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Realization in phase space of general coordinate transformations
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We realize a subgroup of the full general field-dependent coordinate transformation
group for a field theory in a certain phase space. For a pseudo-Riemannian metric in four
dimensions, subject to certain conditions, this program leads uniquely to Einstein s theory of
gravitation in Hamiltonian form. The framework is also applied to the Nambu-Goto string
model, where again reparametrization covariance determines the dynamics.

I. INTRODUCTION

It is well known that the postulate of general co-
variance, coupled with the demand that the equa-
tions of motion for the metric tensor be of second
order and derivable from a Lagrangian, leads
ineluctably to Einstein's theory of gravitation. Since
Dirac and Arnowitt, Deser, and Misner achieved the
complete Hamiltonian version of Einstein's theory,
the form and the logical role of general covariance
have become obscure. We shall show that the
demand that general coordinate transformations be
realized as canonical transformations in a phase
space leads uniquely to Einstein s theory in Hamil-
tonian form, thus restoring the postulate of general
covariance as a foundation principle in gravitation
theory.

In a paper published in 1972, Bergmann and Ko-
mar' recognized that Dirac's lapse and shift genera-
tors must generate a subgroup of the group of
inetric field-dependent coordinate transformations.
We regard their work as not quite complete since, as
will become apparent, one must show that the con-
straints fulfill certain differential equations. (Berg-
mann demonstrated ten years earlier that a second
necessary condition is fulfilled, namely, that the
commutators must not contain time derivatives.
This is the case if they depend on D-invariant quan-
tities only. It is sufficient to show —as Bergmann
did in a short elegant argument —that the descrip-
tors may depend arbitrarily on canonical variables
which obey the dynamical equations. We shall see
that the absence of time derivatives in the commuta-
tor actually follows for arbitrary canonical vari-
ables. )

Our objective is to find the largest subgroup of
the field-dependent coordinate transformation group
which may be realized as a canonical transformation
group. This line of reasoning was also stimulated in

part by work of Hojman, Kuchar, and Teitelboim. '
Arguing that the variation of canonical variables
from hypersurface to hypersurface should be path
independent, they derive the algebra of lapse and
shift generators and solve these quadratic functional
equations for the constraint generators. Their point
of departure is, however, a decomposition of coordi-
nate transformations into lapses and shifts. We re-
gard this decomposition as an answer in search of a
question; the underlying question is the following:
What is the most general field-dependent infini-
tesimal coordinate transformation whose commuta-
tor contains no time derivatives? One of our
achievements in this paper is the demonstration that
when a metric may be constructed in terms of field
variables the lapse plus shift decomposition, with
descriptors functionals of the canonical variables,
represents the most general transformation with this
property.

Since the group property is a restatement of path
independence we, of course, recover the usual
Poisson-bracket algebra for the Hamiltonian genera-
tors. One might argue that nothing is gained
beyond the approach of the aforementioned authors
since this algebra was sufficient to fix the dynamics.
From a practical point of view however, the deriva-
tion of the constraints is greatly simplified since in
addition to this algebra we obtain linear inhomo-
geneous functional differential equations for the
constraints. Furthermore we need make no extra as-
sumptions on the locality of lapse variations, since
they are merely local coordinate transformations.
But, most importantly, we would like to argue for
the physical necessity that metric-dependent general
coordinate transformations be realizable as canoni-
cal transformations. If this symmetry were not
present, then it would not be possible to construct
invariant quantities through the imposition of con-
ditions on canonical variables. We shall discuss this
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point in our concluding remarks.
The plan of the paper is as follows. In Sec. II we

explain the meaning of reparametrization transfor-
mations in phase space (we use the terms
"reparametrization" and "coordinate transforma-
tion" interchangeably). We present our program in
a four-step procedure. In the first step we require
that the descriptors be D-invariant quantities. In
step 2 one introduces "momenta. " These are func-
tions of D-invariant variables subject to certain re-
strictions. Poisson brackets are postulated for
"canonical pairs" (notice that we do not have an ac-
tion from which momenta may be derived}. The
following steps are partly self-consistency condi-
tions, which may exclude some of the possible
choices of "momenta. " In step 3 the reparametriza-
tions are compared with infinitesimal transforma-
tions in a phase space, locally described by D-
invariant fields and the momenta. In comparing the
commutator of two reparametrizations with the
Poisson bracket of two phase-space transformations
we find that the generators of the phase-space
transformations must be constraints and we indicate
how one derives their Poisson-bracket algebra.
Furthermore we find differential equations for the
constraints. After obtaining canonical dynamical
equations, in step 4 we solve for the constraints. As
is clear from this general description of the method,
it is typically local.

Instead of dealing directly with general relativity
we will formulate and describe each of the steps for
an arbitrary theory, covariant under general coordi-
nate transformations, and then apply the procedure
to a simple model. A simple illustrative model
would be the relativistic free point particle, but this
one is too simple and does not deliver certain
features which arise in the case of general relativity
(in the sense that for the particle some of the steps
1—4 are empty}. Instead we choose a two-
dimensional field theory to illustrate the method.
The computations are somewhat less tedious than
the gravitational case and consequently we provide
more details. This example, however, distinguishes
itself from gravitation through the appearance of re-
lations which correspond to primary constraints in a
Hamiltonian formalism. After the imposition of
certain conditions, this model represents the closed
Nambu-Goto string.

In Sec. III we show that Einstein's source-
less theory of gravitation is the unique
reparametrization-covariant Hamiltonian model
with polynomial metric field equations of second or-
der in time, and with only one dimensional constant.

We conclude in Sec. IV with a discussion of the
physical significance of the field-dependent general
coordinate transformation group, and a description

of forthcoming work.
Two appendices are added. In Appendix A we

discuss the extent to which the group property of
transformations derived in step 1 already determines
the dynamics of the Nambu-Goto string. Finally, in
Appendix 8 we show that if it is possible to con-
struct more than one metric from dynamical fields,
then the demand that reparametrizations be realized
as canonical transformations forces these metrics to
differ by a D-invariant factor. It is therefore of no

physical consequence with respect to which metric
one performs the lapse plus shift decomposition.

II. REALIZATION OF THE
GENERAL COORDINATE

TRANSFORMATION GROUP
IN PHASE SPACE

We must first indicate the sense in which we wish
to realize the general coordinate transformation
group as a transformation group on a certain phase
space.

Let k~(y") be fields, where y"(A =0, . . . , E}are
coordinates and a is an abstract geometric and/or
internal index. Assume that each 4~ has a definite
transformation property under general coordinate
transformations y'" =y"+4".

Let us suppose initially that the fields 4~ are
completely arbitrary. Now at each fixed "time" y
we select a subset of fields 4'(y ) and functionals
II;[4~,B@ /By ](y ) which we map, locally, into a
symplectic manifold I (y ) with coordinates
4'(y ),II;(y ) and canonical symplectic structure
d4'(y ) hdII;(y ). Let us first consider whether it
might be possible to realize the one-parameter fami-

ly of transformations

y'"(y') =y"(y')+ p"(y')

as canonical transformations on the respective phase
space I'(y }. Note that the transform of the fields
4'(y ) and II;(y ) must not depend on BP(y )/By
since a canonical transformation associated with the
descriptor 4'"(y ) yields a transform dependent only
on y . We shall discuss this criterion extensively
below. Most importantly for our present argument,
we observe that time translation is itself an element
of the reparametrization group which we wish to
realize. Thus if we wish to implement time transla-
tions as a canonical transformation within a phase
space 1(y ) we must identify 4'(y ),II;(y ) in
I (y ) with the time-translated data

~(yo,y )(@'(y'),11;(y'))

in I (y ). We conclude the following. (1) The fields
may not be completely arbitrary, but must obey

second-order differential equations in y (second or-
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der since the Hamiltonian equations are first order
by construction and the II; depend only on first time
derivatives by assuinption). (2) We have but one
phase space with time translation represented by a
Hamiltonian flow (the particular fiow determined by
the particular choice of coordinates y"). (3) To be
self-consistent, general coordinate transformations
must map solutions 4~ of the second-order dynami-
cal equations onto solutions; i.e., these dynamical
equations must be generally covariant.

I.et us reformulate our original objective, taking
into account the preceding remarks. Given a solu-
tion 4 we construct the corresponding trajectory in
phase space (4'(y ), II;(y )). Under a reparametri-
zation y'"=f"(y), k~ is mapped into a solution 4'~
with differing functional form and generally differ-
ing phase-space trajectory (4"(y ),II,'(y )). Now
we demand that the transformation

(@(y'),11(y'))~(@'(y'),11'(y') )

for fixed y be realized by a canonical transforma-
tion f (y ). Thus a particular y-manifold
reparametrization is to be implemented by a one-
parameter family of canonical transformations. We
have attempted to elucidate this idea pictorially in
Fig. 1.

Unfortunately the group with descriptors P(y)
may not be realized in this way, since the commuta-
tor of two infinitesimal transformations with

Ag 0descriptors %&(y) and %2(y) at fixed y contains
reference to other transformations: it contains time
derivatives. Thus we may accomplish our goal only
if we generalize the coordinate transformations to
include dependence on the dynamical fields:

+"=+"[y @"(y)]

These have been called Q-type transformations by

Bergmann and Komar. ' Our dynamical model is
clearly covariant under this larger group.

The descriptor 4& of the commutator of two
transformations with descriptors %i and %'z is

Ag

~e,a(

—(1~2) . (2.1)

Here S'/&4 is the functional derivative and

54 =—4' (y) —4 (y)

(2.2)

Now precisely those transformations for which this
commutator is local in y and contains no time
derivatives may be canonically realized. Note first
that %s may be local in y only if all descriptors are
local in y . We shall restrict the functional depen-
dence even further in that we allow the descriptors
to depend at most on the first time derivatives of the
fields 4 [but not excluding "spatial" derivatives,
i.e., derivatives with respect to y "s (a = 1, . . . , N) of
arbitrary high order]. As will become apparent this
restrictioii will lead to field equations of second or-
der. By dropping this requirement we would be able
to produce higher-order field equations.

After all these preliminaries, the first step in our
program is the following:

Step 1. Find the most general functional depen-
dence of the descriptors on the fields 4~ such that
(i) they depend at most on first time derivatives of
4~, and (ii) the commutator of two descriptors does
not contain time derivatives of descriptors.

The field theories we consider in this paper are
special in the sense that there is a "natural" metric

~e'(y', ),11[@'(yi),4'(ye)]) (4'(yz), 11'(yz))

f(yi)
(4(yz), II[4(yi),4(yi)]) ~ (@(y&) 11(y2))

f(y') r(y2y') f '(y')

(4(y ),II[4(y, ),4(y, )]) (C (y i ),11(y i ) )

f(yi)
(@'(y' ),11[@'(y'),4'(y', )]) (4'(y, ),II '(y, ))

FIG. 1. The realization in phase space of general coordinate transformation symmetries. The "hat" variables represent
configuration-velocity-space functionals, while the variables on the right represent points on a trajectory in a symplectic
manifold. Were a Lagrangian to exist, the horizontal mappings would correspond to a Legendre transformation.
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gzn[k~] which either is a functional of the fields or
is a dynamical field itself. (We leave the discussion
of theories with more than one "natural" metric to
Appendix B.) For these "metric" theories step 1

may be reformulated. Construct

gAO

00 i' ' (2.3)
( g00)

i/2

(2.4)
I

which is the unit future-pointing normal to the

y =const hypersurfaces. Since gzii is a metric we
may calculate how n" transforms under
yA y

A A B B A AB 0
5n = n ii—4' +n 4 ii+n0e

Here

eAB gAB+ n An B (2.5)

with the property eA =0, e' gb,
——5,'. Next we per-

form a "lapse" and "shift" decomposition of

e"=5".g +n"g0, (2.6)

and calculate the commutator (2.1). Using (2.4) one
finds

+3 5 Cl,bf 2 e %1(2,b+52(1 } (1 2)

+n "(g i,,(2+52( i) —( 1~2), (2.7)

&Pi —-. , &7i
5241 J d y' -. , 52@ (y }+,52@,0(y&@ (y') &4 0(y')

(2.8)

Observe first that for field-independent descriptors

P [which, however, does not mean that the original
descriptors ip" are field independent as can be seen

AA
from (2.6)] the commutator %2 does not contain
time derivatives of descriptors. The extra terms
(2.8) in the commutator (2.7) arising for field-
dependent p's are the variation of pii2i under iI12ii i.
Step 1 amounts to finding the most general
functional dependence of the P such that (i) they
depend at most on first-order time derivatives in k~
and (ii} 5$" does not contain time derivatives of the
descriptors O'". The last condition is the require-
ment that the P are D-invariant, a name introduced
by Bergmann in the Handbuch der Physik article
on general relativity in honor of the concept first
formulated by Dirac: a quantity Q is called D-
invariant if its transform Q+5Q does not depend
on y derivatives of the descriptors, which geometri-
cally means that Q remain invariant under transfor-
mations which leave the coordinates of the hyper-
surface y =const fixed.

The descriptors P are D-invariant if they depend
on D-invariant quantities only. And by condition (i)
we are interested in D-invariants, depending on time
derivatives of at most first order (let us refer to
them as first-order D-invariants). These may be
constructed in the following manner.

(a) Let T be a covariant tensor of arbitrary rank
depending on the fields, then the covariant normal
derivative of its spatial components,

(b) Just from its geometrical meaning, the extrin-
sic curvature

0Eb ———n, .b ———n0I,b (2.10)

is D-invariant. We do not have a proof that there
are in general no more independent first-order D-
invariant variables. We shall show in Sec. III, how-
ever, that the extrinsic curvature is the only indepen-
dent one if gzii is the dynamical field itself. In addi-
tion we shall demonstrate that if gqii is an induced
metric, then the construction (a) yields all first-order
D-invariants.

In summary, step 1 may, for theories with metric,
also be formulated as follows: Find all zero- and
first-order D-invariants. The descriptors are allowed
to depend on these quantities only, and their varia-
tion may be written as

a
52 i = -; 52@,'. b"84', . . . b

5~i —-I+ -I 52'',I" b (2.11)
BP, . . . b

where the 4' are those of the original fields which
AI

are D-invariant, and the P are all independent
first-order D-invariants.

Instead of immediately turning to the next steps
of our program it is perhaps more instructive to
consider an example. Consider a field theory in two
dimensions with four fields

AP~b. . . —Tab ~ ~ ~ An (2.9)

is D-invariant, as weil as all spatial covariant deriva-
tives thereof [covariant with respect to pure hyper-
surface transformations (PHT's}, i.e., all transforma-
tions for which %0=0].

4 (y0,y') (a=0, . . . , 3) .

Let the 4 transform as

5C = —C A%A, (2.12)
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so they are obviously D-invariant. We view 4 as a
parametrized two-surface in a four-dimensional
manifold with metric iI P. Then the induced metric
in this two-surface is

Ag AP
gAB gaP@,A @,B (2.13)

'flapS' P

V]aPJI 4 i=0.
(2.15)

From g&B we construct the normal n"[k~q], and
with its help the first-order D-invariants

p~n (y+ ~A (2.14)

Observe that these are not independent, since

indicate how these equations may be solved induc-
tively. Start with the equation containing the
highest derivative in y'; that is, for J=L,

(2.17')a[a]

(we drop the index 1 on g"). This is the condi-
tion that BP/Bb~p[ ] is perpendicular to the surface
with metric gqB (for which the 4~B are tangents).
Now it is easy to find two independent vectors per-
pendicular to 4 B. From the identity

enA-4B= 5Bll (2.18)
8@0

The extrinsic curvature depends on the p . For in-
stance for constant g p

k11 = QaPJ +, 11 ~

AP

one finds

ap~ -.4B=—0.
,0

(2.19)

8f2 —A a[i]+ g m [I] 52C, PB4 0
(2.16)

Since the 5 variations commute with the derivatives

with respect to y we find that 524 does not con-
tain time derivatives of %2 and that

Ij2[I] ~ (I )
@2[i k]@~B[k]—2,0 ~ k, OB 2

k=o

@A2[l—k]q B[kj+,B 20

Inserting this expansion into (2.16), and setting
equal to zero the sum of terms containing time
derivatives of the descriptors, we obtain the condi-
tions

0 ~ (I )
~ I q~a[l J]+~B[J]—
a (2.17)

for J=0, . . . , L (where L is the hi hest order
of spatial derivatives of 4 p present in I). We shall

Indeed we shall demonstrate, in performing step 1,
that every first-order D-invariant quantity can be ex-
pressed in terms of the p . Denoting by

f[I]
(5y 1 )I

the lth derivative with respect to the only s atial
1parameter y, the variation of a descriptor, , de-

pending on 4~4
p (and arbitrary spatial derivatives),

with respect to %z becomes

85 i —w [p]
52& ] ~ [I ]

52'4
B4

Since the p P obey the conditions (2.15) one also has

op~ ap~-
PP=—0, 4P 1=—0,ac, ac,

leaving two independent directions. Therefore

5gA 5p.P 5pP[L]

5f a[L] ) LP
5C a ALP 5@a[L]

,0 ,0 ,0

with coefficients yc.p, which shows that the depen-
dence of P on kp[ ] enters implicitly through
dependence on p [ ). Next consider the condition

AA
on g for J=L —l. Applying the same reasoning
as before one can show that the k~p dependence
enters only implicitly through p ~~ and p
dependence. It is straightforward to construct an in-
ductive proof along these lines with the result that
every dependence on 4 0['~ is due to the dependence
of p on 4~p. So we have the result that our re-
quirements of step 1 uniquely fix the descriptors to
be of the form (2.6) with

gA gA( .ja[l'] ~[l])

We express this result in the form P=P[y;k~,p ],
where the brackets signify functional dependence on
the y =const hypersurfaces.

Let us now return to the description of our pro-
gram. With the decomposition (2.6) and descriptors

P depending on D-invariant fields 4' and first-
order D-invariant P variables we are guaranteed
that the commutator of two reparametrizations does
not contain time derivatives of the descriptors. The
commutator is again of the form (2.6) [cf. Eq. (2.7)],A ~ AA AA AAQ
and the 2 in %'3 ——5,$3'+n g3 are D-invariant.
Nevertheless, transformations corresponding to the
descriptors arrived at in step 1 do not constitute a
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group. As can be seen from (2.11) for local depen-~a[I]dence on the 4 ' and 4 0, commutators roduce
successively higher derivative dependence; 3 will in
particular contain terms involving second time
derivatives. We interpret these unwanted terms as
equations of motion. Then the subset of all
transformations with descriptors P depending on at
most first-order D-invariants is a subgroup of all
field-dependent transformations. This is an example
of an "off-shell" algebra, well known from super-
symmetric theories. We do not wish to discuss this
point further in general, since the isolation of the
dynamics simply by the requirement that the per-
mitted reparametrizations form a group shall occur
in step 4 of our program. However since these re-
marks may sound dubious at this stage we try to
clarify them through an example in Appendix A.

We turn now to the construction of "phase-space
variables. " By this we mean those fields and func-
tionals of the fields which are mapped into the
phase space with local coordinates 4' and II;. The
variables we are looking for must be D-invariant ob-
jects since reparametrizations are to be implemented
by canonical transformations.

Step 2. From the original fields 4 select only the
D-invariant ones (referred to earlier as 4'). Define
the same number of functionals II;[4',p ], called
momenta, depending on 4 and the independent
first-order D-invariants P . We must assume that
there exist no more p than O'. The functionals II;
have to be chosen such that the following conditions
hold:

(1) The rank of
~
BII;/Bp

~
is equal to the num-

ber ofp 's.
(2) The II; transform as densities of weight 1

under PHT's.
(3) The II; obey a set of further restrictions (R)

dictated by the physical model under discussion.
We shall clarify this point below in our example.A
Since we wish to map the 4 and II; into a symplec-
tic manifold we must make a choice of canonical
pairs. The particular choice will be determined by
the restrictions (R).

We examine the significance of the conditions
(1)—(3) in turn. If condition (1) is fulfilled one may
solve the II; for the p and the 4', and it is possible
to express the descriptors /[4', p ] as P [@,II;].
Condition (2) guarantees that the II's indeed have
the transformation property of momenta. Condition
(3) and the selection of canonical pairs seem to in-
troduce a great deal of arbitrariness into the pro-
gram. This is true. However by choosing the re-
strictions (R) in a suitable way, one is able to limit
the number of possible momenta. Further con-
sistency conditions (in later steps) restrict the num-
ber of possible local phase-space coordinates even

further. Those which remain belong to different
dynamical systems. To convince the reader that the
program, seemingly intractable at first sight, really
works, we return to our example.

All four fields 4~ are D-invariant; these are the
4' variables. As P variables we only have two of
them p ~=k~z n" at our disposal. So, irrespective of
the functional dependence of the four II; the condi-
tion (1) implies that the momenta II; and the fields
4' are not independent. There are identities among
them, which for P =p [II;,4"] directly follow
from (2.15). The most general scalar densities of
weight 1 may be constructed by multiplying scalars
by the determinant of the induced metric (e '~ ).
We obtain a unique dynamical system through the
imposition of the following restrictions (R): the
metric g & is that of Minkowski space-time; the
fields 4 are components of a Lorentz vector with
dimension length (c =1); the momenta II; are com-
ponents of a Lorentz vector with dimension mass;
the 4~ are periodic with period 2nin y'., the mo-
menta shall not depend on the fields themselves
(translation invariance); and there exists only one di-
mensional parameter A, of dimension mass/length.

From now on we will identify 4'~x", and
II;~k& to be constructed from P"=n"x „&. Tak-
ing for && simply p& itself is not quite correct, since
it does not have the required weight. However

(2.20)

is a choice for the momenta consistent with R. And
indeed any other choices for && other than (2.20)
would either not be solvable for the p& and/or in-
volve other dimensional constants. Note that the m&
satisfy identities because of (2.15). As a conse-
quence we shall be concerned with the correspond-
ing surface in phase space determined by
n +A, x i ——0 and n"x i ——0. These relations would
correspond to primary constraints in a Hamiltonian
formalism derivable from a Lagrangian model. We
shall find later on that the choice of the set of re-
strictions R leads to minimal two-surfaces imbedded
in Minkowski space, that is, to the free (closed)
Nambu-Goto string. If in R we drop the require-
ment that the momenta should not depend on the
fields themselves, we are led to a string interacting
with external fields of different types.

For another theory hidden in our program, take
as a restriction the case where (4~,4') and (4~,4~)
are assumed to be components of Lorentz two-
vectors. Then we would arrive at a theory of two
strings in two dimensions.

We also would like to mention that there is a
choice of restrictions such that the program would
lead to the parametrized version of two scalar, fields
in two dimensions (with or without a potential). In
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descriptors g" expressed in phase-space variables.
Our program amounts to the demand that

this case two of the fields 4 would correspond to
the coordinates of the deparametrized theory.

Let us now return to our general program. Be-
cause of the conditions on the functional dependence
of the momenta II; on the first-order D-invariants

P it is possible to express the descriptors P in
terms of II; and O'. The transformation (2.6) is to
be generated in phase space by

H(g) f dNygA~

= f dNy(g'm, +Pm. ),

I H(02»H(ki }}=H (k3)

= f d y($34 o+gqA ,),
(2.21)

where 3 are given by (2.7). That is, we demand
that the Poisson bracket of two phase-space
transformations H(g;) is a transformation corre-
sponding to the commutator of two reparametriza-
tions with descriptors g;. We have

with certain generators 4 O,A, . The g" are the

tH(g ),H(g, )}= f d yd y'g"g IA „,A ' }+f d yd y'(4 „g Ig",4 ' }+P"g"IP „,g })
+ f dNydNy'~A~BIC2 N'} (2.22)

The prime on the Ps and A 's denotes, for simplicity, their dependence on y'.
In this expression we distinguish three different kinds of contributions: (i) terms with Poisson brackets

among generators 4 A, (ii} terms with Poisson brackets among descriptors and generators; and (iii) terms with
Poisson brackets among descriptors. Because of the arbitrariness of the descriptors these contributions can be
handled separately when comparing both sides in (2.22}. So let us for a moment assume that the descriptors gA

do not depend on O', P . Thus we require that

f d"yd"y'kzk'i I~A ~B}=f d y'[(Ci, gz)~o+(4'i, biz e' gQ'z, b—)~ ]—(1 (2.23)

I~„~o}=(e"~b+e "~b )d.5(y —y'),

IA „A 0}=P 05,5(y —y'),

IP;,~b }=(~,'db+~bd, )5(y —y')

(2.24)

This is of course a well-known algebra, written
down first by Dirac5 thirty years ago as the algebra
of constraints for parametrized theories, and typical
for any reparametrization-invariant theory with

Here we took the g3 from (2.7); observe that for this
special subset of transformations the 5;g& are absent.

In comparing both sides of (2.23) we derive the
Poisson-bracket algebra of the generators
namely,

I

descriptors of the form (2.6).b

Next, allow the g to depend on D-invariant, quan-
tities. Again referring to (2.7) and (2.8) we note that
g3 contains derivatives with respect to 4' and pt
(and spatial derivatives thereof). However these
derivatives enter only linearly. On the other hand
there are terms of type (iii) in (2.22) which as Pois-
son brackets are quadratic in these derivatives. So
we conclude that the generators 4 z must vanish:
the physically attainable phase space is that hyper-
surface in phase space satisfying the constraints
A „=0 (in addition to possible "primary" con-
straints).

Although the A q vanish we still must compare
those terms on both sides of (2.22) which are linear
in the constraints:

or

f d yd y'4 „f, Igz,~B}—(1+ 2)= f dNyAoA52g", (1~2)

ugA, uHB'

nil, ' ue"' = 5g.A

84',b. . .

(2.25)

Now we are able to formulate the next step.
Step 3. Compare the coefficients of g2 on both sides of (2.25). This will yield a set of first-order differential

equations for the constraints.
Example. For the string we have to compare both
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and

d d
Bg",

& -' ~ -p ~ - —
~ ~[I] 2

"5x&
X %~ I ) X

d d
Bg] [

.
]j

gu] &~~ s~j .
OTAL

X j p

(2.26)

(2.27)

Let us first evaluate (2.26). Substitutea, ,- &~a-q=X( l)
~ q[q ~

(- @3' 3'~x [-] Bx By 1'

I

j—p' BSp

'j
g~

1' ~1")
ay'"

into the integrand. After integration by parts (2.26) becomes

pe ~
J+

~ ( —])J+'
axl'[" ay'j,l

Since

S,x~[']=( x&,g,
' p—~g', )['],—

&BA s Bg~ p]' a~[J] ax~['] '
OTAL I x

(2.26')

(2.28)

' [j+l]
=(x('g,') ', y( —l)J g []j 8&@

and therefore

'BA
),j

—0, g)1,
O'F~

BA
=X

8
PTER

BA p —pP
. 8 17@

the comparison of both sides in (2.26') yields

aM "'"
[J]j BOTT

(2.26a)

(2.26b)

(2.26c)

(2.27')

IIefore evaluating (2.27) we point out that although at the moment we deal with the string, Eqs. (2.26a) and

(2.26b) would be the same for any theory with scalar fields, and only the right-hand side of (2.26c) changes de-

pending on p&(n, x) because the transformation 5 has the same form (2.28) for any scalar field.
The analog to (2.26') is

.„ag", q '",a~,
'

ag",
~' ag"]

For the variation of && one finds

1 0 0
5 sr„= &.„g n„g, a—„g —b„g. , , — —

with

(2.29)

p 7Tpn
a~ =n 1 0 1/2n )bp, bq

——A,e x~) .
np

The first two terms are obvious since &„ transforms as a density of weight + I under PHT's; the others (a„
and b„) have to be calculated from the functional form of &&. Inserting (2.29) into (2.27') yields the conditions
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J
ti +Il

g', )l l ( g )(+ l

=(a„(2+b„(2 i) ' =[(a„ b„—, )gz]
' + (b„g2) ' +'

,

which result in

=0,
Bx&

(2.27a)

(2.27b)

I

may not be canonically implemented. Such
transformations do not belong to the subgroup de-
rived in step 1. We shall however find a field-
dependent descriptor which generates time transla-
tions of fields in a particular parametrization.

First write

de i

Bx"[q
—0, I &2 (2.27c)

A
1' n

--p e x» —n, A,
Bx& n "', n

(2.27d)

(2.27e)

P p

ax~ t~]
0 p I & 2 (2.27fl

Again notice that the differential equations for 4 i

are the same for any theory with scalar fields, since
only the transformation property of &„under PHT's
is decisive, and not its specific functional depen-
dence. The equations (2.26a)—(2.26c) and
(2.27a)—(2.27f) for the constraints together with the
alegbra (2.24) and some further self-consistency con-
ditions are enough to uniquely determine the con-
straints and the dynamics.

Notice that Eq. (2.27d) contains a time derivative
of the momentum. The derivation of the relations
(2.26a}—(2.26c) and (2.27a)—(2.27f) points out what
one would get in general in performing step 3.
Namely, the equations for A, will be differential
equations, whereas there will be at least one equation
which involves BA 0/84'( l (for some k) together
with an expression containing time derivatives of
momenta. Since we demand that all reparametriza-
tions with descriptors of the form (2.6) be realizable
as canonical transformations, we shall obtain a
unique expression for such time derivatives in terms
of derivatives of the constraints.

We wish to find the field-dependent transforma-
tion which translates in time fields in a given coor-
dinate chart. We furthermore wish to implement
this transformation in phase space in order to find
the canonical equations of motion. It has to be
stressed at this point that an infinitesimal time
translation with descriptors of the form ql"=e50

4'"=e5"=g'5,"+Pn" . (2.30)

Recall that the normal n" depends on the dynamical
fields k~. Given a particular solution 4~(y) it is of
course possible to solve (2.30) for the descriptors:

g (y)= 0, g, (y)=-
n (y) n (y)

(2.30')

gAB

E,N' —Nj Ã,

gab
(2.31)

AB
g =

2 ga ~ 2eab ~a~bj e

where

g„=5', , X'=e' Nb .ab

The normal to the y =const hypersurface is then
given by

n A=X -'S"—X'X, -'SA. . (2.32)

We claim that a suitable parametrization may be
chosen such that all solutions 4~ of the
reparametriz ation-covariant dynamical equations
yield the same explicit functions n (y), i.e.,
n"(4(y)=n"(4'(y)). It is even true that given a
solution 4(y) in a particular parametrization it is
possible to find a parametrization such that the
transformed n"(4(y}) may be made equal to any
given arbitrary functions. This is a well-known re-
sult and we shall preserit only a short geometric ar-
gument (cf. Ref. 7). We consider a manifold with
metric gqs(4). Choose an arbitrary spacelike hyper-
surface and fix the y coordinate to be constant,
with points on the hypersurface fixed by the y'.
Pick an infinitesimal neighboring spacelike hyper-
surface with orthogonal separation Ni (At}—
where Nq & 0 but otherwise arbitrary. Choose coor-
dinates y'(r +ht) =y'+N'b, t with separation
g,sN'N (b,t), ¹ arbitrary. Then the metric g~s is
given by



27 REALIZATION IN PHASE SPACE OF GENERAL COORDINATE. . . 749

N'~a+&i~o

II;= II;, Jd y'(N'4 ', +NBA 0}

(2.33)

where the N', Ni are given explicit functions N"(y).
Example. Due to (2.26a) and (2.27c)—(2.27f) we
find that

BA g BP px"=N' +Nj
17@ 7Tp

and

(2.34)

BP 0
Ni

Bx~ i

'Bc&i
+ N'

Bx~ i

(2.35)

Equation (2.34} is merely the phase-space analog
of our de6nition (2.20} of the momentum functional

Referring to equations (2.26b) and (2.26c) we
find

The n" may thus be fixed arbitrarily (as the Nj and
¹ are arbitrary) if we assume that under a
reparametrization the 4's and therefore the n"'s
remain solutions of the dynamical equations.

We proceed as follows. Pick four explicit
functions eP(y). Then the descriptor

'P=g'(y}5, +n "P(y)

describes time translations of those fields with
parametrizations such that (2.30') are fulfilled. In
particular we have

Ap ———(xi } '~(A, m+xi).
These are nothing but the phase-space analogs of the
relations among the momentum functionals follow-
ing from the definition of the D-invariant objects p
[cf. Eq. (2.14)].

Observe that A, has the form A, =II i4 i for
any scalar theory, since the Eqs. (2.26a) and (2.26b)
and (2.27a) and (2.27b) contain no reference to the
functional dependence of the momenta on the D-
invariant p .

Finally we note that the resulting dynamical equa-
tions (2.34) and (2.35) are those of the closed
Nambu-Goto string in Hamiltonian form.

III. GRAVITATION

The fields are now the pseudo-Riemannian metric
components gap(y" }, the y"~x" parametrizing
four-dimensional space-time. If 5x"=ql" the metric
transforms as

5gap = (%a p+ 4p.a—), . (3.1)

where the semicolon denotes covariant derivatives
with respect to the four-metric. From

Inserting this expression into (2.27d) we obtain an
identity. The unique solution of the remaining
equations (2.26) and (2.27) consistent with the alge-
bra (2.24) is

4 (
——m. &x„)

and

or 5gap= gay+, p+gpy+, a+gap, y+ (3.1')

5 i'=A(x, )' z(nox"+n'x", } .
The relation (2.35) is to be substituted into Eq.
(2.27d). We are now prepared to carry out the final
step.

Step 4. Substitute the expression for II' obtained
above into the relations derived in step 3, thereby
achieving a set of differential equations for the con-
straints 4 q. Replace the field variables n "(4) by
the explicit functions

'(y) 5",N, '(y)N'—(y) .

Find the most general solution for the constraints

g o

Examp/e. Substituting (2.27b} and (2.27c} into
(2.35) we find that

II"=(Ni)lx "ie'~ ) i+(N'IP) i —Ni-
P

one immediately can see that the three-metric g,b is
D-invariant (5g,b does not contain derivatives with
respect to x ), whereas the components goo and go,
are not. It will prove useful to express the metric
gap in terms of the lapse and shift functions Ni
and N', and the induced metric on the hypersur-
faces [cf. (2.31)].

The three-metric is D-invariant, while Sq and E,
are, respectively, a scalar and covectors under
PHT's.

The extrinsic curvature is

+ab (2Nl) (Na ~b+Nb ~a gab, o) ~ (3.2)

where the vertical bar denotes the covariant deriva-
tives with respect to the hypersurface metric. Ac-
cording to our general remarks in the previous sec-
tion it is a D-invariant quantity, as one of course
might also verify explicitly.
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I.et us now perform step 1 of our program in or-
der to see that K,b (and spatial derivatives thereof) is
the only first-order D-invariant. We again make the
decomposition ql" =8,'g'+ n "p. The descriptors g"
may depend on g ~, . . . b (that is, the metric and

I

spatial derivatives of the metric) and g Ii 0, . . . b (spa-
tial derivatives of g ~0). Express everything in
terms of the three-metric and lapse and shift func-
tions,

k {gab c . d~+a, c. dt+l, c . d~gab Oc . d~+a, Oc ~ . d~+l, Oc ~ d)

where of course the order of spatial derivatives for each variable may be different). Now by (3.2) it is possible
to express the "velocity" g,b 0 in terms of the extrinsic curvature, the metric g,b, lapse and shifts, and spatial
derivatives of lapse and shifts. We have

PI —P'Pf
(gab, c d~+a, c dt~l, c dtKab, c di+a, Oc ~ dt+l, 0c ~ ~ ~ d)

For simplicity we drop the two bars on g& and regard g& as a function of the above variables. Inserting this
form together with the decomposition {2.6) into (2.1), we obtain a commutator Ipi containing terms with
second time derivatives, terms with first tiine derivatives, and terms with no time derivatives of the descriptors

First we isolate those which contain second time derivatives of g and set the sum equal to zero, thereby ob-
taining

(gav+2, 00),bI . b„+ g ~ l( g ) ~v+2, 00l, bI b„
n =0 d+a, 0bI ~ ~ ~b„n =0 d+l, ObI ~ ~ ~ b„

for n indices bi, . . . , b„(minus another term for which the indices 1 and 2 are exchanged). From this it fol-
lows that

dN Ob . . . b BE20b
=0, all n, (3.3)

(3.4)

which implies that the descriptors are not allowed to depend on time derivatives of the lapse and shift func-
tions.

Next we set the sum of terms containing first time derivatives of the P equal to zero to obtain

Z
-(g..ip2, 0),b, . "b„+ g - [(—g ) '"~S'Z, ol, a, "'„.

n=O ~+ah b n=O ~+la a
1 n 1 n

So we immediately conclude that

{3.5)=0, all n .
BXa b ~ ~ ~ b BXi b

Consequently we deduce that all N&,N„and g bp
dependence in the descriptors enters in Eb depen-
dence and arbitrary spatial derivatives thereof. The
extrinsic curvature EC,b is the only D-invariant object
with first-order time derivatives. So the general
form of our descriptors in the decomposition (2.6) is

p=p'(x";g, b,K,b, arbitrary spatial derivatives)

or

P=Plx";g.b,K.b j .

Here the E,b play the role of the quantities P de-
fined in Sec. II.

Step 2. From the original fields g ~ only six are

ig I /2(ae abK PKub) (3.6)

Assuming we have at our disposal one dimensional
constant, Newton's gravitational constant y, ~
above is the only momentum of the correct dimen-
sion one may construct which is polynomial in the
fields (one might try adding a nonpolynomial term

y 'g' e' R', for example). The constants a and
P are dimensionless parameters. The condition that

(g „,K „)can be solved for K „ leadsto cert
restrictions on these parameters. Take the trace on
both sides of (3.6),

&;=ir=y 'g'/ (daK —PK),

D-invariant; these are the g,b. They represent the 4'
of our program. We would like to define six mo-
menta &'. These should be functionals of g,b

and E,b. From these we construct a symmetric con-
tratensor density of rank 2 and weight 1,

y Ig / { abc mn Peam&bn)K



REALIZATION IN PHASE SPACE OF GENERAL COORDINATE. . . 7S1

where d is the dimension of the hypersurface (let us
leave this dimension open for a while, and only later
fix it to d =3}. If da —P+0 the previous expression
allows us to write K in terms of the metric fields
and &. Inserting this into (3.6}gives

&' =a(da P) —'e' m. y—'g' PK'

and so only for P&0 do we have

Kab yg
—1/2P —1[a(da P)

—leab~ ~b) (3 7)

Without loss of generality we may take P= 1, then
the only restriction on a is a&d

We are now prepared to derive differential equa-
tions for the constraints 4 &.

Step 3. Defining

(3.8)

we calculate

gV

S'g,'b S'e" Z Z- dgab, t, " 1,
for Z' indices i „.. . , iz and Z" indices m 1, . . . , mz-. This has to be comPared with

(3.9}

1—X
b '&

' ' iz
52g.b' I Z

(3.10)

In the decomposition (2.6) the variation of the metric fields becomes

5gab 2KabP gab, cP (gacg, b+gbcg, a ) ~

so the comparison of (3.9) with (3.10) amounts to

and

( 1 )z'+1
z z'

5, , a,,a, a,,(g,'V,.',
z gab i, iz

(2K,bing);, . . . ; (3.1 la)

g ( —1)z 8;, 8; 8, . B,(gg&„b ")=g (gab, c42+ 2gc (a 42,b) } (3.11b)

From these we infer the differential equations

BA o
Vj)gb b 2&gb (3.12)

BA l
m'"5J t—ti"5'1+ t—t'/5t"

~gij, n
(3.18)

ml . mz
Vo b

——0, Z&0 (3.13)

(3.14) and

BA i

glJ

PI
5gij, n

(3.19)

V b
——

b
———g,.&b —g,b&.

dtt m

(3.15)

M'o

giJ m m8
1 z

=0, Zg2, (3.20)

giJ'mi'' mZ

=0, Z&1, (3.17)

(3.16)

Similarly comparing in (2.25) coefficients of
derivatives of the descriptors with respect to mo-
menta one obtains conditions for the derivatives of
the constraints with respect to the metric. The cal-
culation is laborious, but straightforward, so we
shall simply give the results:

BMo
+2

~gij k

where

5~0
5gij, kl

1/231 k ~Gimjn (a 1}esl&mn~

1/2( Gikjl+ Giljk)——2g
ag;;kl

+ (a 1 )g 1/2eije kl (3.21)

(3.22)
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Gikj I Qej l ije lk

and finally

le% l
N

~gab

BA lN'
bc, c

BA p

~gab

BPP b+ VT 0

~gab, cd

BA p

~g b,c, ,

(3.23}

then it is not possible to construct any further mo-
menta of the correct dimension. However, a term of
the correct dimension, Ag', may be added to A p

without affecting equations (3.12)—(3.23) since
BMp/I}g, b does not appear in these relations. Since
4 p contains no derivatives of Ir', this new 4 p con-
tinues to fulfill the algebra (2.24a).

The equations of motion following from the
Hamiltonian

From the demand (2.33) that time translations be
realized as canonical transformations, we observe
that (3.23) is identically satisfied. Just as in our ear-
lier example the comparison of coefficients does not
determine the derivative of A p with respect to the
fields: dorp/dg~b .

Step 4. Equations (3.17)—(3.19), along with the
Poisson-bracket relation (2.24c) may be easily in-

tegrated. %e find

cS l = —27 1
~j (3.24)

We recognize Eq. (2.24b} as the condition that 4 p

transforms as a scalar density under PHT's. Refer-
ring to (3.20)—(3.22) we observe that A p IIlllst COII-

tain a scalar term constituted solely out of g,b's up
to and including second derivatives. The only such
scalar is the curvature scalar R. Since

( gikjl+ giljk)
~gij, kl

we deduce from (3.21) that a = l. Indeed since

BR M
~gij, k ~g~j, kl

3I k Gtmjn
mn

and 4 p by (3.13) contains no m'~
~

k dependence, the
remaining terms in A p must depend on undifferen-
tiated g,b's and they must be quadratic in m' by
(3.12). Thus we find

y
—1(

1 —1/2g ij kl
g I/2g )

with

Gijkl =gikgjl +gilgjk gij gkl

This P'p does indeed fulfill the Poisson-bracket rela-
tion (2.24a). We should point out here that this
derivation of A p has been greatly simplified over
that due to Hojman et al. , since we have assumed a
functional dependence for the momentum variables
n', and as a consequence of our demand that the
reparametrization group be canonically implement-
able, we have obtained linear differential equations
containing BA p/Bg b

If we suppose we have available another dimen-
sional constant A of dimension mass (length)

H= d x N'A, +N P
with N' and Xz arbitrary functions,

~ =y '( —g
' 'g" n'V" g' 'R—)+Ag' ',

and 4, given by (3.24), are Einstein s equations in
Hamiltonian form, with cosmological constant A.

IV. CONCLUSION

We have formulated a general program for realiz-
ing general coordinate tranformations as canonical
transformations for systems with Bose fields and
dynamical equations of at most second order. %e
have applied the technique to the relativistic string
and to general relativity. In a subsequent article'
we shall extend the program to include gauge
transformations. From the examples it is obvious
that the local symmetries alone do not provide a
unique dynamics. There may be some arbitrariness
in choosing the momenta and/or in imposing the re-
strictions R. Indeed the dynamics become defined
by the transformation properties of the fields, the
functional dependence of the momenta in terms of
zero- and first-order D invariants and the restric-
tions R. The examples also demonstrate that the
choice of momenta is limited in that the generators
4

&
of canonical transformations must obey certain

differential equations, including a Poisson-bracket
algebra. Every choice of momenta which is con-
sistent in this sense corresponds to a dynamical sys-
tem. Therefore any arbitrariness left over is wel-
come. Even a consistent set of momenta does not
specify the dynamics uniquely; one must pose fur-
ther restrictions. In the case of general relativity the
restriction to only one dimensional constant ex-
cludes a cosmological term. Although we did not
begin with an action, clearly the dynamical equa-
tions we ultimately obtain may be derived from the
Lagrangian density

&[4,4 ]=II.(4,4)4

(recall that A =0). We view our approach as a
physically and group-theoretically well-motivated
alternative to the Dirac-Bergmann algorithm ap-
pliixl to the foregoing I.agrange density (cf. Ref. 8
for a review of the Dirac-Bergmann Formalism).
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Now let us argue that the realizability of a sub-

group of the field-dependent reparametrization
group is a necessary element in the reduction of a
second-order reparam. etrization-covariant theory to
deterministic Hamiltonian form. Our objective is
not only to reduce the theory to first-order form, but
to classify all solutions via physically inequivalent
initial-data sets (hence the term deterministic). We
note first that due to the general covariance, a given
set of fields and velocities on the initial hypersurface
will not uniquely evolve off the surface. We would
like our theory to be such that time evolution may
be uniquely fixed through conditions on the initial
data (otherwise we will a fortiori not have achieved
an initial-value formulation).

An equivalent statement of this demand is that we
wish to be able to construct observables of the
theory in terms of initial data. A quantity is obvi-
ously not an observable (invariant under coordinate
transformations) if its evolution off an initial hyper-
surface is not unique.

Since we may hope to achieve unique evolution
through conditions on initial data and since, further-
more, we do not want to eliminate any solutions
through these conditions, we must demand that the
general transformation coordinate group be imple-
mentable as a transformation group on initial data,
i.e., realizable as canonical transformations. Coordi-
nate conditions on initial data should then ideally
select one and only one representative data set from
each equivalence class under these coordinate
transformations.

Thus we are assured that coordinates may be
fixed in the string model and in gravitation theory
through the imposition of conditions on canonical
coordinates (of course, one must also prescribe the
lapse Nj and the shifts ¹).The group element
with infinitesimal descriptors of the form

0'"=5,"p(g, n )+n "g (b,n).
transforms canonical coordinates into invariant
functionals (in general nonlocal). The form of the
coordinate conditions is determined by a canonical
group element.

To illustrate this point, and also to motivate a log-
ical generalization of the preceding analysis, we con-
sider an example from electromagnetism. Suppose
we require that the electromagnetic potentials fulfill
the Coulomb-gauge condition B,A, =0. Then there
exists a corresponding field-dependent gauge
transformation A which transforms any given field
A into a functional A(A) satisfying the gauge condi-
tion. In particular

A, =A, B,h 'BbAb, —
so

This particular gauge transformation is implement-
able in phase space, and it suggests that here, as in
reparametrization-covariant theories, the enlarged
field-dependent gauge group plays a crucial role. It
is precisely this group which one would wish to uni-
tarily implement in the quantum theory to obtain
gauge equivalence. One may broaden the concept of
D-invariance to include invariance under instantane-
ously vanishing gauge transformations, and thereby
obtain conditions which coupled metric and gauge
fields must satisfy if this enlarged group is to be
realized in phase space. This will be the topic of the
following paper.

Open relativistic strings are of considerable physi-
cal interest, but the dynamical equations may not be
consistently derived from a Lagrangian. ' However

reparametrization-covariant Hamiltonian equations
may be derived applying the method described
above, but only for parametrizations which are
singular at the ends of the string. This problem is
discussed in another paper. "

Of course, the program outlined in Sec. II, and
applied to the string and to gravitation may also be
applied to any reparametrization-covariant theory.
For instance, a relativistic particle or string, with
spin described by fermionic variables, typically has
second-class constraints, and although the steps 1—4
may be performed, the arguments are somewhat dif-
ferent from those in first-class examples. Also, rela-
tivistic particles, interacting with themselves, with
external or with dynamical fields may be fruitfully
treated within this framework. One may also apply
the program to obtain alternative strings. ' In fact,
it is clear that depending upon the choice of initial
fields and momenta, one may apply the method to
describe the Hamiltonian dynamics of the
parametrized version of at least all theories derivable
from a Lagrangian. It is possible to treat theories
with higher-than-first-order field equations, too.
This is only a rather incomplete list of topics; work
on some of them is in progress and will appear else-
where.
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APPENDIX A

In this appendix we would like to indicate, for the
induced metric example, how the demand that the
field-dependent reparametrizations with descriptors

depend on D-invariants of at most first order im-
plies information on the dynamics of the fields 4~.
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Ag
In the commutator qli of two reparametrizations

as given by (2.7) there appears a term 52fj —5igq.
The relevant transformations constitute a group
only if this is a D-invariant of first order. For the
example with scalar fields we have

52 1 ~ ~ (i)52~ + ~
l=P 5@ I=P BP (Al)

with p
' given by (2.14). Now

52@ @,lf2 P k2 (A2)

is a first-order D-invariant, and so are 524 . Itil' j]

remains to check whether the second term in (Al)
has the required form, too. Because of the arbitrari-
ness of the descriptors we have to investigate 5P'(').
From the definition ofp

' and (A2) one finds

Sp'= P'g'—e', e—"g', nAnB—C'„,,gP,

(A3)

where the semicolon denotes the covariant derivative
with respect to gAB. The first two terms are D
invariants of first order, in the last one the expres-
sion n"nB4 „Bprevents . 5p' from being a first-
order D-invariant. Since

n"n 4'q. ~ =—g" 4'z.z+e "4'&I
~~

and
~ A A l.

e'A I ii =(P'ej „)p'+e"(e',e, „)C", ,

the term preventing the closure of the reparametri-
zation algebra is proportional to g" 4'q. q.
Of course we are not asked to set this to zero; it is
sufficient to equate this to a D-invariant function,

gAB&f&~ fi(yA CJ @jf&.] Pj [ml) (A4)

and we declare this as our equation of motion. As
long as f' is not specified these will, of course, be
empty. However, observe that there are restrictions
on f'. The left-hand side of (A4) is perpendicular to
k,A. Therefore, consistency demands that
f'4;A ——0. Hence

apjf'=9;

with certain coefficients j&j. (The proof that
Bp /B4;0 are perpendicular to 4'z is given in Sec.
II.) In calculating that expression one finds that

f'=y (5"+p jp ' e "4,4',)—
~;(5" gABK~,'B)-, (AS)

where yj are D-invariant scalars of at most first or-
der.

APPENDIX 8

The program of realizing the general coordinate
transformations in a phase space has been per-
formed in general in Sec. II for theories for which a
metric can be defined in terms of the fields. In this
appendix we would like to argue that the outcome is
independent of the metric one prefers to choose. Or,
more precisely, if it is possible to define different
metrics the program can only be worked out con-
sistently if the metrics are related, i.e., if there are
constraints among the fields right from the begin-
ning.

Assume that it is possible to define different
metrics gAB in terms of the fields. One way of con-
structing a normal is the following. Define a linear
combination

G,s(j(, ) =I,;gA'B, (81)

with scalars A,;, and iL denoting the i-tuples
(A, i, A,2, . . . ). The normal vector with respect to
GAB(A, ) is

G" (A, )

[—GPP(A, ))in ' (82)

Now compare two "lapse" and "shift" decomposi-
tions

4"=5",P(A)+n"(A), g (A), ,

=5",g (A, ')+n "(A.')g ()(,'), (B3)

where the A, signifies that the descriptors depend on
n "(A,):

g'(A, ) =
n (A, ) (B4)

P(A, )=%'—
n (A, )

In the main text we proved (in discussing step 1)
that the demand that the commutator of two
reparametrizations does not contain time derivatives
of the 4A is equivalent to the requirement that the
descriptors g" are D-invariant. The proof rested
solely on the transformation property of the normal
which in turn is derived from the tensor character of
the metric. Furthermore, ¹invariance has a mean-
ing independent of the decomposition. Hence the

For the special case of the string the only scalar at
hand is zero, and therefore we obtain the equations
of motion

g &,w;@=0 ~

AS p

which are identical with the field equations derived
from the Nambu-Goto action.
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g"(A. ) and g"(A,') can for each A differ only by a D-
invariant factor. Consider first the time com-
ponents. From

n (A, )g (A, )=n (A, ')g (A, ')

GgB(A, ') =u (A, ,A, ')G„B(A,),
where u is a D-invariant scalar.

There exists another way to construct vectors in
terms of different metrics. Define

and

g (A, )=u(A, , A, ')g (A, ')

AO
8 (i)

72 (i) OO
( —g(;) )

we find

n o(A, ') =un ( A, ), (B5)

and

n "(A)=A, gn(;) .

n'(I, ') =un'(A, ) . (B6)

Hence we deduce that

6 (A, ')=u 6 (A, )

Now compare the variation of the normal for dif-
ferent A, 's:

5n "(A)=—n "(,I,) 4 +n (A, )%"

and therefore

6 (A, ')=u'6 (A, )

Next, for the spatial indices we have the identity

P(X)—P(A, ')=n'(A, ')g (A, ') —n'(A, )g (X)

=[n'(A, ') —n'(A, )u]g (lt, '),
where the pre~ious result has been used. The left-
hand side being D-invariant, the right-hand side will
only be D-invariant if n'(A, ') —un'(A, ) is D-invariant,
which implies

Notice that n "(A, ) and n "(A, ) of (B2) are not linearly
related since the definition of the normals in terms
of the metric is nonlinear. Nevertheless one can
show by the same reasoning as above that n "(A, ) and
n "(A,') must differ by a D-invariant scalar u,

n "(A,) =un "(A,'),
which means that

(A,,' —uA, ;)n;"=0,

and demonstrates that the n~;) are linearly depen-
dent. This again forces us to conclude that the dif-
ferent metrics gz'B differ by a D-invariant scalar.

It might sound strange that the program of realiz-
ing reparametrizations as canonical transformations
enforces constraints on the different metrics. But
this is what happens for instance in the first order-
formalism for the string. Consider the fields x"
(is=0, . . . , 3) and h~B where the latter is a sym-
metric tensor (A,B = 1,2). The induced metric is

SAB +,A+@,,B '

with

e" (A, )=6" (A, )+n"(A, )n (A, } .

(B7} In constructing normals one may either take gAB or
hAB. By the arguments above, however, we know
right from the beginning that

The variation 5n "(A,') must be of the same form as
(B7}. Comparing coefficients of ql b we find that u
must transform as a scalar, and

eAB(g~) u 2eAB(g)

In conclusion we find that

One obtains the same condition in deriving Euler-
Lagrange equations from the action

A = f dy dy 'h" x "q x& B( —h) '~

where the AAB and x" are varied independently.
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