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Bound states of a relativistic quark confined by a vector potential
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The prevailing view that infinitely rising potentials which are used in the Dirac equation

to confine quark-antiquark systems must not be Lorentz vectors is reexamined. By consid-

ering the infinite-mass limit of the Bethe-Salpeter equation, a relativistic single-particle

equation which does allow vector confinement potentials to yield a discrete spectrum is ob-

tained.

Mesons with one light quark and one heavy quark
are known to exist and should be describable at least
approximately by a single-particle relativistic equa-
tion. However, the Dirac equation with a pure
Lorentz vector potential which is infinite at large
separations is known' to have no bound states. For
this reason it has been argued that the long-range
confining potential must be a Lorentz scalar. The
purpose of the present work is to point out that a
vector confining potential does give bound states
when it is used in a one-particle reduction of the
two-particle instantaneous Bethe-Salpeter equation.

Here the terms vector and scalar refer to the way
the potential is added to the free-particle Dirac
Hamiltonian. Specifically, vector potential means
that the potential is multiplied by the same Dirac
matrices as the energy-momentum four-vector,
while scalar means that the potential is multiplied
by the same Dirac matrix as the rest mass of the
constituent particle. The particular matrices re-
quired depend on one's choice of representation.

We begin from a relativistic two-particle equation
and then let the mass of one particle become very
large thereby yielding a one-particle equation. Fol-
lowing the classic paper by Salpeter, but using more
modern notation we begin from the modified
Bethe-Salpeter equation

F(p)p(p) = —(2ni) ' fd k p, pbG(k)p(p+k) (1)

in which the interaction is denoted by G(k) and

p=(p, p), k =(ko, k)

are four-momenta. In Eq. (1), F(p) is defined by

F(p)=[pgE H~(P)+—P ][ijbE Hb(P) ——p ],
H (P)™P +P'& Hb(P)™bPb P +b

IJ'a a/(ma+ b ~ pb pa

In order to simplify Eq. (1), the instantaneous ap-
proximation is usually adopted. In this approxima-
tion k is set equal to zero. The result
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occurs automatically when the mass
of one of the particle (mb, say) becomes very large.
This is due to the conservation of four-momentum
at the massive-fermion interaction vertex, i.e.,

ko [ 2+( )2]1/2 [~ 2+(p )2]1/2

"=pb —Pb

so that

—+0 as m~~00 .
IkI

This result is valid whenever one of the vertices con-
tains a massive-fermion line.

Thus, in the limit of one of the masses very large,
the instantaneous approximation becomes exact.
Using k =0 Salpeter reduces Eq. (1) to a set of four
coupled three-dimensional equations,

[E—E (p ) —Eb(p)]/++(p) =A+(p)Ab+(p) fd'k G'(k)p(p+ k),
[E+E,(p)+E (pb)]$ (p)= —A, (p)Ab (p)fd k G'(k)p(p+k),
P+ (p)=0,

+(p)=0,
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where

E,(p)=(m, +p )'~, A;(p)= —,[1+H,(p)/E, (p)],
with similar definitions for particle b.

In Eqs. (2) the interaction is represented by

G (k) =P PbG(k) k =(0 k)

and

P++(p)=A+(p}A+(p)P(p) P+ (p)=A+(p)A (p)P(p) etc

Equations (2a) and (2b) are coupled, but the effects of this coupling on the eigenvalues and eigenfunctions are
proportional to (2mb)

' so that in the limit mb~ 00 we have the uncoupled equations

[E—E,(p) —Eb(p)]$++(p) =A,+(p)Ab+(p) fd k G'(k)p+ +(p+ k) (3a)

and

[E+E,(p)+Eb(p)]p (p)= A, (—p)Ab (p) fd'k G'(k)p (p+k) .

In the same limit we have

Eb ~nb
and

Ab (P)~(1+Pb)/2,

so Eq. (3a) becomes

[E'—E,(p)]A,+(p)X(p) =A+(p) fd'k g(k)A+(p)X(p+ k),
where E'=E —mb is the total energy of particle a,

X(p)=[(l+pb)/2]p(p)

is the wave function of particle a, and

g(k) =[(1+Pb)/2]G'(k)[(1+Pb)/2)

(4)

is the interaction of particle a with the much more massive particle b.
Introducing V(r) and X(r} as the interaction and wave function in coordinate space, and noting that

E,(p)A,+(p) =H, (p)A,+(p), Eq. (4}can be written in operator notation as

(E' —H. )A.+X(r)=A.+ V(r)A.+X(r), (5)

which differs from the Dirac equation by the presence of the projection operators A,+.
Equation (5) can be converted to an ordinary eigenvalue problem by applying a single free-particle Foldy-

Wouthuysen transformation which has the properties

UU =U U=l, UA,+U =(I+P, )/2.

Equation (5) then gives

[(1+P.)/2][E' —U[H. +V(r)]U ][(1+P.)/2]Ur(r)=0. (6)

In this representation the projections can be carried
out by simply removing the negative-energy com-
ponents. There is a similar reduction of Eq. (3b)
which describes the antiparticle of the composite
system. When applied to the hydrogen atom, Eq. (6)
gives the usual relativistic energy corrections of or-
der (u lc) to the nonrelativistic theory.

The Hamiltonian of Eq. (6) with V(r) =m,
~

r
~

was represented as a matrix in the spherical-
harmonic-oscillator basis and diagonalized. Figure
1 shows the lowest-energy eigenvalues plotted as a
function of the oscillator-basis length scale ao, a
variational parameter. As the number of basis states
is increased, the low-lying eigenstates become stable
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