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Bound states of a relativistic quark confined by a vector potential
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The prevailing view that infinitely rising potentials which are used in the Dirac equation
to confine quark-antiquark systems must not be Lorentz vectors is reexamined. By consid-
ering the infinite-mass limit of the Bethe-Salpeter equation, a relativistic single-particle
equation which does allow vector confinement potentials to yield a discrete spectrum is ob-

tained.

Mesons with one light quark and one heavy quark
are known to exist and should be describable at least
approximately by a single-particle relativistic equa-
tion. However, the Dirac equation with a pure
Lorentz vector potential which is infinite at large
separations is known! to have no bound states. For
this reason it has been argued’® that the long-range
confining potential must be a Lorentz scalar. The
purpose of the present work is to point out that a
vector confining potential does give bound states
when it is used in a one-particle reduction of the
two-particle instantaneous Bethe-Salpeter equation.

Here the terms vector and scalar refer to the way
the potential is added to the free-particle Dirac
Hamiltonian. Specifically, vector potential means
that the potential is multiplied by the same Dirac
matrices as the energy-momentum four-vector,
while scalar means that the potential is multiplied
by the same Dirac matrix as the rest mass of the
constituent particle. The particular matrices re-
quired depend on one’s choice of representation.

We begin from a relativistic two-particle equation
and then let the mass of one particle become very
large thereby yielding a one-particle equation. Fol-
lowing the classic paper by Salpeter,® but using more
modern notation we begin from the modified
Bethe-Salpeter equation

F(p)p(p)=—Qmi)~" [d*k B.ByGhY(p +k) (1)

in which the interaction is denoted by G(k) and

p=p%B), k=(k°K)
are four-momenta. In Eq. (1), F(p) is defined by

F(p)=[peE —H,(B)+p°NusE —Hy(B)—p°],

—

H,(B)=mB,+D0s, Hp(P)=mpPy—p a5 ,
Pa=mg/(mg+mp), pp=1—p, .

In order to simplify Eq. (1), the instantaneous ap-
proximation is usually adopted. In this approxima-
tion k° is set equal to zero. The result
|k°| << | k| occurs automatically when the mass
of one of the particle (m,, say) becomes very large.
This is due to the conservation of four-momentum
at the massive-fermion interaction vertex, i.e.,

koz[mb2+(§L)Z]I/Z_[me_*_(-p*b )2]1/2

k=P, —Ps
so that
kO
———0 asmp— o0 .
|k |

This result is valid whenever one of the vertices con-
tains a massive-fermion line.

Thus, in the limit of one of the masses very large,
the instantaneous approximation becomes exact.
Using k°=0 Salpeter reduces Eq. (1) to a set of four
coupled three-dimensional equations,

[E —E,(B)—Ep(B)] +H(B)=As (B)A; (B) [ d*k G'(K)$(F+K) (2a)
[E +E,(B)+E,(B)]¢ ~~(B)=—A; (B)A; () [ d°k G'(K)(B+K), (2b)
¢+ (P)=0, (2¢)
¢~ *(P)=0, (2d)

644 ©1983 The American Physical Society



27 BOUND STATES OF A RELATIVISTIC QUARK CONFINED BY . .. 645

where

E(B)=(m+B)"?, AFH)=1[1+H(P)/E(P)],

with similar definitions for particle b.
In Egs. (2) the interaction is represented by

G'(k)=B,ByG(k), k=(0,k),

and

¢THB)=AS BN BW(B), ¢ (B)=At(B)A; (B)$(P), etc.

Equations (2a) and (2b) are coupled, but the effects of this coupling on the eigenvalues and eigenfunctions are
proportional to (2m;)~! so that in the limit m,— « we have the uncoupled equations

[E—E,(3)—Ey(®) T+ (B)=AS B)AS(B) [d*)k G(K)p ++(B+K) (3a)
and
[E+E,(B)+Ey()~~(B)=—A; (B)A; () [d*)k G'(K)p (B +K) . (3b)
In the same limit we have
Ey—my
and
Af(p)—(1£B,)/2,

so Eq. (3a) becomes

[E'—E,(®)ABXB)=A(B) [ d*k g (KA BX(B+K), @)

where E'=E —my,, is the total energy of particle a,
X(P)=[(1+84)/2]¢(P)
is the wave function of particle a, and

g(K)=[(148,)/21G"(X)[(1+B;)/2]

is the interaction of particle a with the much more massive particle b.
Introducing V(T) and X(T) as the interaction and wave function in coordinate space, and noting that
E,(B)A;(B)=H,(P)A; (B), Eq. (4) can be written in operator notation as

(E'—H A X(D)=AJV(T)IASX(T),

(5)

which differs from the Dirac equation by the presence of the projection operators A,'.
Equation (5) can be converted to an ordinary eigenvalue problem by applying a single free-particle Foldy-

Wouthuysen transformation which has the properties

vU'=vtu=1,UA}U'=(1+B,)72 .

Equation (5) then gives

[(1+B,)21{E' = U[H, + V(DU [(14B8,)/2]1Ux(F)=0. (6)

In this representation the projections can be carried
out by simply removing the negative-energy com-
ponents. There is a similar reduction of Eq. (3b)
which describes the antiparticle of the composite
system. When applied to the hydrogen atom, Eq. (6)
gives the usual relativistic energy corrections of or-
der (v /c)? to the nonrelativistic theory.

|

The Hamiltonian of Eq. (6) with V(T)=m,?|T|
was represented as a matrix in the spherical-
harmonic-oscillator basis and diagonalized. Figure
1 shows the lowest-energy eigenvalues plotted as a
function of the oscillator-basis length scale ag, a
variational parameter. As the number of basis states
is increased, the low-lying eigenstates become stable
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FIG. 1. Energy eigenvalues obtained by diagonalizing
Eq. (6) with the potential V(T)=m,? showing conver-
gence as the number of oscillator-basis states is increased
from five states (a) to ten states (b), as a function of the
oscillator length scale ag, a variational parameter.

and more accurate in a similar way to their
Schrodinger counterparts.

For comparison, when the Dirac equation [Eq. (6)
with the operators (1+/3,)/2 replaced by unity] was
diagonalized using the same potential, the numerical

solutions did not converge. This is a numerical
manifestation of the absence of bound states.

In summary we find that the mj,— o« limit of the
Bethe-Salpeter equation yields a projected equation
which allows infinitely rising vector potentials to be
used to describe bound states of quark-
antiquark systems with one massive constituent.
The lack of bound states in the Dirac equation is
due to the coupling between the positive- and
negative-energy components in the Foldy-
Wouthuysen representation. While the above dis-
cussion leads to a workable relativistic equation for
vector confining potentials it does not in any way
prevent the existence of confinement interactions
with different Lorentz properties.

Since many interesting quarkonium states involve
mg=m,; we have also begun investigating the
Bethe-Salpeter equation with m,,m; finite. In the
instantaneous approximation and a vector confine-
ment potential a bound state spectrum is obtained
under most circumstances.* Detailed results on the
more general two-particle equations will be reported
at a later time.
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