&0, up to a suitable deforma-
tion which comes from the r dependence of the
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/
/

p
I

FIG. 3. Graphs of the {p,{))) trajectories for increasing y. {a) y increasing with p fixed. The ellipse is stretched infin-
itely along P =go. (b) Large y increasing as ko/( I —P~) '~~ for Pi~ l. The ellipse stretched in an interval ko along P =$0.
(c) Large y increasing as 1/(1 —Pi)"~~ for Pi~ 1, where k & 1. The ellipse reduces to a point along P =P~.

metric coefficients. In other words, the structure of
geodesics about the origin 0 is topologically
equivalent to the structure about any other point 0'.
Indeed we now know that the properties of the
curves depend basically on the value of the angular
momentum parameter y of the trajectory, relative to
the origin r =0, and in principle it is always possible
to find a new parameter y'—connected to the origin
0' of a new coordinate system —such that one set of
the old elliptic curves can be circular orbits around
the new origin and vice versa. In this way, the
structure of the potentials of Figs. 1(a), 1(b), and 1(c)
as well the structure of curves of Figs. 2(a), 2(b), and
2(c) about the origin r =0 are reproduced for each
observer taken as defining the new origin 0' of the
coordinate system (see Fig. 3). This observer (locat-
ed at the origin r =0 of a given coordinate system)
will nevertheless be constrained to see only the por-
tion of the universe inside the cylinder r =r„be-
cause all geodesics which can reach r =0 are con-
fined inside the cylinder r =r, .

Beyond p=p, =1 (that is, r =r, ) the time coordi-
nate t runs backward. This can be seen from expres-
sion

t=Ap
(v 2y+1)—p

p+1
that defines the value of p

(2.7b)

p, =v 2y+1 (7 1)

for which t =0. For p &p, we see from (2.7b) that t
decreases. From (7.1) and the allowable range of y
[cf. (3.9)] we can verify that for y;„&y & 0,
pm, „&p, . The first root of the equation pm, „=p, oc-
curs for (y=0, P =0). The diagrams of Fig. 4 are
illustrative of the properties of the curves for several
y's, with respect to p, and p, .

VIII. CONCLUSIONS

Although the study of geodesic s in Godel's
universe has been undertaken more than 20 years
ago by Kundt and by Chandrasekhar and Wright, '

the complete physical features of geodesic motion in
this geometry remained somewhat obscure, possibly
related to the choice of the coordinate system used
by these authors to integrate the geodesic equations.
In the past 20 years, there seemed to be a general
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FIG. 4. Graphs of the trajectories in the (p, g)plane for several values of y, with respect to p, (Godel s critical radius

p, = sinh r = 1) and p, (for values of p beyond p, the time coordinate t decreases).

inability to recognize that the direct use of cylindri
cal coordinates allows a deeper insight into the prop-
erties of geodesics and that in this coordinate system
we are able to use in a very powerful way the
method of the effectiue potential Also, in . the
(t, r, i',z) coordinate system the first integrals of
motion (velocity component along the z axis, energy,
and angular momentum with respect to the origin
r =0) provide a simpler and more physical
parametrization of the equations of motion. The ef
fectiue potential is completely characterized by this
set of physical constants of motion, and its form is
highly stable under variation of these parameters.
In particular, the ratio y of the angular momentum
with respect to the origin to the energy of the orbit
allows us to distinguish three families of geodesics,
whether, respectively, y&0, y=0, and y&0. The
negative range of y is limited, the lower bound corre-
sponding to the family of circular orbits in the (r, i')
plane. The important property of confinement of
geodesics is produced by Godel's geometry: from the
graphs of the potential we obviously see (cf. Fig. 1)
that a/l geodesics for y(0 are confined inside the
cylinder r =r, about the origin, where r, is Godel s
critical radius. ' The only geodesics which can reach
the limiting wall r =r, are photon trajectories with
zero velocity along the z axis. This confinement is
independent of the energy of the particles. In other
words an ensemble of particles with y(0 is always

confined inside the cylinder with radius r, about the
origin r =0, for any distribution of the particles en-
ergy.

The above results are obtained directly from the
explicit expression of the effective potential. From
further investigation of geodesic equations we show
that, except for one limiting case, all trajectories are
closed curves in the (r,P) plane. For y &0, the ori-
gin r =0 is contained inside the curve, for y & 0 the
origin is outside, and only for y=0 does the curve
pass through the origin. All trajectories have the
same counterclockwise direction about any point
contained inside the curve in the (r, P ) plane. In this
sense we say that all trajectories corotate with the
matter content of the model. For large values of y
(y~ac) the trajectories are located at an infinite
distance from the origin r =0 and their behavior at
infinity depends on the asymptotic behavior of y (cf.
Fig. 3) with respect to the ratio (p, +ela )/po .

The structure of the curves about the origin of the
coordinate system is reproduced about any point 0',
up to a suitable deformation, that is, the structure of
geodesics about the origin 0 is topologically
equivalent to the structure about any other point 0'.
The latter could be described in the same way by a
new parameter y

' associated with the angular
momentum of the orbits about 0', as should be ex-
pected from the homogeneity of space-time.

The fact that the time coordinate t decreases oc-
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cles. This ensemble of particles constitutes a struc-
ture whose gravitational stability is guaranteed by
the inexistence of singularities in the interior of the
surface r =r, . No other gravitational field seems to
produce this type of stable structure. We can then
speculate if in the actual universe gravitation could
produce, through inhomogeneous matter rotation, a
sample of these idealized containers hiding in its in-
terior an unexpected source of energy.

APPENDIX

For completeness and future reference we give
here the relation between our constants of motion
and the constants which appear in Ref. 3.

Expression (46) of Ref. 3,

curs only beyond r =r„along geodesics with y &0.
This does not represent a direct violation of causali-
ty with geodesics.

We now use the confinement property of Godel's
geometry to discuss the construction of an idealized
gravitational container. As we have mentioned ear-
lier, the topology of Godel's manifold is H )&R,
with the z coordinate defined on the real line R. We
are then free to identify certain point sets in R,
changing the topology into H &(S' and generating a
new universe locally isometric to Godel's cosmos.
The surface r =r, is then transformed into the com-
pact surface of a torus and all trajectories of y &0
particles are contained in the interior of this torus
surface, for any distribution of energy of the parti-

I

1+e '(cos o+2sin o) +[(a—1) /4a]sin 2o.

2e '( cos o+a sin o)

can be simplified to

cosh2r =Q+P cos2o,

where

1 —a
4

(e —e /a),

(e '+e '/a) .
4

(Al)

(A2)

(A3)

We note that for y =y;„[cf. (3.9)],
cosh (ci —X/2) =1.

Also from our expressions (5.4), (5.6), and (5.10)
we obtain straightforwardly Eq. (45) of Ref. 2. In
fact expressing (5.4) as p=Q'+P'cos2o and using
the result of Ref. 7, we can rewrite (5.10) as

2[p(p+1}l'"cos(0 —40 }

Introducing a new parameter g such that

a=e
P and Q can be expressed

P = sinh(X/2) sinh(c i
—X/2),

Q = cosh(X/2) cosh(ci —X/2) .

(A4)

(A5)

(A6)
and it follows then

4p(p+1)—

+ 2

p2

1+P2

1 —P
1+P'

p —Q'
pl

' 2 1/2

With respect to our constants of motion, the param-
eter 0. is given by

o=AO(1+p }'r2(s —so) (A7)

for our choice of the origin s =so corresponding to

p =p,„[cf.(5.4}].
Now comparing (5.4) with (Al), and using expres-

sions (A5)—(A7) we obtain the desired relations

4p(p+1) sin (P —tI)0)=
1 —P
1+P2

1 2

sin 20'
1 +P2

p —Q'
pl

sinh X/2=, cosh X/2=1 —P 2 2

1+P2 1+p2

sinh" —X 2 ="y+ "—"+~'
1+p2

(AS)

(A9)

or

2V'p(p+ 1)sin(P —Po) =
' 1/2

2

sin2o
1+13'

cosh2(c —X/2) = (2y+ W2)

1+P2
which, using the relation (AS), reproduces Eq. (45)
of Ref. 3.
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I

)( ~~) )g
(2y+~&)' —(1+0') 4 ( +1)

4

6Inequality (3.7) for negative y is satisfied for values of y
given by

—V 2+(1+P )'
(i) — &y g0

W2+(1+P )'
(ii) y &

2

The domain (ii) is excluded because sin r;„is negative for
these values.

7The following result is useful for deriving (5.13):
r r '

2

1 P' —1 P' —o—Q
1+0' 1+8'+

where P and Q are given from expression (5.4) rewritten
as

p(s)=Q+P cos2Ap(1+P ) (s —sp) .

Since (V 2 —1) &a & 1 we have 0&J & —21n(V 2—1).
9It is important to note that the new manifold H ' )(S '

also has the structure of a Lie group. A curve globally
defined in H '

)&R is then globally defined in H ' XS'.


