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We analyze the de Sitter universe using geodesic clock reference systems. Our starting
point is the de Sitter universe described with a static metric form where curvature coordi-
nates are used. This curvature metric form contains a horizon across which timelike and
null trajectories cannot be followed. We show how to use new geodesic reference systems
that will allow trajectories to be followed across the horizon. These geodesic reference
systems are analogs to Eddington-Finkelstein and Kruskal-Novikov coordinate systems
that have previously been used to analyze the Schwarzschild field. The resulting comov-

ing synchronous coordinate systems result in metrics for the de Sitter universe that are
markedly different in form from the standard Robertson-Walker isotropic metric form.
This leads to questions of whether it is valid to describe the de Sitter universe with isotro-
pic Robertson-Walker coordinates.

I. INTRODUCTION

In discussing cosmological solutions to the Ein-
stein field equations of general relativity, a usual

starting point is to represent a particular universe
with a metric written in the Robertson-%alker iso-
tropic form

ds (r, t)=[1+E(r/2b) ]

x 2h{t)(d 2+ 2dQ2) dt2

dQ 2 dg 2+ sin2g dP 2 (1.1)

where E = —1,0, +1 defines the intrinsic curvature

of the three-dimensional subspace t =const, and

the constant b is a measure of the radius of curva-

ture of this subspace. The metric (1.1) is of an
"isotropic" form in that the spatial part has the

orm

Starting from the de Sitter universe expressed in
the curvature form (1.4), where A and B are in-

dependent of the time coordinate T, we will show
how geodesic reference systems can be used to
track previously unfollowable timelike and null tra-
jectories across an existing horizon. For the most
part, we will take procedures we have previously
used for analyzing a Schwarzschild field' s and

apply them to the present de Sitter universe.
Among other things, when we are done serious
questions will be raised about the validity of using
(1.1) for the description of a de Sitter universe.

II. FORMS OF THE DE SITTER UNIVERSE

The isotropic metric form of the de Sitter
universe is

do2=dr +r dQ (1.2) (2 1)ds2(r, t)=e '(dr +r dQ2) dt-2t/Ro

In this paper we analyze the de Sitter universe
which has zero curvature (E =0) and where the
function h (t) in (1.1) is given by

h(t)=t/Rp, Rp ——(3/A)' (1.3)

where A is the cosmological constant in Einstein's
vacuum field equations G"„=A5"„. We will assume
A to be positive. Along with the isotropic metric
form (1.1), we will also be looking at the de Sitter
universe from the point of view of curvature coor-
dinates, where a metric has the form

ds (R, T)=A (R, T)dR +R d Q B(R,T)dT2 . —
(1.4)

We will cast this into a curvature metric form in

two steps. We first replace the isotropic radial
coordinate r with a curvature radial coordinate R
defined by

t/RpR =re (2.2)

to transform (2.1) into an intermediate nondiagonal
form

ds (R, t)=[dR (R/Rp)dt] +R—dQ dt—
(2.3)

We next diagonalize (2.3) by replacing the isotropic
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time coordinate t with a curvature time coordinate
T defined by

T=t+ f 2 dy
tt y/Ro
' [1—(y/Ro}']

Schwarzschild field in a de Sitter universe. The
general curvature form (2.6} cannot be changed
into an isotropic form with g44

———1, because with

the presence of M the field is not homogeneous.

=t —(Ro/2)in[1 —(R/Ro) ] (2.4) III. TIMELIKE GEODESICS

dR
ds (R, T)= +R dQ

1 —(R/Ro)'

—[1 (R/R—o) ]dT (2.5)

We note that (2.5} has a coordinate singularity at
R =Rp which did not exist in the previous metric
forms (2.1) or (2.3). Related to this is the singular

behavior at R =Ro in the transformation (2.4) that
replaces t with T.

We know from Birkhoff's theorem that any

spherically symmetric field in vacuo is static,
which means that it must be possible to find static
coordinates that explicitly exhibit this intrinsic

static property. Curvature coordinates are these
coordinates, for it is seen that the metric coeffi-
cients in (2.5) are independent of T. In contrast,
the metric coefficients in the isotropic form (2.1)

depend upon t, so it is not evident from (2.1) that
the de Sitter universe is static.

The de Sitter curvature form (2.5) is a special
case of the most general solution to the Einstein
vacuum field equations in curvature coordinates,
which is

dR
ds2(R T}— +RzdQz

1 —2M/R —(R/Ro)

to give us the final curvature metric form of the de
Sitter universe as

The timelike solutions to the radial geodesic
equations in the (R, T) curvature coordinates of
(2.5) are

dR/d7-=nt[(R/R ) +kz 1] ~

dT/dr=k [1—(R/Ro) ]

(3.1a)

(3.lb}

where m =+1 or —1 depending, respectively, on
whether the particle is moving in the sense of in-

creasing or decreasing R, and k is a parameter
representing the energy per unit mass of the geo-
desic particle. A particle with k & 1 will have a
turning radius. Its motion will be such that it will

come in from infinity, stop momentarily at R; & 0
given by

R;/Ro ——(1—k )'i, (3 2)

k =(1—vo ) (3.3)

and then head back to infinity with ever-increasing

speed relative to R =const points. Thus, a particle
released from rest at R; & 0 will move toward in-

creasing R. The value k =1 corresponds to a tran-

sition value. A particle with k =1 released at
R =0 will stay there for all succeeding time, be-

cause the trajectory R =0 is a timelike geodesic.
Particles with k & 1 correspond to particles that are
"shot out" or are "caught" at R =0 with a velocity

vp given by

—[1—2M/R —(R/Ro) ]dT

which can be regarded as a combination of a

(2.6}

as measured by an observer fixed at the timelike

geodesic R =0.
Upon combining (3.1a) and (3.1b) and integrat-

ing, we obtain

T —T, =mk
R dp

"~ [(y/Ro) +k 1]'~ [1—(y/R—o) ]
(3.4)

R

"~ [(y/R ) +k —1]'~ (3.5)

which shows that a particle will take an infinite
amount of the coordinate T to asymptotically ap-

proach Ro. However, from (3.1a) by itself we ob-

tain

which shows that the proper time ~ measured by a
clock coincident with the geodesic particle records

a finite amount of ticks as it reaches and crosses

Rp.
Thus, if one plots world lines on an (R,T)

space-time diagram, one finds that neither timelike

nor null trajectories can be followed across R =Rp
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an absolute sense, the single center of spherical
symmetry. In a de Sitter universe, however, there
is nothing special or intrinsic about the point
R =0. We could equally well refer the universe to
any other geodesic observer besides the one located
at R =0. This other observer, located at some
R'=0, that is, moving relative to R =0, would
also find the universe describable by a metric of
the form (2.5), and would have a horizon at
R'=Rp.

a'
IV. THE BREAKDOWN OF

THE T COORDINATE

FIG. 1. An (R, T) space-time diagram that shows the
inability to follow timelike trajectories (cc') and null tra-
jectories ( aa ' and bb') across the horizon at R =Rp
when T is used as the time coordinate.

in terms of (R, T) coordinates, as shown in Fig. 1,
even though a clock coincident with a particle
records a finite time as the particle's trajectory
asymptotically approaches Rp. This behavior is
exactly the same as the inability to follow particles
and light signals across the Schwarzschild radius
R =2M in a Schwarzschild field when curvature
coordinates are used. We shall exploit this similar-
ity and apply methods we have previously used
with the Schwarzschild field' to the de Sitter
universe.

We note, though, an important difference be-
tween a Schwarzschild field and the de Sitter
universe. In a Schwarzschild field, the location
R =0 has an intrinsic significance in that it is, in

We can account for the coordinate singularity at
R =Ro with the following argument, which is an

extension of one we have previously used to ex-

plain the coordinate singularity at R =2M in the
Schwarzschild field.

In the curvature form (2.5) of the de Sitter
universe, the trajectory R =0 is a timelike geo-
desic, and a particle placed at rest at R =0 will

remain there forever. Consequently, if we wish to
remove a particle from R =0 we must necessarily

give it some energy, i.e., we must throw it out
with a velocity Uo given by (3.3). A trajectory
R =const g 0 is not a timelike geodesic, and if we

place a particle at such a point and release it, it
will move to larger and larger values of R with in-

creasing speed relative to R =const points. Con-
versely, if we wish to keep a particle at an
R =const point, we must necessarily exert forces
on it.

Consider now a geodesic observer with a local
inertial reference system moving radially outward
in the de Sitter universe. As this observer moves
past R =const points, he finds the velocities of
these points to increase continuously as R gets
larger and larger. Eventually, he will measure a
particular R =const point to move with the speed
of light c =1. This is the radius R =Ro, which,
because it is a null line, will be measured by any
inertial observer to have the speed c, independently
of the energy of the inertial observer. Correspond-

ingly, points R =const & Rp will be measured by
any inertial observer to move faster than c, i.e.,
these trajectories will be spacelike.

Now, the reference system associated with the
curvature time coordinate T is composed of clocks
located at fixed values of R, appropriately syn-

chronized and with the coordinate time lapse hT
scaled to the actual clock reading time lapse 5~&
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according to

(4.1)

V. A CLOCK-FACTORY GEODESIC
CLOCK REFERENCE SYSTEM

Since the curvature time coordinate T breaks
down for R &Rp because we cannot have clocks
fixed at R =const & Rp points, we must seek some
other means to measure time in this region if we
want to follow trajectories to R & Rp. One way of
proceeding is to replace T with a new time mea-
surement based upon times recorded by radially

moving geodesic clocks. We are guaranteed that
this approach will succeed, because we know from
(3.5) that the proper time measured by a geodesic
clock stays finite as the clock crosses Rp. An im-

portant extra advantage is that we have a good
physical feeling for the meaning of the time coor-
dinate we are working with.

We must first specify the way we are going to
arrange our geodesic clocks and the synchroniza-
tion procedure we will employ, i.e., we must first
describe our reference system. In this section we

will use what might be called a "clock-factory"
reference system. In Sec. VII we will describe a
different "Novikov-type" reference system.

The reference system used here is based upon a
clock factory located at some fixed value of R that
sends out geodesic clocks synchronized so that they
read the same time as a master clock fixed in the

Eric ——[1—(R/Rp) ]' hT .
But, from the reasoning given in the previous para-
graph, we cannot have a physical object such as a
clock located at R =Rp or R =const & Rp because
such trajectories are, respectively, null and space-
like. This means that the rationale of a reference
system composed of clocks at fixed values of R,
from which the coordinate T is determined, breaks
down for R & Rp, because there is no real physical
way to measure T there. This breakdown shows

up in the coordinate singularity in the metric form

(2.5) at R =Rp and the imaginary relationship be-

tween b,rz and b T in (4.1) for R & R p.

clock factory. We then assign to each event the
time reading v on the particular geodesic clock that
happens to be coincident with the event. We have
previously used such a clock-factory reference sys-
tem to analyze the Schwarzschild field. ' We
could locate the clock factory at any R & Rp, but
the simplest and most convenient choice is to put
the clock factory at R =0. The generalization to
other values of R is straightforward.

In order to get the clocks out of the clock facto-

ry, we must necessarily throw them out with some
velocity vp, or equivalently with some energy
parameter k & 1 given by (3.3}. Thus at the outset
we cannot have k =1, for this would correspond to
clocks staying forever at R =0. As will be seen,
this will prove important later on. We could
equally well consider the symmetric situation
where the clocks are caught at R =0 with some

energy parameter k & 1. We account for both situ-

ations with a constant m in our equations, where
m =+1 or —1 stands for a reference system
where the geodesic clocks are moving in the sense

of increasing or decreasing R, respectively. For
brevity, however, we will talk only about clocks
moving in the sense of increasing R.

Consider a geodesic clock shot out from R =0
at some time T =Tp. To account for the time di-

lation between the master clock at R =0 that rnea-

sures Tp and the moving geodesic clock, we syn-
chronize the geodesic clock by setting its time of
release 7 p to be

r = (1 vo ) To =—kTo (5.1)

This is the desired transformation that replaces T
with r at each event. It is singular at R =Rp.

In terms of r the metric (2.5) assumes the nondi-

agonal form

Upon setting the lower limit R, =0 in (3.4} and
(3.5), and using (5.1) to eliminate reference to the
starting time Tp of each geodesic clock, we obtain

ii [(y/Ro) +k —1]'~
z=kT —m dg .

1 —(y/Rp)

(5.2)

ds (R,r)=k [dR m[(R/Rp) +k —I]'~ dr} +R dQ—dr— (5.3)

which has no coordinate singularities and is regular
at all finite values of R. Upon comparing (5.3)
with (2.3) we see that, for m =+1, the two metric
forms would be equal to each other if we set the

. I

constant k =1. As we have explained above, how-

ever, it would be physically impossible to have a
reference system as we are here considering if we
had k =1. We shall return to this point in Sec.
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0

0

(a)

FIG. 2. (a) An (R,r) space-time diagram where ~ is measured by geodesic clocks moving in the sense of increasing R
(m =+1). The trajectories of Fig. 1 are repeated here. It is seen that trajectories such as the null line bb' and the fu-
ture part of the timelike trajectory cc can now be followed across Ro. These trajectories are moving in the same sense
as the geodesic clocks measuring w. Trajectories such as the null line aa' and the past part of the timelike trajectory cc'
cannot be followed across Ro, and are qualitatively similar to Fig. 1. These trajectories are moving in the opposite
sense to the geodesic clocks measuring v. Infinite time dilations as Ro is approached, between the past history of a
clock moving along the geodesic trajectory cc' and the oppositely moving geodesic clocks measuring ~, account for the
fact that a clock along cc records a finite number of ticks as it asymptotically approaches Ro. Also shown is the tilt-

ing of the null cones emitted along a timelike world line as Ro is approached and crossed. The portion of the null cone
that is moving with opposite sense to the geodesic clocks measuring v undergoes the extreme tilting as Ro is crossed.
Nothing special happens to the portion of the null cone that is moving in the same sense as the geodesic clocks as Ro is
crossed. The situation upon crossing Ro is directly analogous to what is referred to in a Schwarzschild field as a "black
hole. " (b) An (R,~) space-time diagram where ~ is measured by geodesic clocks moving in the sense of decreasing
R (m = —1). The trajectories of Fig. 1 are repeated here. The discussion here is essentially the same as for (a), Again
it is seen that those trajectories that have opposing motion to the geodesic clocks measuring w are the ones that cannot
be followed across Ro. The situation here is analogous to what is referred to in a Schwarzschild field as a "white
hole. "

VI.
Figures 2(a) and 2(b) show the world lines of

Fig. 1 as they appear on an (R,r) space-time dia-
gram for m =+ 1 and m = —1, respectively. It is
seen that portions of null and timelike trajectories

that were not previously followable across Ro can
now be followed to R & Ro. However, there is a
"one-way" crossing across Ro. A particle will be
fo11owable or not fo11owable across Ro depending,
respectively, on whether the particle is moving in
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&r- =hR/k . (5.5)

Thus, the proper distance is proportional to the
coordinate separation b,R, and is independent of
which side of Ro the two r-simultaneous events
happen to lie.

An analysis of (5.3) shows that there will be a
"tilting" of radial null cones, with one part of a
null cone becoming vertical as Rp is crossed, as
shown in Fig. 2. This is similar to what occurs in
a Schwarzschild field when Eddington-Finkelstein
coordinates are used. It is seen that the part of the

the same sense or opposing sense to the coordinate
clocks measuring the time coordinate r. The prop-
er time along each nonfollowable trajectory
remains finite as the trajectory asymptotically ap-
proaches Rp. This situation is similar to the one-
way crossing of the Schwarzschild radius when
Eddington-Finkelstein coordinates are used. Em-
ploying the same reasoning we have used previous-
ly for the Schwarzschild field, we find that the
nonfollowability occurs because as Ro is ap-
proached there is an infinite time dilation between
the geodesic clocks measuring w and a clock on a
particle moving with motion opposing the geodesic
clocks.

If we define proper distance between two r
simultaneous events as

ar. =I ds, (5.4)
a=conSt

we find from (5.3) that for two radially located
events

pR dy

[( /R ) k —1]'

(5.6a)

which, upon performing the integration, is

null cone that undergoes the vertical tilting at Ro
is the part that had opposing motion to the geo-
desic clocks measuring r before Ro was reached.
Nothing exceptional happens at Ro to that part of
the null cone moving in the same sense as the geo-
desic clocks measuring ~. Thus we have in the de
Sitter universe a situation analogous to the "black-
hole —white-hole" view of the Schwarzschild field,
which we have discussed and criticized else-
where. '-'

Thus far we have a situation with geodesic
clocks measuring ~ moving relative to R =const
points, resulting in the nondiagonal metric form
(5.3}. If we wish, we can "straighten out" this pic-
ture by introducing a comoving coordinate that
stays constant along the trajix:tory of each geodesic
clock. We will try to define this new spatial coor-
dinate as closely as possible to a spatial coordinate
used in a flat-space inertial reference system. To
this end, we will "stamp" each clock sent out from
the clock factory with a coordinate p equal to the
proper time elapsed at the clock factory from the
time when the "origin clock" at p=0 was sent out
with the reading ro. If we fix the resulting + signs
so that increasing p corresponds to increasing R,
the transformation replacing R with p is

R/Ro+[(R/R ) +k —1]'
kp= —mT+Rpln +mvp .

(k2 1)1/2
(5.6b)

This results in the nondiagonal metric form (5.3)
being changed into the diagonal form

ds (p, r)=[(R/Ro) +k 1]dp—
+R dQ dr— (5.7)

where we now regard R as a function of p and r
given by (5.6).

In contrast with the singular transformation
(5.2) that replaced T with r, the transformation
(5.6) is nonsingular. In replacing T with r we
made a definite physical change in our reference
system, going from clocks located at fixed R's to
geodesic clocks moving relative to R =const
points. In replacing R with p via (5.6), though, the

I

reference system is not changed at all. Whether we
use R or p as our spatial coordinate, the reference
system is still composed of geodesic clocks shot
out from the clock factory at R =0.

Figures 3(a} and 3(b) show space-time diagrams
that repeat the (R,r) space-time diagrams of Figs.
2(a} and 2(b}. There is nothing intrinsically dif-
ferent between the corresponding space-time dia-
grams of Figs. 2 and 3—each is simply a continu-
ous deformation of the other. The trajectories of
the geodesic clocks measuring ~ that appeared
curved in Figs. 2 are vertical lines in Figs. 3.
Lines R =const that appeared vertical in Figs. 2
are inclined parallel straight lines in Figs. 3. Also,
the one-way crossing of Ro and the tilting of the
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null cones remain in Figs. 3. Again, it is because
we have not changed our reference system that
there is nothing different other than a coordinate
deformation between Figs. 2 and 3.

VI. CONVERTING ( p, r) COORDINATES
TO ISOTROPIC (r, t) COORDINATES

In the diagonal metric form (5.7), where

g44 ———1, the spatial coordinates (p, 8,$) are
"comoving" or "synchronous" coordinates because
a constant value of these coordinates marks the
trajectory of a geodesic clock that is measuring the
time coordinate r. The isotropic metric form (2.1),
which is supposed to describe the same de Sitter
universe and has g~ ———1, also purportedly makes
use of comoving coordinates. We have carefully
defined in Sec. V the physical meaning of the coor-
dinates {p,|),$) used in the metric form (5.7). We
here describe the procedures necessary to convert
the metric form (5.7) to the isotropic form (2.1).

Factoring out the coefficient of d0, we can
write the metric forms (2.1) and (5.7), respectively,
as

ds (r, t)=(re ') (dr /r +dA ) dt2, (6.—1)

ds (p, r)=R I[(R/Ro) +k2 —1]R 2dp2

+dQ2j dr2 . — (6.2)

We see that if (6.1) and (6.2) are to be equal to
each other, we must have

dr [(R/R ) +k2 —1]
dp . (6.3)

FIG. 3. (a) Repeating Fig. 2(a) in terms of comoving
(p, ~) coordinates. This figure is simply a continuous de-
formation of Fig. 2(a), and there is a one-to-one
correspondence between world lines on each figure. (b)
Repeating Fig. 2{b) in terms of comoving (p, r) coordi-
nates. This figure is simply a continuous deformation
of Fig. 2(b), and there is a one-to-one correspondence be-
tween world lines on each figure.

where the constant A is defined by

2A =(k —1)' e (6.5)

For the time being, forget about (6.5) and treat A

as some arbitrary constant. Now let k =1 in (6.4)

Since R is a function of both r and p, as given by
(5.6), the only way (6.3) can be achieved is by set-
ting k = 1 so that the R terms drop out of the
right-hand side. But we know from the discus-
sions of Sec. V that if we set k =1 we will not
have a physically realizable reference system.

Proceeding in a purely mathematical manner,
however, we can formally cast (6.2) into (6.1). We
rewrite the transformation equation (5.6b) as

R/Ro+[(R/R ) +k —1]' =2Ae 'e

(6A)
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to get

R/Rp ——2 e (6.6)

with, correspondingly, the metric (6.2) assuming
the form

ds (p, r)=R (dp /Rp +dQ ) dr—

or equivalently, using (6.6),

(6.7a)

p/Ro
r/rp e—— (6.8)

where rp is an arbitrary scaling factor. It is seen
from (6.8) that for r =0, we have p= —ao. From
(6.6) we then have

X(dp IRp +dQ ) dr—. (6.7b)

With k =1, (6.3) can be satisfied if r and p are re-
lated by

But this seems highly artificial.
Now consider the reverse procedure of going

from the isotropic form (6.1) to the curvature form
(2.5). This can be accomplished by using (6.9) with
AR p/rp 1 to——replace r with R together with (5.2)
with k =1 to replace t with T. This is, in fact, the
procedure that we followed in Sec. II in going
from (2.1) to (2.5). In this purely mathematical
method, there is no need to bring in any mention
of the comoving spatial coordinate p. However,

simply finding a mathematicai transformation be-

tween coordinates used in different metric forms
does not tell the whole picture. Metric forms are,

by their very nature, local descriptions. On the
other hand, coordinate transformations are global
relationships, and as such require additional nonlo-

cal specifications.

VII. NOVIKOV- TYPE GEODESIC
CLOCK REFERENCE SYSTEM

R =(ARp/rp)re (6.9)

and (6.7) becomes

ds (r, r) =[(ARplrp)re ]

X(dr /r +dQ ) dr—(6.10)

Finally, the metric form (6.10) will be equal to the
isotropic metric form (6.1) providing we take
ARp =rp 'T=t, and m =+ 1.

Let us now examine what had to be done in or-
der to make the comoving metric form (6.2) take
on the standard isotropic form (6.1). By its very
nature the comoving spatial coordinate p is not a
"radial" coordinate. The trajectories (p, 8,$)
=const (including the origin p =0) mark the loca-
tions of geodesic clocks that are moving away
from the center of spherical symmetry at R =0, re-
lative to which the angles 8 and P are measured, as
given by the transformation equations (5.6) or (6.4).
This was of no concern to us, for in Sec. V we had
precisely defined p and made it as close as possible
to a flat-space spatial coordinate, and we clearly
understood its physical meaning.

In order to bring the isotropic coordinate r into
the picture, we necessarily had to set the energy
parameter k =1, which we knew gave us a ques-
tionable physical situation. In turn, this required
that we deal with ambiguities in the constant A de-
fined by (6.5) and the associated scaling factor
rp =ARp. Tile only way to avoid zeros or infinities
in the transformations is to let mrp~ 00 in (6.5)—
in such a manner that A remains finite as k~1.

In this section we describe a geodesic reference
system, different from the clock-factory reference
system of Sec. V, that will also allow trajectories of
particles and light signals to be followed across Rp.
The reference system discussed here is similar to
one developed by Novikov to describe the
Schwarzschild field, and which has been amplified

by us.2

In a "Novikov-type" reference system, a swarm
of geodesic clocks is fired radially from R = 00

through R =Rp to some minimum radius R;, dif-
ferent for each clock, after which the clocks move

again through Rp back to R = ao. The firing is
done such that each clock reaches its minimum ra-
dius at the same coordinate time 1'p. The swarm
of clocks is synchronized such that each clock
reads ~p ——0 at the instant when it reaches its
minimum turning radius R; at Tp. The time 7

assigned to an event is then the time on the partic-
ular geodesic clock coincident with that event.

At the outset, though, problems can be expected
with this reference system in certain regions of
space-time. As was noted in Sec. IV, a geodesic
particle cannot be momentarily at rest relative to a
point R =const & Rp, because at this instant it
would then be moving faster than the speed of
light. Therefore, this type of reference system will

break down as the turning radii of its geodesic
clocks approach Rp. We thus expect mathematical
difficulties in our derived expressions as R;~Rp.

To find the transformation that replaces T with
r~ we can use a straightforward extension of the
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procedure we used to obtain (5.2), with k now being given by (3.2). The result is

& [(y/Rp) —(R;/Rp) ]'~
r =[1—(R;/Rp) ]' (T Tp—) —mJ„dy,

1 —(y/R, )' (7.1)

where m =+ 1 or —1 corresponds, respectively, to a clock moving in the sense of increasing R (T & Tp) or
decreasing R (T & Tp). In terms of r~, the metric (2.5) takes the nondiagonal form

ds (R,r~)=[1 (R;/—Rp) ] 'IdR —m [(R/Rp) (R;/—Rp) ]' dr~
I +R dQ dr— (7.2)

where R; is a function of R and r~ given by

r+=m
R

iig [(y/Rp)i (R./Rp)i]i~~
(7.3)

from which, upon performing the integration, we
obtain

r~=mRplnIR/R;+[(R/R;)2 1]'~2]—.

(7.4a)

The metric form (7.2) is mathematically similar
to the metric form (5.3). The physical situations
corresponding to the way the times are measured
are completely different, though, and

k =[1—(R; /Rp )]'i
R; =R sech(mr~/Rp), (7.4b)

which allows the metric form (7.2) to be written as

in (7.2) is a variable quantity, while

A: =(1—vp )

in (5.3) is a constant.
It is seen that the metric form (7.2) contains a

coordinate singularity at those values of R and r~
for which R;=Rp. This marks the trajectory of
the limiting or "last" clock in our reference system
whose turning radius is R; =Ra. We expected
troubles along this limiting trajectory, and the
coordinate singularity is a confirmation of our ex-
pectations.

If (7.4a) is solved explicitly for R;(R,r~), one ob-
tains

ds (R,r~)=[1 (R/Rp) sec—h (mr~/Rp)) '[dR —m(R/Rp)tanh(mr~/Rp)dr~] +R dQ dr'—
(7.5)

where the metric coefficients are now explicit func-
tions of the coordinates (R,r~)

Figure 4 shows an (R,r*) space-time diagram
that repeats the (R, T) space-time diagram of Fig.
1. It is seen that it is now possible to follow tra-

jectories of particles and light signals across Rp.
The lines R =const are vertical lines, and each
geodesic clock follows a hyperbolic half-loop tra-
jectory given by setting R; =const in (7.4b). The
jagged world line represents the coordinate clock
with turning radius R; =Ra, and it is the largest
coordinate clock loop possible. It is along this line
that we have the coordinate singularity in the
metric form (7.2) or (7.5). Figure 4 shows that
(R,r~) coordinates give rise to what might be
described as a "hole" in the coordinate system,
where certain parts of space-time cannot be
reached by the reference system.

Because of the coordinate hole and the corre-
sponding coordinate singularity at R; =Ro, the

(R,r~) coordinate system is geodesically incom-

plete, because one can find geodesic trajectories
that cannot be followed to R = co. This incom-
pleteness can be seen with those trajectories in Fig.
4 that seem to "disappear" at the world line of the
limiting geodesic, as if they were "swallowed up"
by the coordinate hole. A similar situation also ex-
ists in a Schwarzschild field when a Novikov refer-
ence system is used.

Figure 4 also shows the tilting of radial null

cones emitted along a timelike trajectory. As with

(R,r) coordinates, the portion of the null cone
moving with opposing sense to the geodesic clocks
measuring ~* undergoes extreme tilting as Ro is
crossed in both the inward and outward directions.

If we desire, we can "straighten out" the curved
trajectories of the geodesic clocks by introducing a
new spatial coordinate that stays constant along
the trajectory of each geodesic clock. One such
convenient quantity is the turning radius R;, a
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changed to a diagonal form which can be written
either as

R'=
I (R/R;)

ds (R;,r*)= [dR +R dQ ] dr-'
l —(R;/Rp)

(7.6a)

where R is given as a function of R; and r* by
(7.4b), or

.2
ds (R;,r~) =cosh2(r~/Rp)

dRi +R; dQ
1 —(R;/Rp)

(7.6b)

where the metric coefficients are explicit functions
of (R;,r~).

R=const~ Ro

FIG. 4. An (R,~*) space-time diagram where w* is
measured by a swarm of geodesic clocks. The trajec-
tories of Fig. 1 are repeated here. It is seen that the
previously unfollowable trajectories of Fig. 1 can now be
followed across Ro when T is replaced by r~ as a time
coordinate. The jagged line corresponds to R;=Ro,
where the (R,v*) metric form (7.2) or (7.5) has a coordi-
nate singularity. The jagged line marks the physical
limitation of the validity of the (R,v ~) reference system.
The reference system is geodesically incomplete, because
one can find null trajectories such as bb' and timelike
trajectories such as dd' that cannot be followed to
R = oo. The trajectory R =Ro is a null line, and trajec-
tories R =const & Ro are spacelike. Also shown is the
tilting of the null cones emitted along a timelike world
line. As with the (R,v) coordinates of Figs. 2, the por-
tion of the null cone that is moving with opposite sense
to the geodesic clocks measuring v ~ undergoes the ex-
treme tilting as Ro is crossed.

m= &I

R=Ro

Rt Ro

=const Ro

m =-I

R = const~Ro

number uniquely associated with each clock's tra-
jectory. Increasing values of R; take us smoothly
and monotonically from one coordinate clock to
the next, and R; has the significance that it is
directly related to the radial coordinate R. The
transformation replacing R with the new coordi-
nate Ri has already been obtained in (7.4). In
terms of R; the nondiagonal metric (7.2) or (7.5) is

FIG. 5. Repeating Fig. 4 in terms of (Rf,~*) coordi-
nates. This figure is simply a continuous deformation
of Fig. 4, and there is a one-to-one correspondence be-

tween world lines on each figure. In particular, the
coordinate singularity at R;=Ro and the tilting of the
null cones remain in this figure.
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It should be noted that the transformation (7.4)
is nonsingular, indicating that there is nothing new

physically in changing from R to R; as a spatial
coordinate. Whether we use (R,r~), or (R;,r*) as
coordinates, the reference system still consists of
the same swarm of geodesic clocks measuring r~.

Figure 5 shows an (R;,r*) space-time diagram
that repeats in a one-to-one fashion the world lines
of the {R,r~) space-time diagram of Fig. 4. The
coordinate clock trajectories that were curved in
Fig. 4 are now straight vertical lines in Fig. 5,
while the straight vertical lines R =const in Fig. 4
appear curved in Fig. 5, with r~ as a function of
R; given by (7.4). In particular, the line R; =Rp,
along which we have a coordinate singularity,
remains in both figures. It is seen that there is a
one-to-one correspondence between points in Figs.
4 and 5, and that each space-time diagram is sim-

ply a continuous deformation of the other. In par-
ticular, the coordinate singularity at R; =Rp and
the tilting of the null cones remain in Fig. 5.

VIII. CONVERTING (R;,v*) COORDINATES
TO ISOTROPIC (r, t) COORDINATES

The diagonal metric form (7.6) with g« ———1 is
expressed in terms of comoving or synchronous
coordinates (R;,8,$), because a constant value of
these coordinates marks the trajectory of a geodesic
clock that is measuring the time coordinate v.*.
The comoving coordinates (R;,8,$), however, have
an entirely different meaning from the comoving
coordinates (p, 8,$}used in the diagonal metric
form (5.7), where also g« ———1, because the r~-
reference system is completely different from the
r-reference system. There is, of course, nothing
wrong with describing the de Sitter universe with
two different reference systems.

The metric form (7.6) is not in the usual stand-
ard isotropic form (2.1), where also g« ———1. It is
possible, though, with appropriate mathematical
maneuvers, to cast (7.6) into the form (2.1), as we
shall now demonstrate.

We introduce an isotropic radial coordinate r de-
fintxi in terms of the comoving coordinate R; by

where rp is an arbitrary scaling factor, and n =+1
or —1 indicates the two signs of the square root.
In terms of r, the metric (7.6) takes the isotropic
form

ds (r,r~)=(R/r) (dr +r dQ ) dr—' (8.2a)

or

cosh (r*/Ro)
ds (r,r"}={2Ro/ro}

[1+(r/rp) j

&&(dr +r dQ ) dr*— (8.2b)

Ro

Rc-

In the form (8.2b) the metric coefficients are expli-
cit functions of the coordinates (r, r~). This form
has been previously found by Lanczos.

The de Sitter metric (8.2) is in isotropic form,
and upon comparison with the standard isotropic
Robertson-Walker metric form (1.1) is seen to cor-
respond to a universe with curvature K =+1.
This is somewhat strange, since we started our
analysis from the de Sitter isotropic metric form
(2.1) which had zero curvature, E=0. The differ-
ences in curvature will be resolved below when we
describe the procedure necessary to change (8.2}
into (2.1).

The coordinate singularity at R; =Rp that was
explicitly displayed in the previous metric forms
has disappeared in the isotropic metric form {8.2).
This disappearance was produced by the
mathematical transformation (8.1). One can ques-
tion the reason for using the coordinate r in place
of R;. The transformation (8.1) is double valued,
with the double-valuedness being indicated by the
+1 signs of n To ea.ch value of R;, there corre-

R;/Rp
r/rp —— , n =+1

1+n[1—(R;/R ) ]'i
0

0 I'p I'0 2

2r/rp
Ro=

1+{r/ro }'

(8.1a)

(8.1b)

FIG. 6. The relationship between r and R; as given
in Eq. (8.1). It is seen that each value of R; corre
sponds to two values r~ and r2 related by r~r2 ——ro, with
the value R;=0 corresponding to r = 00 as we11 as r =0.
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spond two values of r, and the pairs (r;,rz) related

by

2r&re=rp (8.3)

will produce the same value of R; in the transfor-
mation (8.1), as shown in Fig. 6. Correspondingly,

0
II

K

FIG. 7. Repeating Fig. 5 in terms of (r, ~*) coordi-

nates. It is seen that there is a one-to-one correspon-

dence between the trajectories of Fig. S and the left-

hand side r g rp of this figure, each being a continuous

deformation of the other. Trajectories R; =const and

r =const are, of course, vertical straight lines on both
space-time diagrams. However, the double-valued

transformation (8.1) at the pairs given by (8.3) permits

the possibility of patching onto the left-hand part r & rp

a right-hand part r & rp such that each trajectory where

r (rp will be imaged where r ) rp, with the line R; =0
corresponding to r = tx}. The mathematics is such that
each trajectory smoothly and continuously joins some

different counterpart trajectory at the jagged dividing

line r =rp, corresponding to R;=Rp, marking the
division of the double-valuedness, as shown on Fig. 6.
Each line R =const also appears twice, once at the left
of rp and again at the right of rp. The trajectory R =0
corresponds to both r =0 and r = oo. The two map-

pings of the null line R =Rp mark the division between

the timelike lines R &Rp and the spacelike lines R & Rp.
If one were not aware of the double-valuedness, one

might easily think that trajectories can be followed

across the jagged line rp.

at each value of r~ the pairs (r i, rz) related by (8.3)
will give the same value of R.

Figure 7 shows an (r, r ~) space-time diagram
that repeats the trajectories of Fig. 5. Trajectories
R; =const are, of course, vertical straight lines.
But each R; =const line appears twice on the (r, r~)
space-time diagram of Fig. 7, because of the
double-valuedness at the pairs (ri, rz} given by
(8.3}. In particular, the line R; =0 corresponds to
r = oo as well as r =0. The jagged line R; =Rp at
T =rp is the dividing line between the double-
valuedness. Each line R =const also appears
twice, once at the left of r =rp and again at the
right of r =rp, with the null line R =Rp marking
the division between the timelike lines R &Rp and
the spacelike lines R & Rp. The line R =0 corre-
sponds to both r =0 and r = oo. Thus, if we ac-
cept R = ao as describing a point infinitely distant
from R =0, it is incorrect to regard r = oo as being
infinitely distant from r =0.

We now come to an interesting question. What
if one started analyzing the de Sitter universe with

the (r, r~) coordinates used in the isotropic metric
form (8.2)? Since the coordinate singularity at

R; =Ro does not appear explicitly in (8.2), there is

nothing immediately obvious that suggests double-

valuedness or points toward r =rp as having any

distinguishing features. Further, the equations for
timelike and null trajectories in terms of (r, r~)

coordinates do not show any strange behavior at
r =rp.

Thus, starting from only (8.2) one might arrive

at the conclusion that geodesic trajectories can be
followed across ro For ex.ample, if one looks at
the two mappings of the single trajectory R =Ro
in Fig. 7, it could appear as if one had two
separate null trajectories extending from r =0 to
r = ao that cross each other at r =rp at ~*=0. In
a similar fashion, one can find a separate null tra-

jectory that can be matched onto the two mappings
of the single null line bb' at r =ro that will make

it appear as if one has two different null lines that
cross each other at r =rp. A similar matching can

be found for timelike trajectories such as dd'.
There are various ways of avoiding the mistake

of assuming that trajectories can be followed across
r =rp. If one makes a transformation to a new

spatial coordinate r' defined by r'=roi/r, as sug-

gested by (8.3), one will find that the metric
ds (r', r~) has exactly the same form as (8.2) with r
replaced with r'. This means that invariant quan-

tities such as curvature invariants calculated at r'
would have the same value as at r, indicating the
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double-valuedness.
In our opinion, though, the best way of avoiding

incorrect interpretations of a space-time manifold
described by a particular metric is to understand
how the coordinates are related to physical refer-
ence systems, as we have tried to do with the coor-
dinates (R,i ~), and (Rt, v ~). Along this line, we

have previously pointed out a similar misinterpre-
tation of double-valuedness in the Schwarzschild
field when Kruskal-Novikov coordinates are
used. 2 5

The isotropic de Sitter metric form (8.2) with
E=+1 does not at all look like the isotropic de

Sitter metric form (2.1) with E =0, although both
forms presumably describe the same de Sitter
universe. We can, though, change (8.2) into (2.1)
with the following mathematical maneuvers. In-
stead of letting each geodesic clock read ro 0——
when it reaches its turning radius at R =R;, let ~o

be equal to some constant, the same for each clock.
This changing of the zero of the time measurement

causes no conceptual difficulties, and simply means

that we will replace v ~ with (w* ro) i—n all our
mathematical expressions. Expressing the hyper-
bolic function in terms of exponentials, we can
then rewrite (8.2b) as

—2m (r —ro )/80
ds (r, i.~)= B 1+8

1+(r lro)
(e ) (dr +r2dII2) (8.4)

where the constant B is defined by

(8.5)

For the time being, forget about (8.5} and treat B
as some arbitrary constant. In order for (8.4) to be

equal to (2.1), the expression in the square brackets
must be unity. One way to accomplish this is to
let the scaling factor ra~ oo and the synchroniza-
tion time so~ —m ao, so that the metric (8.4) as-

sumes the form

ds (r, r~)=(Be ) (dr +r dQ ) dz'—
(8.6)

If we now set B=1 and m =+1, and take r*=t,
(8.6) will be equal to (2.1).

Let us now examine in more detail what has to
be done in order to make (7.6} assume the standard
de Sitter isotropic form (2.1). First of all, we had
to introduce a double-valued transformation (8.1)
in order to bring the isotropic radial coordinate r
into the picture. Then we had to let the constants

ro and re take on infinite values. The effect of let-

ting ro +00 is to m—ake the jagged dividing line of
Fig. 7 move infinitely far to the right, thereby re-

moving the region of double-valuedness to spatial
infinity. This corresponds to letting the radius of
curvature of the three-dimensional spherical sub-
space become infinitely large, which is equivalent
to setting E=0 in the Robertson-Walker line ele-
ment (1.1}. With m =+1, the effect of letting

~0—+ —00 is equivalent to moving the ~~ =0 axis
of Fig. 7 infinitely far to the bottom of the space-

time diagram. Essentially only the top left-hand
quarter is left on Fig. 7. In turn, the introduction
of the infinite constants has to be done in concert
so that we always maintain B=1 in (8.5).

The whole process seems highly artificial.

IX. SUMMARY AND CONCLUSIONS

When the de Sitter universe is described with the
curvature metric form (2.5), it is not possible to
follow timelike or null trajectories across the hor-
izon at R =Ra with the curvature coordinates
(R, T). We have explained the reason for this in
Sec. IV with the physical argument that the curva-
ture time coordinate ris related to times measured

by clocks located at fixed values of R, and one
cannot have a particle located at a point R
=const p Ro because it would then be moving
along a spacelike trajectory faster than the speed of
light. To remedy this, we have shown that when

one measures time with radially moving geodesic
clocks, it is then possible to follow trajectories
across Ro. We have discussed two different types
of geodesic clock reference systems, the clock-
factory r-reference system of Sec. V and the
Novikov-type r*-reference system of Sec. VII.

Although each geodesic clock reference system
allows trajectories to be followed across Ro, each
reference system also has its individual deficien-
cies. With a clock-factory reference system, trajec-
tories can be followed only one way across Ro, be-

cause a particle moving in the opposite sense to the
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geodesic clocks measuring the time v will undergo
infinite time dilations as Ro is approached. With a
Novikov-type reference system, there is a limiting
"last" clock in the swarm of geodesic clocks
measuring the time ~*, namely, the one that has a
turning radius R; =Ra. Because of this, there is a
"hole" in the reference system, having the effect
that certain trajectories are terminated before they
reach R = ao. These deficiencies arise because of
the structure of each reference system, but we
understand the reason for each deficiency.

We have shown that the important maneuver
was the replacement of the curvature time coordi-
nate T with a geodesic time coordinate to go from
(R, T) coordinates to (R,r) or (R,r*) coordinates.
This corresponded to a definite change in the refer-
ence system, going from a reference system where
clocks are located at fixed values of R to one
where the clocks are moving relative to fixed
values of R. The metric form in terms of (R,r) or
(R,w~) coordinates was nondiagonal. We showed
we could diagonalize the metric form by replacing
R with a comoving coordinate p or R; to go to
(p, ~) or (R;,2.~} coordinates. The replacement of R
with a comoving spatial coordinate did not involve
any change of reference system. The reference sys-
tem still consisted of radially moving geodesic
clocks—we merely relabeled the way we described
the spatial coordinate. Consequently, the corre-
sponding space-time diagrams were simply con-
tinuous deformations of each other, each one tel-

ling the same story from a slightly different angle.
At this point we had two perfectly good comov-

ing or synchronous coordinate systems. Values

(p, 8,$)=const or (R;,8,$)=const marked the tra-
jectory of a radially moving clock measuring r or
r~, and in both diagonal metrics (5.7) and (7.6)

g44
———1. However, neither metric was equal to

the isotropic metric form (2.1), which is usually
purported to describe the de Sitter universe in
comoving coordinates. In Secs. VI and VIII we
showed that in order to cast our comoving metric
forms (5.7) and (7.6) into the usual isotropic form
(2.1), we had to introduce infinities into our mea-
surements of both space and time.

With our w- or ~*-reference systems, we had a
perfectly sensible and understandable physical pic-
ture. The mathematical machinations involved in

going over to the usual isotropic metric form (2.1)
cloud this sensible picture by bringing in question-
able infinities, which seem to have no purpose oth-
er than to transform to the usual metric form (2.1).

The issues we are raising here, however, will not

be at all evident if one proceeds purely mathemati-
cally, and works backward from (2.5) with (2A)
and (2.2} to get (2.1). This is what is found in the
literature. In this manner, there is never any need
to make mention of p or R;, or the intermediate
nondiagonal metric forms.

If, however, we start from the curvature form
(2.5) and work with geodesic reference systems,
whose structure we understand, it seems that we
cannot attain the usual isotropic form (2.1) with
physically realizable reference systems. Because of
this, the validity of describing the de Sitter
universe with (2.1) can be questioned. In terms of
the logic of this paper, we can start from (2.5) and
develop the perfectly good comoving metric forms
(5.7) and (7.6} without ever bringing (2.1) into the
picture.

It thus seems worthwhile to ask why one would
want to use the isotropic form (2.1}for describing
the de Sitter universe? The form (2.1) is a special
case of the general Robertson-Walker metric form
(1.1), which was obtained from, among other
things, the assumption that the universe is isotro-
pic. "Isotropy" means that the universe will ap-
pear the same no matter which direction one looks.
This is taken by many authors to mean that the
metric describing the universe can be written in a
form where the spatial part is proportional to

do =dx +dy +dz

or equivalently, with r =x~+y +z,
d&2 dr2+r2dQ2

(9.1)

(9.2)

where the g&„ in the complete metric form being
independent of the angles 8 and P. Implicitly tak-
en for granted with (9.2) is that the coordinate r
monotonically increases with distance, and has the
range 0(r & 00.

It seems that the main reason for starting with
(9.2) is the uncritical acceptance of the pioneering
work of people such as Riemann and Lobachevski
who developed differential geometry. But this
work was done in the 1800's, long before we knew

about special relativity, which tells us that lengths
and times are intertwined, and general relativity,
which tells us that lengths and times are affected
by gravity. The developers of differential geom-
etry worked with lengths only —the notions of time
and gravity never entered into their considerations.
There was no four-dimensional space-time, only a
three-dimensional (or n-dimensional) space.

It may therefore be entirely too presumptuous to
start a discussion of the de Sitter universe with the
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isotropic coordinates used in (2.1). There are many
reasons indicating that a better starting point is the
curvature metric form (2.5), some of which are the
following.

The curvature coordinates used in (2.5) satisfy
the requirements of isotropy; the metric coeffi-
cients are independent of 0 and P, so the universe

appears the same in all directions. Further, there
is nothing special about the origin R =0. If the de
Sitter universe were referred to any other origin
corresponding to the location of a geodesic parti-
cle, the new metric form would be the same as
(2.5). This means that (2.5) satisfies the require-
ment of homogeneity as well as isotropy.

The de Sitter universe is intrinsically static, and
curvature coordinates exhibit this static property
explicitly; isotropic coordinates do not. Curvature
coordinates such as the Kretschmann scalar
R&„~RI'~ are proportional to R", where n is a
positive integer. The area of a sphere R =const,
which is an invariant quantity, is 3 =4n.R . With

curvature coordinates, the Schwarzschild field can
be smoothly joined onto the de Sitter universe, as
in (2.6). Curvature coordinates reduce to fiat-space
Minkowski coordinates as R —+0. Therefore these
are the coordinates to use in conjunction with the
principle of equivalence, which states that the re-

gion locally around R =0 (a timelike geodesic) is
equivalent to flat space-time.

If, as it seems, it is preferable to describe the de
Sitter universe with curvature coordinates instead
of isotropic coordinates, one might consider look-
ing at other nonstatic universes from the point of
view of curvature coordinates. This we will do in
future publications.
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