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This paper attempts to examine the relationship between system size and gravitational
collapse for the case of axial symmetry. The approach here is to construct noncollapsing
systems, with momentarily static matter interiors and static vacuum exteriors, and to find
limitations on the validity of the construction. Specifically, the exteriors are static, axisym-
metric, asymptotically flat, vacuum geometries, described by Weyl solutions of the Einstein
field equations. These solutions have singular sources (naked singularities, except for the
Schwarzschild solution); here, regions of the Weyl solutions containing the singularities are
replaced by momentarily static material bodies. These are described by axisymmetric solu-
tions of Brill s time-symmetric initial-value equation with non-negative energy density, join-
ing smoothly to the Weyl geometries at the bodies boundaries. The consistency require-
ments of such a construction limit the choice of surfaces in the exterior geometry suitable as
matter/vacuum boundaries; general constraints on the boundary location and geometry are
derived here. For the explicit examples of the I metric and the Bach-Weyl ring metric as
exteriors, these constraints forbid the boundary surface to be arbitrarily near the Weyl
singularity. The "hoop conjecture" demands, roughly, that the largest circumference of the
boundary surface of such a noncollapsing system always exceed a limit of the order of the
system s mass. The specific examples studied here are all consistent with the hoop conjec-
ture, but they show that the boundary constraints derived in this paper are not in general re-
lated to boundary surface size and thus that these constraints do not embody the hoop con-
jecture.

I. INTRODUCTION

In astrophysical calculations and speculations
about black holes one usually takes for granted
several "articles of faith" that relativity theorists
have not yet proved with any rigor. ' These include
the hypothesis of cosmic censorship, the rapid-loss-
of-hair conjecture, and the hoop conjecture. Of
these, the one for which we have the least concrete
evidence is the hoop conjecture. This states that a
black hole forms when and only when a mass M gets
compacted into a region with circumference in any
direction C &4trM, so a hoop of that circumference
can be slipped over the region and rotated through .

360'. ' This statement of the conjecture is deli-
berately imprecise, but it indicates the form which a
rigorous result linking system size and black-hole,
formation is expected to take. The proof of such a
result is also likely to require certain physical con-
straints such as a positive-energy-density condition.
The motivation of this paper is to seek insight into
this size-constraint problem by considering a special
case.

More specifically, I restrict attention to axisym-
metric systems and approach the problem not by ex-
amining black-hole formation but the opposite —I
ask what conditions must obtain for a material sys-
tem to be noncollapsing. Specifically, I consider a
bounded matter system (oocupying the "interior" re-
gion I) which is axisymmetric and momentarily stat-
ic; the latter embodies noncollapse and implies that
the system can be described with Brill's time-
symmetric initial-value formalism. The exterior re-
gion E, i.e., the region outside the light cones of the
interior at the moment of stasis, is required to be ax-
isymmetric, fully (not just momentarily) static,
asymptotically flat, and vacuum. These conditions
einbody the absence of gravitational waves and im-

ply that the exterior is a slice of a Weyl solution of
the vacuum Einstein equations. This shows that
the boundary surface of the matter interior lies out-
side the absolute event horizon (if there is one), since
the Weyl solutions are devoid of horizons except
possibly at the edge of the Weyl coordinate patch. '

I further impose the physical conditions that the lo-
cal energy density be everywhere non-negative, and
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that no physical singularities occur. I then formu-
late the question thus: Given a specific Weyl solu-
tion, and assuming a general interior geometry satis-
fying the above conditions and matched smoothly to
the Weyl exterior, what constraints are imposed on
the matter/vacuum boundary surface? Do these
constraints have any bearing on the size of the boun-
dary surface, which the hoop conjecture suggests
should be "larger in all directions" than -4+%7

I am aware of one previous calculation of this
sort: a cursory study by Thorne of constraints on
interior solutions for the Weyl-type gravitational
field of a thin-ring torus. Thorne's calculation
showed that the location of the interior's surface in
the Weyl exterior is bounded away from the im-
mediate neighborhood of the Weyl toroidal singular-
ity. However, this gave no substantial insight into
the hoop conjecture.

My analysis of constraints on momentarily static,
axisymmetric systems proceeds as follows: In Sec.
II, I introduce the time-symmetric initial-value for-
malism which forms the basis of my calculations,
and I derive the junction conditions for matching in-
terior and exterior geometries. In Sec. III, I describe
the exterior and interior geometries, and using the
initial-value equation and the junction conditions I
derive a constraint on the matter/vacuum boundary
surface; in Sec. IV, I utilize an alternative descrip-
tion of the interior to derive a second such boundary
constraint, particularly suited to toroidal systems.
In Secs. V and VI, I apply the boundary constraints
of Secs. III and IV, respectively, to simple examples
of Weyl exterior geometries, and examine the impli-
cations of these constraints and their possible inter-
pretations. In Sec. VII, I discuss the possible exten-
sion of these results to exterior geometries more gen-
eral than the Weyl solutions.

The principal conclusions of this analysis are as
follows: There do exist constraints on the location
of the matter/vacuum boundary in the Weyl exteri-
or, for noncollapsing systems as described here. For
systems with toroidal topology, Eq. (4.11) represents
a rigorous constraint. For spherical-topology sys-
tems, constraints are given by Eqs. (3.24), (3.30), and
(3.43), although the derivation of the most generally
applicable of these, Eq. (3.43), relies on an unproved
assumption (see Appendix C). It may well be possi-
ble to close this gap in the derivation, though I have
not been able to do so.

Applied to the spherical-topology I' metric (Sec.
V) and to the toroidal Bach-Weyl ring metric (Sec.
VI), my constraints imply the existence of a forbid-
den region near the Weyl singularity, within which
the boundary of the matter system cannot lie. These
examples further show that the constraints are not,
in general, related in any obvious way to a minimum

II. GOVERNING EQUATIONS
AND JUNCTION CONDITIONS

A. Initial-value equations

The requirements of a momentarily static interior
and a fully static exterior allow this problem to be
treated using the time-symmetric initial-value for-
malism, the hypersurface of constant time at the
moment of interior stasis being time-symmetric.
The three-dimensional geometry of the system on
this hypersurface (hereafter denoted X) is governed

by the single initial-value equation

'3'R =16~@, (2.1)

where ' 'R is the three-dimensional curvature scalar
and e is the locally measured energy density. I fur-
ther assume the weak energy condition

e &0 throughout X (2.2)

and the absence of any physical singularity on X.
The approach I take is to restrict all calculations to
the hypersurface X and to study the two-
dimensional boundary surface between its interior
and exterior regions. The above relations and as-
sumptions determine the matching conditions across
and constraints upon that boundary.

B. Junction conditions across a two-surface

The derivation of junction conditions across a
two-surface in X is similar to that of junction condi-
tions across a three-dimensional hypersurface in
space-time. Let W be a two-dimensional surface in

size for the matter system, and do not in any obvi-
ous sense embody the hoop conjecture. On the other
hand, I have found no violation of the hoop conjec-
ture in these examples; more precisely, the examples
do not test my constraints against the hoop conjec-
ture, because none of the candidate boundary sur-
faces in the I -metric or ring-metric exteriors have
arbitrarily small circumference in all directions.

Although I have not accomplished the original
goal of this research —to prove a special case of the
hoop conjecture or to find a counterexample to it-
the formalism I have used and the results I have ob-
tained here may prove useful in the hands of other
researchers. Specifically, further manipulations of
this formalism may yield additional boundary con-
straints for noncollapsing systems which are
stronger than the ones I have derived, more general-
ly applicable, or more amenable to interpretation as
size constraints or manifestations of the hoop con-
jecture. It may also be possible to clarify the
geometric meaning of the constraints derived here,
perhaps by applying them to additional explicit ex-
amples of Weyl geometries.
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X. The first step in this derivation is to express the
three-dimensional curvature scalar ' 'R in the vicini-
ty of a in terms of the intrinsic and extrinsic curva-
tures of W. This may be done by contracting the
Gauss-Codazzi equations written in Gaussian nor-
mal coordinates, in a manner analogous to that for
the higher-dimensional calculation cited above.
After some manipulation, one obtains

' 'R=' 'R+2B(TrS)/Bn —(TrS) —Tr(S ), (23)

where ' 'R is the curvature scalar for the two-
dimensional geometry of S, TrS=S is the trace
of the extrinsic curvature of W, Tr(Sz)=S~&Sz is
the trace of its square (the sums over a and p extend
over the two dimensions of ~, and B/Bn is the
derivative with respect to proper distance normal to
W. The second step of the derivation is to integrate
Eq. (2.1) over an infinitesimal interval of proper
length across P in the normal direction, using the
above result for ' 'R. That the intrinsic geometry of

be well defined requires that the metric restricted
to W and the curvature scalar ' 'R be continuous
across W, and consequently that TrS and Tr(S )
have no 5-function discontinuities at S. Given the
assumption that the energy density e contains no
singular surface layer, this integration thus implies
the junction condition

5(TrS)—:lim (TrS)
~

+
s =0, (2.4)

8-+0
where n is the proper distance normal to the surface

In summary, the junction conditions across a
two-surface 2 in the time-symmetric hypersurface

X are the intrinsic geometry of S must be continu-
ous across the surface, and (in the absence of a
singular surface layer) the trace of the extrinsic cur-
vature of W must be likewise continuous.

III. DERIVATION OF
A BOUNDARY CONSTRAINT

My approach to the derivation of constraints on
the two-dimensional matter/vacuum boundary sur-
face is to write the three-dimensional curvature sca-
lar ' 'R in the interior region of X as a total diver-
gence plus a nonpositive quantity; Eq. (2.1) and the
inequality (2.2) then imply that the divergence so ob-
tained must be non-negative. By integrating this
divergence over the interior volume and invoking
the assumption of nonsingularity to apply the diver-
gence theorem, I obtain surface integrals over the
boundary which are constrained to be non-negative.
Applying the above junction conditions to these in-
tegrals yields integrals, involving exterior quantities,
which likewise are required to be non-negative. To
carry out this approach it is necessary to describe
the interior and exterior geometries of X with ap-
propriate coordinate systems.

A. Exterior coordinate system, metric,
and field equations.

Since the exterior region is a slice of a static, axi-
ally symmetric, vacuum four-geometry, it can be
described in complete generality by the Weyl formal-
ism. The four-metric of the exterior spacetime can
be put in the form

I

dsz exp[2gz(—p——z,zz}]dt +expI2[yz(pz, zz) itfz(pz, zz—)]I (dpz +dzz )+pz exp[ 24z(pz zz}]d—q

(3.1)

Restricted to X, this gives the three-metric

doz exp[2(yz Pz——)](dpz—+dzz )

+pz'exp( 2')dm'— (3.2)

I

It is also required that yz ——0 for pz ——0 to avoid a
conical singularity on the z (symmetry) axis, and
that far from a bounded source fz approach the
Newtonian potential,

B tP /Bp +(1/p )Bf /Bp +B P /Bz =0,
(3.3)

By /Bp =p [(B1( /Bp ) —(B@ /Bz ) ],
(3.4)

By /Bz =2p (Bf /Bp )(B@ /Bz ) . (3.5)

(the subscript E denotes "exterior"}. For metric
(3.1) in vacuum, the Einstein field equations reduce
to

lim Pz —— M/r+O(M /r ), —
f'~ co

(3.6)

where r =(pz +zz )'~z and M is the total gravita-
tional mass of the system as measured at infinity.
Condition (3.6) ensures that the metric (3.1) has the
appropriate asymptotic behavior at infinity. ' Equa-
tion (3.3) means that fz is a harmonic potential in a
Euclidean "background space" with cylindrical
coordinates (pz, y,zz). Since yz can be determined
from t/rz by integrating Eqs. (3.4) and (3.5}, the en-
tire exterior geometry is specified if gz, or its ficti-
tious "source" in the flat background space, is given.

The rnatter/vacuum boundary surface can be de-
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The p coordinate derives from the axial symmetry.
The existence of these interior coordinates hinges on
the existence of coordinates (pI,zI) in which the
metric has the above-indicated isothermal (confor-
mally flat) form on a two-dimensional y=constant
slice of the interior. The uniformization theorem
for Riemann surfaces (Appendix A} guarantees the
existence of such an isothermal coordinate patch
covering this slice, provided that the slice is simply
connected. Since vacuum regions may be included
as part of the interior if necessary, the y=constant
slices of the interior can be assumed simply connect-
ed without loss of generality. The uniformization
theorem further ensures that these coordinates

(pI,zI) can be chosen so that their values fill any
desired bounded, simply connected region in the
plane R2. (Here this choice is limited by regularity
requirements of the full three-dimensional interior
coordinate system; in particular, pl ——0 on the sym-
metry axis is required, with pI & 0, say, off that axis,
in order that yI and gi be nonsingular. ) For exam-
ple, for a toroidal-topology interior, the coordinates

(pI,zI} might be chosen to fill a unit disk in the
right half of the plane; for a spherical-topology inte-
rior, the right half of the unit disk centered on the
origin is convenient. The latter choice makes the
coordinates regular even at the "corners" of the inte-
rior slice, where the meridian meets the symmetry
axis (see Appendix A).

Since the metric (3.12) has the same form as (3.2),
the description of the boundary surface from the in-
terior is similar to that from the exterior. The boun-
dary meridians are defined by two functions,

pI P(A, } and zI———N(A, ). The intrinsic geometry of
the boundary is given by the two-metric

ds = dA, +P (A, )

)& exp[ —2$I(P(A, ),B'(A, ) }]dy . (3.13)

The coordinate basis vectors tangent to the boun-
dary are B/By and

d/d~=p (~)B/BPI+ + (~)B/Bzi

The normal vector is

d/dn =—N'(A, )B/Bpi+P'(A, )B/Bzi .

(3.14)

(3.15)

ai+—& /P+d(2$I yr)/d—n (3.16)

with

ai(A, )—:—tan '(X'/P') . (3.17)

The potentials yI(pI, zI) and QI(pi, zi) in (3.12)
need not satisfy equations like (3.3), (3.4), and (3.5),
which are consequences of the vacuum Einstein field
equations. The functions yI and itII are constrained
only by the initial-value equation (2.1). The calcula-
tion of the scalar curvature ' 'R for the geometry
described by the metric (3.12) is straightforward,
and yields

With the orientation of A, already specified from the
exterior, I make (3.15) the outward-directed normal
by choosing the appropriate sign for the coordinate
zI. As above, both d/dn and d/dA, are unit vectors.
The configuration of interior coordinates and vec-
tors is as shown in Fig. 1. The trace of the boun-
dary extrinsic curvature is calculated as before, with
the result

Pl~ I ~ +IPII
TrSI =

2 2 +~ /P+d(2$I yI )/dn-p2+ 2

' 'RI =2I2[B QI/Bpi +(1/PI)(BQIIBPI)+B QI/Bzi ] (B ri/BPI +B 'Y—I/»I )

—
I (Biti/Bpi)'+(Wi/Bzi }']I exp[2(fi —rI }]

=16~@)0.
(3.18)

C. A boundary-constraint inequality

It is convenient to express (3.18} in terms of the
covariant gradient V for the three-metric (3.12). If
this is done, a li)tie rearrangement yields

RI+(V/I )'

[V(2' rI }+(rI /PI )VPI ] I

(3.19)

where all the dot products in this equation are given
by the metric (3.12}. This form is suitable for deriv-

ing a boundary constraint via the approach outlined

I

at the beginning of this section. Combined with
(2.1) and (2.2},(3.19) implies

V Ie"'[V(2A rI)+(rI/PI )VpI—]I
=e '[8m'+(V1ti) ]&0. (3.20)

I integrate this expression over the interior region I
and apply the divergence theorem to the left-hand
expression, obtaining a surface integral over the
boundary BI:

f d ~e '[d(24r yI)/«+(—yr/PI)dpI/dii]

d Ve 8m@+ V I &0. 321
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The metric (3.13) gives d A =dA, P(A, )

Xexp[ —gl(P(A, ),N(A, ))]dp and the operator (3.15)
applied to pI gives dplldn= N—'

D. ividing out
the g integral, I obtain

f d A [P(A)d(2, $I yI—)/dn —~'(&)yl ]

=[I/(2n. )] f d Ve '[See+(V/1) ]&0,
(3.22)

where the left-hand expression is a line integral tak-
en over the boundary meridian, with all quantities
evaluated at pI ——P(A, ), zI =N(A, ).

The interior coordinates which give rise to the
metric form (3.12} and thence to the inequality
(3.22) are not unique, since the region of the plane

filled by the coordinates (pr, zI ) can be freely chosen
(subject only to the requirement of simple connec-

tivity, and the conditions pq
——0 on the symmetry

axis, pI&0 elsewhere). Any two such coordinate
systems must be related by a conformal transforma-
tion on the coordinates (pr, zr), i.e., if (pr, zI) and

(pq, zr) are two sets of isothermal coordinates on a
y=constant slice of the interior, then pl+izl must
be an injective analytic function of pl+izl (allowing
for a possible sign change for the z coordinate).
Under these transformations, hereafter termed
"gauge transformations, " the potentials QI and yI
are not invariant; only the combination

pre '=
~
~B/Byj

~

and scalars constructible from the
geometry (3.12} are. Thus the splitting off of the

(VtPI) term in (3.19) and the weighting of the

volume integrand in (3.21) by e ' are gauge depen-

dent, making the boundary-constraint inequality
(3.22) gauge dependent.

To isolate this gauge dependence, and because ex-
terior quantities are more completely and simply
determined than interior ones, it is convenient to ex-

press (3.22) in terms of exterior quantities wherever

possible. The junction conditions of Sec. IIB re-

quire that the two-metric (3.7) be continuous with
(3.13), and that the extrinsic curvature trace (3.10)
be continuous with (3.16). Solving the latter condi-
tion for d(2/1 yl)/dn and substituti—ng the result
into (3.22) gives

f dk, IP[d(2$E yE)/dn+Z'/R —aE+al]—
—~'(I+yi)] &0 . (3.23)

This constraint can be rendered a bit more tract-
able by specifying a choice of gauge. Let M be a
y=constant slice of the interior I; the boundary of
M, BM, consists of a meridian for toroidal-topology

f dA, I R[d(2QE y@)/dn —a—E+al ]

+ Z' —2"(1+y,) I &0 . (3.24)

Here al is given by (3.17), subject to the matching
condition P(A, )=R(A, ); 2'(A, ) and yl(P(lt, ),N(A, )}
are those appropriate to the matched interior coordi-
nates (pr, zI ).

The inequality (3.24) may be further transformed
by treating some of the terms as integrals in the
Weyl "background" space, i.e., the exterior coordi-
nate space with a flat Euclidean metric. Let dl be
background-space length along the meridian, and
' 'd/dn the unit outward normal derivative at the
boundary surface in the background space. Since
the metric (3.2), restricted to a p=constant surface,
is conformally Qat, the scale factor between
physical-space and background-space meridian
lengths is the same as that between physical-space
and background-space normal distances. Thus
d A,(d/dn) =dl(' 'd/dn). Consequently, I can write

interiors, a meridian plus a segment of the symme-

try axis for the spherical-topology case. Let ' 'V

denote the covariant derivative on M corresponding
to the restriction of the metric (3.12} to M. Let Pl
be the solution to the covariant Laplace equation
'2'V pl ——0, where the Laplacian is also constructed
from (3.12) restricted to M, subject to the following
boundary conditions: on the boundary meridian,

pl ——R(A, ), as defined in Sec. IIIA; if BM contains a
segment of the symmetry axis, pI ——0 on that seg-
ment. Exactly one such pl always exists, since if
D CR is the region of the plane filled by the interi-
or coordinates (pr, zr), finding pI is equivalent to
solving the Dirichlet problem on D with the corre-
sponding boundary conditions on BD. Given pI, the
corresponding zq is determined by the Cauchy-
Riemann equations, except for its overall sign and a
possible overall translation. The sign is fixed by the
requirement that (3.15) represent the outward nor-
mal to BI; the translation is unimportant. Thus for
any interior geometry considered here there exists a
unique set of interior coordinates ("matched" coor-,
dinates) in which the metric has the form (3.12) and )

the radial coordinate pq matches the exterior radial
coordinate pE at the boundary, provided the map
(pl,zl):~~R [or equivalently, (pl, zl):D~R ] is
injective. A sufficient condition for this, relying
only on exterior quantities, is that if the meridian
exterior radial coordinate R(A, ) has only one local
maximum, then injectivity of the matched coordi-
nates is guaranteed for any interior geometry (see
Appendix 8). In matched interior coordinates,
(3.23) takes the form
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f dXR(dfzldn)

= [1/(2n )] g, 1'Az diaz/dn,

(3.25)

where diAz is the background-space area measure.
But the integral on the right side of (3.25) can be
evaluated via Gauss s law, i.e., by integrating (3.3) in
the background space between BI and a coordinate
sphere at infinity, applying the flat-space divergence
theorem and utilizing (3.6). I obtain

R E n =2M. (3.26)

A similar transformation begins with

d R yE n

=[1/(2n. )]f d Az' 'dyzldn . (3.27)

The flat-space divergence theorem can be applied to
the integral on the right side of this equation [Eqs.
(3,4), (3.5), and (3.6) imply that yz is of order
(M/r) as r +00, so the in—tegral over the sphere at
infinity vanishes], with the result

R yE n

=—[1/(2m)] f d Vz(B yz/Bpz'+B'y IBz ')
—[1/(2ir)] f d Vz(1/pz)(Byz/Bpz). (3.28)

The integrals on the right are over the exterior
volume E, with d Vz the coordinate-space volume
measure. It follows from Eqs. (3.4), (3.5), and (3.3)
that the integrand of the first integral on the right
equals the flat-space divergence of the vector field
—Pz' 'Vgz, where ' 'V is the flat-space gradient.
The integrand of the second integral is just the flat-
space divergence of the vector field
(yz/pz)(BIBpz). Applying the divergence theorem
to both integrals and converting the resulting sur-
face integrals into line integrals in the physical
space, I obtain

f dA, R(dyz/dn)

=—f d A[RE(diaz ldn )+yzZ'] .

(3.29)

Using this and (3.26) in (3.24) gives

max
4M+ d R E E n +E++I +Z' 1+yE — ' 1+&1 (3.30)

The boundary constraint (3.30) still depends on the interior geometry, but only through the coordinate
derivative N' and its derivative X"along the meridian. These appear in ar', as per (3.17), and in the last term
of the integrand. The metric (3.12), specialized to a boundary meridian and in matched coordinates, yields the
condition

1 =expI2[yr(R(&), &(&))—gr(R(&), ~(&))]II [R'(&)]'+[~'(&)]'j . (3.31)

The junction conditions of Sec. IIB require that the boundary two-metrics (3.7) and (3.13) be continuous; cou-
pled with the coordinate-matching condition P(A, ) =R(A, ), this means gr is continuous with gz at the boun-
dary. Thus yr at the boundary depends only on 2" and exterior quantities, i.e.,

yr(R(A ),N(A ) )=gz(R (A ),Z(A ))——,inI [R'(A )]'+[X'(A )] I . (3.32)

This remaining dependence of (3.30) on interior quantities is dependence on the actual interior geometry rather
than gauge dependence, since the choice of matched coordinates fixes the gauge. This may be seen by reex-
pressing (3.30) in terms of the matched interior coordinate pr (dropping the tilde). This coordinate is uniquely

'

and invariantly defined, as above, as the solution to ' 'V pr
——0 on M, with boundary conditions pr

——R(A, ) on
the boundary meridian and pr ——0 on the symmetry axis if BM contains a segment thereof. Since
dpr/dn = —2" on the meridian by (3.15), and similarly for d pz/dn, inequality (3.30}may be written

4~+ f d~IR[fz(diaz/dn)+&r &z]+(1+yr)(dpr—ldn) —(1+yz)(dpzldn)] &0. (3.33)

Here ar is defined as the angle from BIBpr to d /d A, ,
measured in accord with the orientation indicated in
Fig. 1; az is similarly defined. In terms of pr and

pE, this means

&i=tan '[(dprldn)l(dprldk}],

az ——tan '[(dpzldn)l(dpzldk)] .
Alsa yl is given on the meridian by

(3.34)
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yr=itrE ,—In—[(dpr/'dA) +(dpr/dn) ] . (3.35)

Hence the dependence of the boundary constraint
(3.33) on interior quantities appears only through
the function pr. I have not been able to eliminate
this dependence froin this constraint in general.

The usefulness of the constraint (3.30) is in identi-
fying surfaces in any given exterior geometry which
are forbidden as boundaries of systems satisfying the
e&0 and nonsingularity assumptions made here.
The interior coordinates, spix:ifically the coordinate
derivative 2" for matched coordinates, must be
specified in some way to evaluate the inequality
(3.30); then, surfaces violating the inequality are for-
bidden. Surfaces satisfying the inequality may or
may not be acceptable boundaries, since they may
bound interiors satisfying (3.20) but violating the
e & 0 condition.

D. Double-matched coordinates

The boundary constraint (3.30) becomes very sim-

ple for cases in which the matched interior coordi-,
nates are also "double matched, " i.e., they satisfy
2'(A, ) =Z(rt, ) as well as P(A, ) =R(A, ). In such cases

yr and yE are continuous at dI as well as gr and gz,
and of course ar aE. Inequ——ality (3.30) reduces to

+ E g n &0. 336

If in addition the boundary surface is chosen to be
an equipotential surface of PE, then the integral can
be evaluated via (3.26). The boundary constraint be-
comes

itrE I sr & —2

for a double-matched system with a
cquipotential boundary.

(3.37)

E. Maximization with respect to X'

It is also possible in certain cases to eliminate the
interior-coordinate dependence of (3.30) by max-
imizing the left side of the inequality with respect to
the interior function N '. I denote the le.ft side of
(3.30) Wi[N' ], and regard it as a functional of N';

I

different functions H' correspond to different inte-
rior geometries since matched interior coordinates
are assumed in (3.30). If there exists a function
2'o(A, }for which Wi is maximized, for a given exte-
rior geometry and boundary surface, then the max-
imum value of Wi can serve to identify a forbidden
surface. Specifically, a surface with &i[No] &0 is
forbidden as a matter/vacuum boundary for any in-
terior geometry under the assumptions made here.

It is a straightforward variational problem to ex-
tremize Wi with respect to X'. The first variation
1s

5&,= f [—,ln(R + N }—QE](5%')d A,

= —f yr(5& )dA

and the second variation is

5'Wi ——f, , (59")'dA, .
R '+N'

(3.38)

(3.39)

Thus the choice of N' for which Wi is extremal is
given by

2'o(A, ) =+ Iexp[2$@(R(A,),Z(A, }}]
—[R'(A, )] I'

provided of course that

[R'(A, )] &exp[2'(R(A },Z(A, ))]

(3.40)

(3.41)

holds on the entire boundary meridian. This choice
of 2'o is equivalent to

yr(R(A) ~o(Z))=0. (3.42)

The choice of sign in (3.40) is fixed by the orienta-
tion of d/dA, and d/dn on the boundary meridian.
For those cases in which the negative square root
applies along the entire meridian, (3.39) implies that
No gives a maximum of 9'i. This is actually a local
maximum in the space of functions X'; establishing
it as a global maximum poses some difficulties (see
Appendix C). In using this boundary constraint, I
assume the global maximality of J i[Ho].

If condition (3A1) holds on the boundary meridi-

an, and if the negative sign in (3AO) is admitted by
the topology over the entire meridian, then the
boundary constraint takes the form

(3.43)

with No given by (3.40) and ar' ' given by

(0)'a

(3.44)

~i[~o]=4~+ f d&IR[PE(de/dn) aF+ai '] +—Z(1 +y@)—XoJ )0
I

Surfaces violating (3.43) are forbidden. Because of
the aforementioned conditions necessary to establish
the existence and maximality of No, this form of

R '+ao2 the boundary constraint is most readily applied to
systems of spherical topology, rather than toroidal

=(d/dA, )[tan '( No/R')] . —
systems with closed meridians.



27 GEOMETRIC CONSTRAINTS ON NONSINGULAR, MOMENTARILY. . . 707

IV. A SECOND BOUNDARY CONSTRAINT "'Rr = 2-[V'(Q+u}-VQ Vu], (4.5)

A boundary constraint distinct from (3.30) or
(3.43) can be derived via the same procedure as in
Sec. III, starting from a slightly different interior
description. I obtain the new boundary constraint
by maintaining gauge invariance throughout the cal-
culation.

A. Alternative interior description

where the dot product in the last term is also that of
(4.1). This expression for ' 'Rr can be rearranged
for integration over the interior volume in different
ways; I maintain gauge invariance by rewriting it in
the form

The interior metric can be written

dor= 'exp[2Q(pr zr)](dpr +dzr )

+exp[2P(pr, zr )]dip (4.1)

—[ , R-i+(VP) ]=e~V [e ~V(Q+P)] .

(4.6)

TrSr —— [ar +d(Q+ P)—/dn], (4.3)

where ar is as given by (3.17).
The scalar curvature ' 'R for the geometry

described by (4.1) is given by

'"Rr —— 2e (r{[—(B/Bp ) +(B/Bzr) ](Q+P)

+(BP/Bp ) +(BP/Bz ) j . (4.4)

B. Derivation of the alternate boundary constraint

In terms of the covariant derivative V and covari-
ant divergence corresponding to the metric (4.1), Eq.
(4.4) takes the form

The existence of coordinates in which the metric
takes this form is guaranteed by the uniformization
theorem, as in Sec. IIIB. Since pI does not appear
as a factor in g~~ here, the restrictions pr ——0 on the
symmetry axis, pl &0 elsewhere are not needed in
this description. However, regularity of the
geometry on the symmetry axis requires that the
function P be singular there (i.e., that e vanish), if
the axis passes within the interior region. The form
of the metric (4.1) is preserved under gauge transfor-
mations of the type discussed in Sec. III C; here the
function P is gauge invariant, while Q is gauge
dependent.

The boundary surface is specified as before, by
two functions pr P(A, ), zr ——2—'(A, ); I make no as-
sumption of matched coordinates here. The
boundary s intrinsic geometry is given by the two-
metric

dsz ——dA, +exp[2P(P(A, ),9'(A, ))]dy . (4.2)

The coordinate basis vectors on the boundary are
B/By and d/dA, as given by (3.14); the normal vec-
tor d/dn is given by (3.15). The trace of the boun-
dary extrinsic curvature is again calculated directly,
with the result

Thus by the initial-value equation (2.1},I obtain

V [e ~V(Q+P)]= e—~[8ne+(VP) ](0.
(4.7)

The divergence on the left is gauge invariant because
the quantity on the right is.

I derive the desired boundary constraint by in-
tegrating (4.7) over the interior volume and applying
the divergence theorem to obtain a surface integral.
Because of the singularity of P on the symmetry
axis, that axis must be excluded from the integration
volume if this is to be done. For spherical-topology
systems, this means that the resulting surface in-

tegral consists of two terms, an integral over the
boundary surface plus an integral over an infini-
tesimal "sheath" about the symmetry axis. But the
integral over the sheath has the form

I d A[e ~d(Q+P)/dn]
sheath

=2nfdA. d(Q-+P, )/dn . (4.8)
sheath

In general, dQ/dn will be finite at the symmetry
axis. But dP/dn =e ~d(e~)/dn diverges to —00

there, since e~ vanishes while d(e~)/dn approaches
—1 by elementary fiatness (the negative sign appears
because the outward normal from the interior at the
sheath points toward the symmetry axis}. With the
sheath term negative and infinite, the integral over
the actual matter/vacuum boundary surface is not
constrained at all by the inequality in (4.7}. Thus
the boundary constraint to be derived by integrating
(4.7) is useful only for toroidal-topology systems, in
which the interior region contains no segment of the
symmetry axis.

For such toroidal systems, integrating (4.7) over
the interior volume and using the divergence
theorem yields
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(4.10)

f dA, d(Q+p)/dn= —[I/(2n. )] f d Ve z[girz+(Vp) ]&0. (4.9)

By the junction condition (2.4}, the trace (4.3) must be equal to (3.10). Solving this equality for d(Q+ p)/dn in
(4.9) gives

f dA[d(2$z yz—)/dn+Z'/R az—+at ]=[1/(2n. )]f d Ve z[8mz+(Vp) ] &0 .

The integral of at around the boundary meridian
gives 2n. for an arbitrary regular interior; the in-
tegral of az cannot be so given for all cases but can
be evaluated in any given case (see Appendix D).
Thus the boundary constraint has the form

maxf dA[d(2, gz pz—)/dn+Z'/R —az] & —2m .

(4.11)

This has the saine significance as the constraint
(3.24} or (3.30); it identifies surfaces in a given exte-
rior geometry which are forbidden as
matter/vacuum boundaries under the z & 0 and non-
singularity assumptions. Surfaces for which (4.11)
is violated are forbidden; the suitability of surfaces
for which it is obeyed is undetermined. Although
this condition, in contrast to that of Sec. III, has the
disadvantage that it can only be applied to toroidal
systems, it has the desirable feature that it can be
evaluated using only exterior quantities, without fur-
ther assumptions.

V. APPLICATION OF THE BOUNDARY
CONSTRAINTS A SPHERICAL-TOPOLOGY

EXAMPLE

pole. " (This geometry is quite distinct from the
Schwarzschild solution for a point monopole in the
physical space; the Curzon geometry is not spheri-
cally symmetric. ) Condition (3.43) may be applied
to this geometry, but no particularly interesting re-
sults are obtained. A slightly more complicated set
of Weyl geometries, those with a line source in the
background space, does reveal some important
features of the constraint.

A. The I metrics

Specifically, the background source for these
geometries is a line monopole, of linear density I'/2,
extending from zz ———a to zz ——+ a on the symme-
try axis in the background space. This source is fic-
tional; its linear density is the physical mass M of
the system, measured at infinity, divided by its coor-
dinate length, so that I'a =M. Equation (3.3), the
Laplace equation for Pz, is easily solved for such a
source in prolate spheroidal coordinates (u, v, y}, re-
lated to the Weyl coordinates (pz, zz, y) by

pE ——a sinhu sinu, zE ——a coshu cosu, with
u&[0, +oo), vs[0,n]. In these coordinates the
Weyl equations (3.3), (3.4), and (3.5) have the solu-
tion

The boundary constraint derived in Sec. III can be
examined by applying it to simple examples of Weyl
exterior geometries. The simplest of these, in terms
of the Weyl formalism, is the Curzon metric, for
which the background-space source is a point mono-

I

dsz ———tanhz"(u/2)dti+tanh (u/2) 1+ 2scnh u

gz ——I"ln[tanh(u /2) ],
yz ———(I /2)ln 1+

sinh u

The resulting spacetime metric is'

2—F
[dpz2+dzz ]+pz tanh "(u/2)dy

(5.1)

(5.2)

= —tan (u/2)dt +(M/I ) sinh u tanh "(u/2) 1+
slnh Q

[du +dv ]

+(M/I')zsinh u tanh 2~(u/2)sin v dy (5.3)

The time-symmetric hypersurface X of concern here
is given by any constant-t hypersurface in this
geometry.

The metric (5.3) describes a family of geometries
parametrized by I . If I =1, so a =M, the geometry
is just the Schwarzschild geometry'; the usual

Schwarzschild coordinates (t, r,8,y) are related
to the above (t,u, v, p) coordinates by
r=2M cosh (u/2), 8=v. If I E (0, 1), so a &M,
the source is more elongated in the z direction than
in the spherical case; I term such geometries "pro-
late." Similarly, if I E-(l, + ao), a &M, the source
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is more compressed in the z direction than in the
spherical case; these geometries I label "oblate. " In
the limit I ~+ 00, a~0, the I metric becomes the
Curzon metric. '

rior coordinate derivative Xp, as per (3.40), is given

by

2 12 1

Np= —tanh (u/2) 1—
sinh u

B. The spherical-topology boundary constraint
1/2

g cos v
(5.4)

The surfaces of constant u in the I metrics, equi-
potentials of fF, provide a convenient one-
parameter family of surfaces to which to apply the
criterion (3.43). All the necessary quantities can be
calculated from the metric (5.3) and the relations be-
tween (p~,zE) and (u, u). The.&&-maximizing inte-

This exists for all u if I' & 1; if I & 1, for small u the
argument of the square root will be negative for U

near 0 and ir It.herefore apply criterion (3.43) only
to the spherical (Schwarzschild) and prolate I
metrics. The functional Jr i[Np] of (3.43) takes the
form

+(M/I )sinhu I du sin v 1+
sinh u

(1—I'2)/2
sin v+ 1+

smh Q

2
'
I 2 1

sin v

sinh2u

l

Jr i[Xp,u] =2M I2—(I +1/I')coshu —( 1lI —I')sinh'u ln[coth(u l2)])
(F~—3)/2

s1Qh Q

tr' —i
S1Q U

sinh2g
. +1/2.

I /2

cos v

The notation Wi[Hp,'u] indicates that the function-
al J i[N' ], evaluated at N'=Np, is a function of
the u value on the surface to be evaluated. Forbid-
den surfaces are those with Wi[Np, u] ~0. If I =1,
the integral in (5.5) reduces to an elementary form;
the resulting expression for W, is

Jr'i '[Np, u]=4M(1+sinhu —coshu)

=4M(1 —e "), (5.6)

where the superscript (S) denotes the Schwarzschild
case. This result means that for the Schwarzschild
exterior geometry, none of the u =constant surfaces,
with u &0, are forbidden. That is, none of the sur-
faces of constant Schwarzschild radial coordinate r,
with r &2M, are forbidden. This is in accord with
the existence of an exact interior solution which can
be matched to the Schwarzschild exterior at any
sphere of Schwarzschild radius r & 2M. Specifically,
the Schwarzschild exterior four-geometry can be
matched to a closed Friedmann interior geometry to
describe an expanding or collapsing sphere of matter
with uniform density and zero pressure. ' At the

I

I

moment of maximum expansion of the Friedmann
interior, the geometry is momentarily static and
time-symmetric; all of the hypotheses underlying the
boundary-constraint derivation apply here. The
Schwarzs child coordinate radius of the
natter/vacuum boundary at the moment of stasis
can be freely chosen to be any value r &2M. The
interior Friedmann metric on the hypersurface of
time symmetry can be cast in the form (3.12), and
the coordinates (pI,zI) can be chosen so that at the
boundary surface pI coincides with pE of the Weyl
coordinates for the Schwarzschild exterior. In that
case one finds that yl ——0 holds throughout the inte-
rior, which means, as in Sec. III E, that the interior
coordinate derivative on the boundary, 2", coin-
cides with the Jr&-maximizing function Xp. Tliat
is, the W1-maximizing interior coordinate used to
derive (5.6) actually occurs in the
Friedmann/Schwarzschild system.

For prolate I metrics, with I &1, an analytic
evaluation of the integral in (5.5) is not possible. It
can, however, be studied with approximate and nu-

merical calculations. I find that Jri has the limiting
behavior

lim&, [N';u]=(2M/I')[ —(1—I') +8(1—I' /2, l I /2)(u—/2)" +O(u )],
u~0

(5.7)

where 8 is the beta function. Thus at u =0,
Wi[Np, u] takes the value —(2M/I )(1—I'),
which is negative for all I'E(0, 1). The function

Jr i[Md, u] increases monotonically with u, ap-
proaching the limit 4M as u —++ ao. Consequently
in every prolate I geometry there is a value u0 such
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limpE(up) =—2+0(I ) .
r o

(5.9)

Since QE is a monotone increasing function of u, the
boundary constraint &~[No, u])0, i.e., u &up be-
comes equivalent to (3.37). This occurs because in
the limit I'~0, the "double match" of coordinates
discussed in Sec. IIID is achieved; by Eq. (5.2),
yE —+0 as I ~0, which means Nc —+Z' in that lim-
it, as may also be seen directly.

C. Interpretation of the boundary constraint:
Sizes and the hoop conjecture

The results of this example calculation indicate
that the boundary constraints of Sec. III do not ad-
mit of interpretation as simple size constraints. The
three simplest measures of the size of the
u =constant surfaces in the I geometries, consistent
with axial symmetry, are the polar circumference
Cp ——2A, ,„,the equatorial circumference CE, and
the proper area A. These are given by

Cz(u)=(2M/I') sinh" u tanh "(u/2)

~ 2
X (sinh +si 'U)" ' 'd

0 (5.10)

that &~[%0'uo] is zero, and d ~[No,'u] is negative
for u &uo, positive for u &us. If the higher-order
terms in u are neglected, Eq. (5.7) implies that the
zero-crossing value uo is given by

u =2[(1—I') /8(1 —I /2, 1 —I /2)]'~" .

(5.8)

The neglect of the higher-order terms is valid only if
u is small and 2(1—I' ) is large; numerical calcula-
tions indicate that the fractional error in the value
of uo given by (5.8) approaches 20%%uo for I' values
near 1, is less than 1% for I &0.7, and vanishes as
I —+0. By the boundary constraint (3.43), surfaces
with u & uo are forbidden as boundary surfaces.

The constraint imposed by the condition
J ([%0'u] &0 on u =constant boundary surfaces in
the prolate I metrics takes a simple form in the lim-
it in which the background-space source is very
large, i.e., the limit a ~ oo or I'~0. Equations (5.1)
and (5.8) imply, in this limit,

C (u )=(4M/I')[8(1 —I /2, 1 —I /2)]' "

x (1—I')'-'" (5.13)

There exists one forbidden and one nonforbidden
u =constant surface having Cp equal to any given
value greater than Cz(uo}. These results appear to
rule out any interpretation of the constraint (3.43) as
a lower bound on Cz for acceptable boundary sur-
faces.

The other simple size measures for the
u =constant surfaces, CE and A, vanish at u =0 for
I g 1 and are monotone increasing with u. The con-
dition u &uo for nonforbidden surfaces does put
lower bounds on CE and A for such surfaces, name-

ly, CE(uo) and A (uo), respectively. Equations (5.8),
(5.11), and (5.12), with higher-order terms neglected,

3 (u}=(2mM /I' )sinh'+" utanh "(u/2)

&& (sinh u+sin u)" " '~ sinu du . (5.12)
0

These equations show that in any prolate I metric,
for u « ll Cz behaves as u", CE as u ', and A

as u" "'. Thus as u~0, Cp —+oo, while CE—+0
and 3~0 in these prolate geometries.

The form of the boundary constraints of Sec. III
suggests that these constraints might constitute
lower bounds on Cz, i.e., that surfaces with Cp
values less than some minimum might be forbidden.
But among u =constant surfaces in a prolate I
metric, the forbidden surfaces are those with
0 & u & uo. Since Cz~ ao as u ~0, the set of forbid-
den surfaces contains members with Cz values

larger than any specified bound, larger than the Cz
value of any given nonforbidden surface. Further,
since Cz~ oo as u —+0 and as u~ao, there exists a
positive value of u, for I'&1, at which Cz(u) is a
minimum. This is a property of the I metric,
without any reference to the boundary constraint.
Numerical calculation reveals that uo is small com-
pared to unity (e.g., uo &0.01) for any value of I

F2—I'
less than 1. Thus at uo, Cz behaves as u~ ~; in
particular, Cp is decreasing with increasing u.
Therefore the minimum value of Cp must occur at a
u value greater than uo, i.e., on a nonforbidden sur-
face. The Cp values of the forbidden u =constant
surfaces are bounded below by Cp(uo), given ap-
proximately by Eqs. (5.8) and (5.10); neglecting
higher-order terms, I obtain

CE(u) =(2nM/I')sinhu tanh (u/2), (5.11) give
I

C (uo)=(4aM/I')[(1 —I ) /8(1 —I /2, 1 —I'/2)]" (5.14)

3—I 3—I
A(u )=(16nM /I' }8 [(1—I } /8(1 —I' /2, 1 —I /2)]"

2 '
2

(5.15)
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However, these equations imply that both
Cz(uo}~0 and A (uo)~0 as I ~0. Thus given any
positive lower bounds on C@ and A, there exists a
prolate I geometry with nonforbidden surfaces, ac-
cording to (3.43), having Cz and A values smaller
than those bounds. This indicates that condition
(3.43) cannot be interpreted in general as a lower
bound on Cz or A for acceptable boundary surfaces
either.

Condition (3.43), as illustrated in this example,
also does not appear to bear upon the hoop conjec-
ture. The conjecture would place a lower bound on
the largest circumference of allowed boundary sur-
faces, but the constraints of Sec. III serve to identify
forbidden rather than allowed surfaces. If the Sec.
III constraints placed an upper bound on the largest
circumference of forbidden boundary surfaces, the
result would support, though not prove, the conjec-
ture. But as shown above, forbidden u =constant
surfaces in prolate I metrics can have arbitrarily
large polar circumferences. In fact the example of
u =constant surfaces in I' metrics does not even test
the boundary constraints obtained here against the
hoop conjecture; none has arbitrarily small cir-
cumference in every direction. Since the integral in

(5.10) exceeds m sinh' u for all I &1, Cr exceeds
Cz for all u =constant surfaces in a prolate I'
metric. Numerical calculations show that the
minimum value of Cr(u) decreases monotonically

with increasing I', and therefore Cr(u) for any pro-
late I metric is bounded below by the Schwarzschild
minimum 4m M (a similar result holds for the oblate,
I &1, geometries, with the roles of Cr and Cz re-

versed). Consequently, I have not been able to relate
the W& &0 boundary constraint to the hoop conjec-
ture.

VI. AN EXAMPLE OP
THE TOROIDAL-TOPOLOGY BOUNDARY

CONSTRAINT

The toroidal boundary constraint (4.11}can also
be examined by means of a simple example. One
tractable toroidal exterior geometry has a ring
source in the background space, given by pz b, ——
zz ——0 in terms of the Weyl coordinates. ' I shall

call this exterior solution the "ring metric. "
A. The ring metric

This geometry is most easily described using polar
coordinates (r, 8 ) centered on the ring, related to the
Acyl cylindrical coordinates by pE ——b+ r cos8,
zz rsin8. T——he range of r is from 0 to 00', 8 ranges
from 0 to 2n. if r &b. The coordinate y is common
to both systems. The solution to (3.3} and (3.6} for
this system is

Pz — (M/n)[——m/(pz. b)]'~ E(m), (6.1)

where

m =4pzb![(pz+b) +zz J =4b(r cos8+b)/[r 2+4b(r cos8+b)] (6.2)

m/2
E(m)= J (1—m sin a) 'mazda (6.3}

is the complete elliptic integral of the first kind with parameter m. The solution to Eqs. (3.4) and (3.5) for this
function gz is given by

yz —— [M m /(4—nzpzb)][K (m) 4(1—m)E—(m)E(m}—4m (1—m)E (m}]

—[M m /(4n b )][X (m) —4(1—m)E(m)E(m)+4(1 —m)(2 —m)K (m)], (6.4)

where

E(m)—:dK(m}/dm= —,J (1 msin a—)
~ sin ada.

0
(6.5)

As before, M is the total mass of the system measured gravitationally at infinity
The asymptotic forms of Pz and yz near the ring source (r —+0}are useful for analyzing surfaces with condi-

tion (4.11). These forms are

fz [M/(mb)]Iln(8—b—/—r) —[r cos8/(2b)]ln(8b/r)+r cos8/(2b)+O(r /b )1n(b/r))],

yz —— [M /(4db )]Icos—8[4b/r (r/b)ln (8b/r)+(3—r/b)ln(8b/r) —5r/(2b)]

+2[in (8b/r) —21n(8b/r)+1]+O(r /b )ln (b/r))],

(6.6)

(6.7)
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and are valid for r «b.
The three-metric of the Weyl exterior geometry for this solution is given by (3.2). In terms of the coordi-

nates (r, 8,y), this metric has the form

doz ex——p[2(yz Pz—)][dr +r d8 ]+exp( 2$—z}(b+rcos8) dp (6.8)

with Pz and yz as given above.

8. Application of the boundary constraint

The surfaces of constant r, r E(O,b), are a convenient family of surfaces to test as possible boundaries; Eq.
(6.6) shows that these surfaces approach equipotentials of fz as r/b+0, although they are not such in general.
These surfaces cannot be tested by constraint (3.43); the necessary condition (3.41) for the existence of the Wi-
maximizing coordinate derivative 2'Ii translates in this example to

sin 8&exp[2yz(r, 8)] V8C[0,2m] . (6.9)

Numerical calculations show this to be violated for every case I have examined. However, these surfaces are
ideal for testing with the constraint (4.11). All the necessary quantities can be calculated from the equations of
Sec. VI A. I label the left-hand side of (4.11)Jr 2,

' it is given here by
2~

&2(r)=f r B(2' yz)IBr —d8+2n[(1 rjb ) — 2], — (6.10)

where

BQ IBr=[M/(2m)](mp b) '~ [[(8rp b 4br c—os8)j(4p b+r2)

+m cos8lpz]K(m)+2mK(m)(8rpzb 4br cos8—}j('4pzb+r ) I

(6.11}
and

Byz/Br =[M /(4m b)]((m cos8/pz)[K (m) —(1—m)L (m)]

+ I [2K(m)L (m) —(2—m)L i(m)]/pz+mL (m)/b I

X (Srpzb 4br cos8 ) I(4p—zb +r ) )

with

L (m)—:K(m)+2mK(m)

(6.12)

(6.13)

and m as given by (6.2). Possible r=constant boundary surfaces must have Wz(r)) —2m; surfaces with
Wi(r }& —2m are forbidden.

Numerical calculations show that %2(r ) increases monotonically with increasing rjb, with b fixed. A care-
ful evaluation of Eqs. (6.11) and (6.12) at r =b shows that both Bgz/Br and Byz/Br are bounded at that limit;
consequently the integral in (6.10) remains finite as r ~b. The second term diverges; thus

limW2(r)=+ oo .
r—+b

(6.14)

The behavior of &2 in the limit r~O can be determined using the asymptotic forms of Pz and yz, Eqs. (6.6)
and (6.7), or by expanding (6.11) and (6.12) in that limit. The resulting integral can be evaluated explicitly,
with the result

&2(r)=2m [2MI(mb) [M /(m b )][ln(—8bjr) —1]—1+0(r Ib )

+O((M/b)(r /b )in(bjr)}+O((M /b )(r /b )In (bjr))I (6.15)

for r «b. The three separate error terms are given
because different error contributions dominate in
different ranges of b/M values. This result implies

lim&2(r) = —00, (6.16)
F~O

I

the limit taken at fixed b. Limits (6.14) and (6.16),
plus the monotonicity of &2(r ), show that for every

ring geometry (every value of b), there exists a value

roE(O, b} at which Jr2(r)= 2m, with Jr—z& 2n-
for r &ro and Jr2& —2m for r between ro and b.
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rp=Sb/exp(1+2mb/M} . (6.17)

The approximation involved here is accurate for
rp « b,M; because of the exponential in the denomi-
nator, this approximation is very good for b &M
and becomes arbitrarily accurate as b /M increases.

As in the example of Sec. V, the boundary con-
straint obtained in this calculation assumes a simple
form in the limit of a large background-space
source, which here means b/M~oo (and there
meant I' =a/M~ao). In this limit rp/b be-
comes very small so the surface r =rp becomes an
equipotential of QE. Then Eqs. (6.6) and (6.17) im-

Hence every ring geometry has a range of
r=constant surfaces, viz. , those with r C(O, rp),
which are forbidden as matter/vacuum boundaries
by (4.11), and a range of such surfaces, with
r E[rp, b), not so forbidden. The value of rp can be.
obtained in the appropriate limit from Eq. (6.15);
neglecting the error terms, I find

C. Interpretation of the toroidal constraint:
Sizes and the hoop conjecture

CE+(r) =2'(b +r }exp[ QE(r, 8 =—0)], (6.20)

21I'

A (r ) =2m f exp[yE(r, 8)—2$g(r, 8)]
0

Like the results of Sec. V, this toroidal example
indicates that the boundary constraint (4.11) cannot
be simply interpreted as a bound on surface size.
The r =constant surfaces in the ring metrics have
three simple size measures of interest, the meridian
circumference A, ,„,the outer equatorial circumfer-
ence CE+ (defined as the circumference at 8 =0), and
the area A. These are given by

,„(r,)=f exp[yE(r, 8) PE(r, 8—)]rd8,

(6.19)

X(b+r cos8)r d8, (6.21)
lim g ~

-„-„=2+O(—M/b) .
b/M~ oo

(6.18)

The function QE increases outward from the ring
source, so in this limit the constraint r & rp on possi-
ble boundary surfaces becomes equivalent to (3.37).
This is a somewhat serendipitous result, since (3.37}
follows from the spherical-topology boundary con-
straint under the assumption that the interior coor-
dinates are double matched. The toroidal-topology
constraint, however, does not specify or restrict the
interior coordinates at all.

where gE and yx are given by (6.1) and (6.4) or (6.6)
and (6.7) in the appropriate limit. [The inner equa-
torial circumference CE, that is, the equatorial cir-
cumference calculated at 8 =m, can also be obtained
easily in a form like (6.20}, but aside from the curi-
ous result that for certain values of b and r,
CE & Cx it provides little additional information].
In the limit r «b, in which (6.6}and (6.7) are valid,
the integrals in the above equations can be per-
formed, giving

Am, „(r)=2nrexpI[M/(mb)]in(8b/r) —[M /(2e b )][ln(8b/r) —1] )

XIp([M /(4 b )][4blr (r/b)ln (Sblr—)+(3rlb)ln(8blr) —Sr/(2b}]

+[M/(m'b)][r/(2b)][in(8blr) —1])[1+0{(rib)ln (b/r))],
Cz (r ) =2m(b +r }exp([M/(nb )]I ln(gb/r ) —[r/(2b)]in(8b/r )+r/(2b) J )

X[1+0((r'/b')ln(b/r))],

A(r)=4m r exp[[2M/(nb)]ln(8blr) —[M /(2' b )][ln(8b/r) —1] J

X IbIp([M /{(4 b )][4blr (rib)ln (Sblr)+—(3rlb)ln(8blr) —5r/(2b)]

+[M/(n b )](r/b )[ln(8b/r )—1])

rI~([M /(4—/b )][4blr (rib)ln (8b—lr)+(3r/b)ln(8blr) —Sr/(2b)]

+[M/(nb)](r/b}[ln(Sb/r) —1])J[l+O((r /b )ln (blr))],

(6.22)

(6.23)

(6.24)

where Ip and I, are hyperbolic Bessel functions. As
r ~0 (with b fixed}, Eqs. {6.22) and (6.24) are dom-
inated by the exponential behavior of Ip, while (6.23}
is dominated by exp[[M/(mb)]ln(Sblr)I, so in this

limit A, , CE+, and A all diverge to + oo.
This asymptotic behavior shows that the boun-

dary constraint Wq& —2m, which in this example
takes the form r & rp, cannot be interpreted in gen-
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eral as identifying as forbidden surfaces with A, ,„,
CE+, or A values smaller than some lower bound.
Every ring geometry contains forbidden r =constant
surfaces with A,m,„,Cz, and A values greater than
any given bounds, greater than those values for any
given nonforbidden surface. Thus for a boundary
surface to have a size—as measured by A, ,„,Cz, or
A —greater than some fixed bound is not equivalent
to satisfying the constraint (4.11). In fact, numerical
calculations show that in a wide range of ring
geometries, the r =constant surfaces with the small-
est values of A,m,„,Cz+, and A satisfy (4.11).

As b /M~ oo, with r /M fixed, A, ,„(r) ap-
proaches the limit 2mr Th.us r =constant surfaces
exist in ring geometries with arbitrarily small values
of A, , and since r 0/M is dominated by the ex-
ponentially decreasing denominator of (6.17} in the
b/M~ 00 limit, ring geometries exist in which sur-
faces with arbitrarily small A, ,„values are not for-
bidden by the toroidal boundary constraint. The
constraint, therefore, does not imply a lower bound
on A, ,„

for acceptable boundary surfaces. I cannot
prove a similar result for the size measures Cz+ and
A using the ring geometries, however, because
r =constant surfaces with arbitrarily sinall Cz+ and
A values do not exist in those geometries. Approxi-
mate and numerical calculations indicate that the A

values for r =constant surfaces, for any b/M values,
are bounded below by a value slightly in excess of
4M'. Similarly, Cz+ values for these surfaces have a
lower bound slightly greater than 18M.

The above results indicate that the toroidal boun-
dary constraint (4.11) is not directly connected with
the hoop conjecture. Like the spherical-topology
constraint, the inequality (4.11) serves to identify
forbidden boundary surfaces rather than to specify
allowed ones; the hoop conjecture characterizes al-
lowed surfaces. Also, the ring-metric example
shows that surfaces forbidden by (4.11) can have ar-
bitrarily large circumferences, a result which, while
not disproving the hoop conjecture, does not support
it. Of course, like the I -metric calculation of Sec.
V, the ring-metric example does not actually test the
hoop conjecture, since the r =constant surfaces ex-
amined all have circumferences (Cz+) greater than a
fixed bound of order M.

VII. EXTENSION OF THESE RESULTS

Some of the results of Secs. III and IV can be ap-
plied to surfaces in a wider class of exterior
geometries than the Weyl metrics. Specifically, the
assumption of vacuum in the exterior can be re-
laxed. The spatial metric form (3.2) can be obtained
in any axisymmetric, static exterior; the correspond-
ing four-metric takes the form (3.1) only in special

cases of this, including vacuum, ' while the Weyl
equations (3.3), (3.4), and (3.5) occur only for the
vacuum case. The derivation of the spherical-
topology boundary constraint, up to the inequality
(3.24), depends only on the three-metric form (3.2);
the Weyl vacuum field equations are used only in
obtaining (3.30) from (3.24}. Thus the spherical-
topology constraint Wi[N']&0 can be applied to
surfaces in any axisymmetric, static exterior
geometry, provided Wi[H'] is given by

max~,[H']=f '"dA, IR [d(2' yz)/—dn az+—ar]

+Z' &'(1—+yr }J (7.1)

with all quantities defined as before, rather than by
(3.30). The results (3.36} and (3.37) for the case of
double-matched coordinates do not apply for non-
vacuum exteriors, since these are derived from
(3.30). The maximization of Wi with respect to N'
carried out in Sec. III E can be performed in non-
vacuum cases, however, since (3.24) has the same
N' dependence as (3.30). The derivation of the
toroidal-topology boundary constraint in Sec. IV
never utilizes the Weyl field equations, so the con-
straint (4.11) can be applied in nonvacuum exteriors
with no change.

It is thus possible to identify surfaces in arbitrary
axisymmetric, static exterior geometries which are
forbidden as boundaries of momentarily static, non-
singular matter systems by means of the inequalities
(3.24) or (4.11), for either spherical or toroidal topol-
ogy, respectively. The usefulness of this generaliza-
tion to nonvacuum exteriors is limited, however, by
the fact that the exterior geometry, specifically the
exterior coordinates and the potentials Pz and yz,
must be known explicitly in order to evaluate the
constraint inequalities. Consequently, these con-
straints are likely to prove most useful for special
exteriors, such as the Weyl vacuum geometries or
electrovacuum generalizations thereof.

VIII. SUMMARY

Approaching the problem of boundary constraints
for noncollapsing axisymmetric systems via the
time-symmetric initial-value formalism, I have here
obtained the two geometric conditions W~)0 and
Wz) —2m. for spherical and toroidal topologies,
respectively, where W& is given by the left side of
(3.24} or (3.30), and W2 is given by the left side of
(4.11). Both of these constraints identify surfaces in
given exterior geometries which are forbidden as
boundaries of momentarily static, nonsingular
matter systems, i.e., surfaces for which the derived
inequalities are violated are so forbidden. Applied
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to specific examples using as exterior geometries the
prolate I metrics and the toroidal ring metrics,
these constraints define neighborhoods of the Weyl
singularities within which the surfaces examined are
forbidden; i.e., the constraints require that the sur-
faces of momentarily static material bodies giving
rise to these exterior geometries lie outside the del-
ineated neighborhoods.

I have not been able to cast these boundary con-
straints in any form suggestive of bounds on surface
size. Further, the results of the example calculations
of Secs. V and VI are not in accord with any inter-
pretation of the constraints as limits on boundary
circumference or area. Consequently, these con-
straints do not in any obvious way embody or sup-
port the hoop conjecture. Neither do my results
disprove the conjecture: since none of the source-
surrounding surfaces in the geometries I have exam-
ined have circumferences much smaller than 4@M in
all directions, no counterexample to the hoop conjec-
ture could be found. Apparently the quantities Wi
and W2 appearing in the constraint inequalities
describe geometric properties of momentarily static
axisymmetric systems, as constructed here, distinct
from boundary size; my results show that these
properties do impose limits on the construction of
such systems. I have not succeeded in formulating
an intuitive interpretation of these properties;
perhaps their meaning can be clarified by further
researches and by studying the application of these
constraints to more examples of Weyl exterior
geometries.

The initial-value formalism used here might prove
useful in other investigations of size constraints and
the hoop conjecture. Manipulations of the initial-
value equation and junction conditions different
from those I employed in Secs. III and IV might
yield different results and constraints, perhaps ones
readily related to system size and to the hoop conjec-
ture. It is also possible that results germane to the
hoop conjecture might be obtained directly from the
vacuum, static Einstein field equations, or from the
Weyl form of those equations given in Sec. IIIA.
The fact that all source-surrounding surfaces in the
Weyl geometries I have studied here have largest cir-
cumferences exceeding a limit of order M lends sup-
port to this possibility.
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APPENDIX A: EXISTENCE
OF ISOTHERMAL INTERIOR COORDINATES

The uniformization theorem for simply connected
Riemann surfaces states that a simply connected
Riemann surface is conformally equivalent to (i.e.,
there exists a bijective function, analytic in the local
complex coordinates on the Riemann surface, from
that surface onto) exactly one of the following: the
extended complex plane C U [ oo I, the complex
plane C, or the unit disk b, = {zFC:

~

z
~
&1), ac-

cording as whether the surface is elliptic, parabolic,
or hyperbolic, respectively. ' A Riemann surface is
elliptic if it is compact (closed), hyperbolic if it is
noncompact and carries a negative nonconstant
subharmonic function, and parabolic if it is non-
compact but carries no such function. Further, any
simply connected domain in the extended complex
plane which omits two or more points of C U [ 00 I is
hyperbolic. ' Of interest here is the application of
the uniformization theorem to the two-surface
M=I

~ ~ ~,, a y=constant slice of the interior, to
establish the existence of a single patch of iso-
thermal coordinates covering all of M, and thus a
single patch of coordinates for I in which the metric
has the form (3.12) or (4.1).

The nonsingularity assumption made here implies
the existence of a C' two-metric'9 on M. This, in
turn, implies the existence of local C' isothermal
coordinates in neighborhoods of all points of M
Where two such coordinate patches, say (x,y) and
(u, u), overlap, they must be related by the Cauchy-
Riemann equations, hence u+iU must be an analytic
function of x +iy; that is, the local isothermal coor-
dinates impart a Riemann-surface structure to M
Let M=X

~ + &, be a constant-y slice of the entire

hypersurface of time symmetry (interior I and exte-
rior E). By the above arguments, ~ is also a
Riemann surface. I assume that M, like, M, is sim-
ply connected; the uniformization theorem then
guarantees that M is conformally equivalent to
some domain in C U {oo I. The function establishing
this conformal equivalence maps MC~ into some
subdomain of this; since M omits more than two
points of M and the function is bijective, the image
of M omits more than two points of C U [ oo j and is
therefore hyperbolic. Consequently, M is hyperbol-
ic and conformally equivalent to the unit disk 5 and
to any hyperbolic domain of CU [ ao J. The func-
tions on M establishing these equivalences are ana-
lytic in x+iy for all local isothermal coordinates
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{x,y), so they preserve the isothermal form of the
metric and provide the desired global isothermal
coordinate patches on M.

The interior coordinates (pr, zI) can be taken to fill
any hyperbolic domain in the extended complex
plane. For example, for a toroidal interior a unit
disk translated into the right-half plane, i.e.,

Iz EC: z =a+re', a & 1,0 &r &1,

0&8 &2n I,
or simply the unit disk LL [if the metric form (4.1}is
used so that the restriction pr &0 is not required],
might be a convenient choice. Let f:M~h be the
conformal map establishing these interior coordi-
nates, neglecting the translation by a. Then f maps
the baundary meridian BM onto the unit circle. Re-
sults from the mathematical theory of conformal
representation serve to establish the regularity of
this coordinate map at the boundary. Specifically, if
R CC is a simply connected domain and PGM a
frontier point of R such that it is possible to con-
struct two circles through P, one entirely inside R
and one entirely outside, and if g: R ~h is a confor-
mal map of R into the unit disk, then as z ap-
proaches P in R, the derivative g'(z) tends to a
unique, finite, nonzero limit. ' Here P is a boundary

meridian point; let N(P) be a lacal (isothermal)

coordinate neighborhoad of P on the p=constant
surface Ã I take R to be (the local-coordinate im-

age of) N(P) AM and g to be the global coordinate

map f composed with the local coordinate map on

N(P}. The quoted theorem implies that the deriva-

tive of f is nonvanishing —the interior coordinates

are regular —at any meridian point P at which the
tangent vector d/dA, is continuous. Most impor-

tantly, this means that d8/dA, , the derivative of
coordinate polar angle with respect to meridian

proper length, does not vanish anywhere on a C' or
smoother meridian; the length A, and coordinate an-

gle 8 are monotonic functions of each other.
Similar conclusians obtain for spherical-topology

interiors, except that for this case BM has "corners"
where the meridian meets the symmet'ry axis. If a
unit disk is chosen as the range of the interior coor-
dinates, the coordinate inap f must behave as
{z—zo), in terms of a local complex coordinate z, in
the vicinity of such a corner {atzo}, in order to con-
vert the right angle of the corner into a straight an-
gle on the unit circle. It is convenient to compose
such a coordinate function with a function such as

g(w)= i-. [ i (w+1)/(w ——1)]' ' —1

[—i(w+1)/(w —1)]'~'+1 '

which, using the principal branch of the square root,
maps the unit disk bijectively onto the right half of
the unit disk. The points w =+1 are mapped to the
corners (=+i, the square-root behavior of g(w)
there converting straight angles to right angles. The
composition of f as above, a Mobius transformation
on the unit disk if needed to position the corner
points, and the function g gives a conformal map of
M onto the right half of the unit disk, providing
isothermal interior coordinates appropriate to the
spherical-topology case. These coordinates are regu-
lar at all boundary points, the square-root behavior
of g at the corner points canceling the square
behavior off there.

APPENDIX B: INJECTIVITY
OF MATCHED INTERIOR COORDINATES

The existence of isothermal interior coordinates,
the first of which matches the corresponding exteri-
or Weyl coordinate (pE) at the boundary, hinges on
the injectivity of the analytic function
pl+izI~~C defined by the stipulation that the
real part pI is a harmonic function on M with boun-

dary values pi ——pE on the boundary meridian and,
in the spherical-topology case, pl ——0 on the symme-

try axis. Alternatively, the function pl+izl can be
regarded as an analytic function on the domain
DCC occupied by some global isothermal interior
coordinates (pr, zr), with the boundary values for pr
appropriately mapped from BM to dD. By the re-
sults of Appendix A, D may without loss of general-

ity be taken to be the unit disk b, for the taroidal-

topology case, or the right half thereof
LL+ =

Iz E6:Rez & 0I, for the spherical-topology
case.

The number of times an analytic function takes
on a given value in its range can be counted by ex-
amining its behavior on the boundary of its domain.
Let &C C be a domain bounded by a simple closed
curve 4', and let w =f (z) be an analytic function
regular in & and on 4; further let 4' be the image
of Ã under f, and suppose zo is a point in & with

f(zo) not on V'. Then the quantity

[1/(2n )]b,~arg[f (z) —f(zo)]

=[1/(2@i)]III dln[f(z) —f(zo)], (Bl)

where b.~ denotes variation around Ã, equals the
number of zeros of f (z)—f(zo) in &, a positive in-

teger since zo is in O'. But this integral is equal to

[1/(2ni)] III,[1/(w —wo}]dw

=[1/(2m)]5@ arg(w —wo), (B2)

which is just the number of times the curve 4''
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encircles the point wp=f(zp), i.e., the number of
times the point f (z) circles wp as z is moved once or
around the curve Ã. In particular, f is injective in
S' if 4"' is simple, i.e., unless the curve 4'' is traced
multiple times by f (z) as z circles Ã once or 4'
loops inside itself.

Thus the image points of dD under the map

pq +ized reveals whether the matched-interior-
coordinate function is injective. The complete im-
age depends on the interior geometry, but the first
coordinates of the image points are given by the
boundary conditions on pi. If the exterior radial
coordinate of the meridian, R (A, ), has a single local
maximum, then the image curve under the
matched-coordinate map cannot be traced multiple
times, nor can it loop inside itself. Consequently for
R (A, ) to have a single local maximum is a sufficient
condition for the injectivity of the matched-
coordinate map pz+izz, and thus for the existence
of the matched coordinates described in Sec. IIIC.
It may be noted that this condition obtains in the ex-
amples discussed in Sec. V, where matched interior
coordinates are assumed.

APPENDIX C: GLOBAL MAXIMALITY
OF K)[Xp]

In cases where the conditions for the existence
and maximality of the Xi-maximizing interior coor-
dinate derivative Np, described in Sec. III E, are sa-
tisfied, the question whether 2'p gives a global (in
the space of functions X') or just a local maximum
of Wi can be examined by reducing the variational
problem to a collection of maximization problems in
one real variable. Let g(A, ) be a C' function on
[O,A, ,J with appropriate end-point values. If I take
N'=2'ppqiI, then the functional W&[N'] becomes
a function of the variable q, a different function for
each i}, which I denote Wi(q;i}). The variational
problem with respect to 2" is equivalent to the
one-variable maximization problem with respect to
q, considered for all possible functions r}. In partic-
ular, 2'p gives a global maximum of &i[2"] if and
only if q =0 gives a global (over the domain of q)
maximum of Wi(q;r} ) for every possible r}.

The derivatives of Wi(q;i}) are given by expres-
sions similar to (3.38) and (3.39),

dW, (q;g}/dq= J [ —,ln[R' +(Xp+qr}) ] Pz]r}d—i, ,

d W~(q;g)ldq = f[-(Np+qr})/[R' +(Np+qr}) ]]r}dA. , (C2}

The choice of Xp, Eq. (3.40), ensures dpi/dq =0 at
q =0 for every g, and if the topology of the system
iinposes Np (0 on the entire meridian, then
d W, /dq &0 holds at q =0 for every i}, so

or q =0 is a local maximum of W~. It
remains to be shown whether, for any particular g,
there exist any other local (in q) maxima with larger
values of Wi than W&(0;g) or Wi takes on values
larger than Wi(0;r} ) at the boundaries of the domain
of q.

I have not been able to resolve these questions. A
principal difficulty is delineating the domain of q,
given g, i.e., characterizing the set of functions N
which are possible second-coordinate derivatives for
some interior geometry. If, for example, N'(0 on
the entire meridian [by (3.15), this is equivalent to
dpi /dn )0 on the entire meridian] holds for any ad-
missible interior second coordinate, with matched
first coordinate, then d W~/dq &0 holds on the en-
tire domain of q for any g. If the domain of q is
connected, this implies that q =0 is a global max-
imum for any g, hence that N'=Np is a global
maximum. The sufficient condition N' & 0 is
guaranteed if ai, defined by (3.17), is required to be
non-negative, provided R '

& 0, N' =0 at A, =0,
R'&0, H'=0 at A, =A, ,„,and the matched interior
coordinates are injective, so the interior coordinate

I

image of the meridian does not loop, as discussed in
Appendix B. For these conditions imply
tan '(X'/R')G[ —m, 0], which precludes 2"&0. I
have not succeeded, however, in establishing these or
any other sufficient conditions for the global maxi-
mality of Np in general, nor in finding any con-
straints on exterior quantities under which such con-
ditions obtain. The question of global maximality
remains open; I assume it in applying the results of
Sec. III E.

APPENDIX D: THE INTEGRAL
OF as FOR TOROIDAL GEOMETRIES

It is easily shown that

holds for any toroidal geometry, with arbitrary non-
singular interior and with P(A, } and 2'(A, ) the meri-
diag. values of any choice of isothermal interior
coordinates. First, rearranging Eq. (4.10) gives
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f atdA, =[1/(2m)] f d Ve ~[Stre+(VP) ] —f "dA, TrSE . (D2)

Everything on the right side of this equation is
gauge invariant, i.e., invariant under conformal
transformations of the interior coordinates, so the
integral of txt over the meridian is likewise invari-
ant. It can therefore be evaluated directly by mak-
ing a convenient choice of interior coordinates. By
the results described in Appendix A, the interior
coordinates may be chosen to fill the unit disk, so
that P(A, )=cos[8(A,)], N(A, )=sin[8(A, )], with the
polar angle 8 a monotonic function of A, . Substitut-
ing these into the definition of at, I obtain

max 0f atdA, = —f d8=+2m, (D3)

which is the desired result. The orientation of the
end-point values of 8(A, ) is determined by the stipu-
lation that (3.15) give the outward-directed normal
vector, which requires d8/d A, (0.

A similar result does not obtain for the integral of
aE. In the ring-metric example of Sec. VI, the in-
tegral of aE over the meridian does equal 2sr. In
Thorne's toroidal exterior solution, however, there
are closed curves, candidates for boundary meridi-
ans, which are curves of constant pE', the integral of
aE over such curves is zero. Thus it is necessary to
evaluate the integral of az explicitly in each indivi-
dual case.
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