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%e have carried out a search for three-fermion preon models that predict at least three

generations of quarks and leptons. The conditions imposed are the following: (1) The

preons are (massless) %eyl spinors and belong to low-dimensional chiral representations of
the gauged symmetry group G(MC) &(G(CF), where MC stands for metacolor and CF for
color-flavor. (2) G(MC) is an asymptotically free simple group while G(CF) is a grand-

unification-theory (GUT) or partial-unification-theory (PUT) group. (3) The Pauli principle

holds when generalized to the MC degree of freedom. (4) No anomalies exist in the MC and

CF sectors. (5) The composite quarks and leptons are massless on the MC scale. (6) There
are no low-representation exotics and no mirror fermions. The only GUT preon models

satisfying these six conditions are SU(3)(MC))&SO(10)(CF) with four generations and

F4(MC))&SO(10)(CF) with three generations; however, asymptotic freedom is marginal for
the two GUT models. The only permissible PUT preon model is E6(MC))&SU(4)z
)(SU(2)1.XSU(2)~ with three generations, and satisfactory asymptotic behavior. The PUT
preon model is therefore the most promising and further implications are discussed.

I. INTRODUCTION

With the use of three generations of quarks and
leptons, the standard gauge group SU(3)c
XSU(2)L XU(1) has been highly successful in ex-
plaining the strong, electromagnetic, and weak in-
teractions of hadrons and the electromagnetic and
weak interactions of leptons. The unbroken non-
Abelian color group SU(3)c, with its property of
asymptotic freedom, has not encountered any con-
ceptual difficulties so far in accounting for the had-
ronic strong interaction (QCD theory). The same
cannot be said of the spontaneously broken elec-
troweak group SU(2)L, XU(1).'

In our view, there are a number of conceptual dif-
ficulties with the standard electroweak gauge group
SU(2)L, XU(1). First, the acceptance of the purely
left-handed group SU(2)L implies a massless neutri-
no and a fortiori the surrender of the full quark-
lepton correspondence for weak interactions (since
there is no neutrino analog to the up quark in the
right-handed representation). One of the striking
developments in particle physics during the past de-
cade has been the identification of parallel genera-
tions of quark and lepton doublets and we are reluc-
tant to give up any facet of this correspondence. A
second difficulty is that the weak-hypercharge gen-
erator associated with U(1) has no clear-cut physical
meaning. This deficiency is reflected in the fact that
the cancellation of the triangle anomalies associated
with SU(2)L X U(1), required for renormalizability,
seems highly accidental. A third difficulty,

perhaps not unrelated to the second, is that when
one writes down the Lagrangian for the standard
electroweak theory, two conserved global quantum
numbers emerge, namely, baryon number (B) and
lepton number (L). However, as 't Hooft has
proved, instanton effects destroy the conservation
of global 8 and global L separately, but do not af-
fect the conservation of global 8 L. It seem—s like-

ly that there is a more natural explanation of this
cancellation of instanton effects and that the role of
8 —I. is deeper than allowed by the standard elec-
troweak theory.

It has been shown that one can overcome the con-
ceptual difficulties enumerated above by enlarging
the standard electroweak gauge group to
SU(2)L, XSU(2)tt XU(1)tt L. A right-handed neu-
trino joins the charged lepton of each generation in
doublet representation of SU(2)tt and the full
quark-lepton correspondence is restored. Further-
Inore, the weak-hypercharge generator becomes
8 —I., independent of the left- or right-handed char-
acter of the particle representation for quarks and
leptons. It is then easy to prove that the cancella-
tion of triangle anomalies and the cancellation of in-
stanton effects for 8 L follow in a stra—ightforward
(and essentially trivial) way. The price paid for
these desirable features of the left-right-symmetric
(LRS) electroweak gauge group is the introduction
of another triplet of weak bosons —the right-handed
weak bosons —that must be more massive than the
left-handed weak bosons. The new physical effects
predicted by the LRS group must still be found but,
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on balance, it appears that the LRS group is a seri-
ous alternative to the standard electroweak group
(with the understanding that the former must break
down to the latter at sufficiently low energies). In
sum, for the purposes of this paper, we treat
SU(3)cXSU(2)r XSU(2)~ XU(1)z r on a par with
SU(3)c XSU(2)r, XU(1) as a subgroup of any larger
group that purports to unify the strong, electromag-
netic, and weak interactions of all quarks and lep-
tons.

Many larger unification groups —of which either
SU(3)c X SU(2)I X U(1) or SU(3)c X SU(2)r,
X SU(2)~ X U(1)s r, or both are subgroups —have
been considered. If the larger group is characterized
by a single coupling constant, we speak of grand un-
ification theory (GUT); if by more than one, we
speak of partial unification theory (PUT). Here, we
briefly mention SU(5) and SO(10) GUT's (Ref. 6)
and SU(4)c X SU(2)I X SU(2)z PUT (Ref. 7) and
take note of some properties that will be useful for
our later discussion. SU(5) GUT has SU(3)c
X SU(2)1. X U(1) as its maximal subgroup, and the
left-handed quarks, leptons, and their antiparticles,
all of a single generation, are fitted into the 5~ and
10 representations. It has no room for neutrino
mass, does not have B —I. as a generator, but it does
predict global B 1. conse—rvation. s If the neutrino
turns out to be massive, some proponents of SU(5)
GUT will accept SO(10) GUT passing through
SU(5) XU(1).

Interestingly, SO(10) GUT can break down direct-
ly to the SU(4)c X SU(2)1. X SU(2)z PUT group
(which is its maximal semisimple subgroup), which
in turn breaks down to the LRS group. The basic
representation of SO(10) is 16 and this single repre-
sentation accommodates all left-handed particles
and antiparticles —including the left-handed
antineutrino of a single generation. Moreover,
B 1. is now a gen—erator of SO(10) and this proper-
ty holds at the PUT level as well as at the elec-
troweak level (LRS group). Since the GUT jump to
SO(10) still leads to very high values of the unifica-
tion mass, we leave our options open by considering
PUT as well as GUT groups in our study of preon
models.

Whatever be the merits of SU(5) GUT or SO(10)
GUT or the Pati-Salam PUT group —or any other
group larger than SU(3)c X SU(2)q XU(1) or
SU(3)c XSU(2)1 XSU(2)g XU(l)~ 1.—not one of
these groups has given a credible clue to a solution
of the generation problem for quarks and leptons.
Whether one adjoins a discrete or continuous hor-
izontal group to the GUT or PUT group to deal
with the "superfluous replication of generations, "'
progress is difficult without some degree of "natu-
ralness, " freedom from anomalies, and absence of

color or weak exotics belonging to low-dimensional
representations. The composite (preon) model of
quarks and leptons is another approach to the gen-

. eration problem"; it has been argued that the pro-
liferation of families of quark and lepton doublets is
produced by radial or orbital excitations of the
preon composites, or by adding preon pairs to a
basic three-preon composite, or by some form of
discrete symmetry: M-u A, aA, A where u denotes
the strength of the color interaction and A is the
preon-binding mass scale.

We like the preon-model approach to the genera-
tion problem but fail to see how any of the above-
cited arguments can predict the number of quark
and lepton generations. It seems to us that group
theory is a more promising approach to the preon
model. Here one begins with a small number of
chiral preon representations and constructs preon
composites that can be identified with the quarks
and leptons of at least three generations. If such a
group-theoretic preon model can be found, dynami-
cal calculations would then be justified.

We started such a program by searching for com-
posite models of quarks and leptons with preons
having the strong SU(3)c quantum numbers and ei-
ther the electroweak SU(2)r, XU(1) or
SU(2)r, XSU(2)R XU(1)~ 1. quantum numbers.
The preon models considered were the simplest:
FFF and FB (F is a spin- —, fermion and B is a spin-0
boson). Following the analogy of the SU(3) color
force (supposed to bind quarks together into had-
rons) not disturbing the flavor group, we assumed
that the metacolor force, which is hypothesized to
bind preons together into quarks and leptons, does
not disturb the color nor the flavor group. Without
any more explicit statement concerning the
metacolor group, we imposed the following con-
straints on these models: (1) the absence of color or
weak exotics belonging to low-dimensional represen-
tations, (2) cancellation of anomalies in the color
and electroweak sectors, and (3) an equal number of
quark and lepton generations. Under these condi-
tions, we find a "no-go" result for all possible FFF
and FB models.

In view of the negative result for composite
models of quarks and leptons with preons being as-
signed the strong and electroweak quantum num-
bers, we have extended our search to larger color-
flavor groups and have taken explicit cognizance of
the metacolor degree of freedom. ' We have limited
our investigation to FFF models since FB models
seem less attractive. More explicitly, we have tried
to understand the existence of at least three genera-
tions of quark and lepton doublets by means of a
three-fermion preon model under the following con-
ditions: (1) the preons are (massless) Weyl spinors
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and belong to at most two low-dimensional represen-
tations of a gauged symmetry group; (2) the gauged
symmetry group is G(MC) XG(CF) where G(MC) is
the metacolor group (that produces a metacolor
singlet out of three preons) and G(CF) is the color-
flavor group; (3) only simple groups are considered
for G(MC) which must be asymptotically free; (4)
G(CF) is any one of the GUT groups with complex
representations or the PUT group SU(n)c
X SU(2)r. XSU(2)a (n =4 gives the Pati-Salam
group); (5) no anomalies exist in the metacolor and
color-flavor sectors; (6) composites satisfy the gen-
eralization of the Pauli principle to the metacolor
degree of freedom; (7) quarks and leptons are mass-
less on the metacolor scale AMc without the use of
the 't Hooft condition'; and (8) there are no low-
dimensional representation exotics and no mirror
fermions.

We report our results in this paper. Having as-
signed Weyl spinors to the preon fields, we develop
in Sec. II the notation for the decomposition rule for
three Weyl spinor composites, using the Lorentz
group L+-SU(2)-LXSU(2)-R. [One should not
confuse this group with electroweak SU(2)r
XSU(2)z symmetry. j In Sec. III we examine vari-
ous possibilities for the metacolor group G(MC). If
we limit ourselves to the basic representations of
simple groups, then G(MC) can only be one of the
following: SU(3), E6, Es, F4, or 62.' We also study
the asymptotic freedom condition for these possible
choices of G(MC).

We next turn to the color-flavor group G(CF). As
we have remarked, we cannot use SU(3)c
X SU(2)r. X U(1) nor SU(3)c XSU(2)r XSU(2)z
XU(1)s r as G(CF). Therefore, our next step is to
use larger groups. In Sec. IV we study the case
where G(CF) is one of the GUT groups. In Sec. V,
we examine the PUT group SU(n)c X SU(2)r
XSU(2)z. In each case, we present concrete models
which make definite predictions for the number of
quark and lepton families. We employ the general-
ized Pauli principle to predict the number of fami-
lies. Although the masslessness of the preon compo-
sites is guaranteed by the color-flavor group G(CF)
which is used, it can also be assured by the discrete
symmetry of preons, as we will see. Thus, the full
chiral symmetry for masslessness of composites is
not needed. '

The final section is devoted to conclusions and
further questions to be resolved.

II. SPINS OF PREON COMPOSITES

In the case of the quark model of hadrons, the
nonrelativistic picture, such as SU(6), worked well,
although the use of the Schrodinger equation with a

LRR =( —,,0) X(0,—, ) X(0,—, )

1 1=(—,,0)+( —, , I) . (2.2)

Hence, (LLL)s or L(RR)s, where S denotes sym-
metrization, are not spin- —, objects. Note that
(LLL)~ (M= mixed symmetry) is a left-handed
Weyl spinor, although the nonrelativistic picture
yields only spin —, for (LLL), because the helicity
sum is ——,. In the argument by 't Hooft on compo-
site models, ' the handedness of composites is fixed
by the consistency condition (i.e., positive indices
mean left-handed, negative ones right-handed).
Thus, in his case L (RR)q (A = antisymmetrization)
could be right-handed, while in our case L (RR)„ is
fixed as left-handed.

For later convenience, we list the left-handed
spin- —, combinations for three left-handed Weyl spi-
nors:

(LLL)~, L (L L )g (2.3)

since L =R 'C where C denotes the charge-
conjugation matrix.

central potential reveals that it is applicable only for
heavy quarks (charm, bottom, etc.). In the case of
composite models of quarks and leptons, we must
decide on one of two possibilities: one is that preons
are massless and thus the use of Weyl spinors is
most appropriate. The other is that preons are mas-
sive and the use of Dirac spinors is suitable. Here,
we assume that preons are massless and are
represented by Weyl spinors.

As is well known, the Compton wavelength of
quarks and leptons is much larger than the present
experimental limit on the size of quarks and leptons
(10 ' cm). ' The crude picture of hadrons based
on relativistic dynamics, the bag model, does not
work for composite models of quarks and leptons.
Because of this lack of knowledge of the dynamics
of composite models of quarks and leptons, we ex-
amine the spins of composites in the following sim-
plified but relativistic way: we regard fermionic ob-

1 1

jects as spin —, if they transform as either ( ~,0) or
(0,—,) representations of the Lorentz group
L+-SU(2)-L XSU(2)-R. Left-handed Weyl spinors
transform as (—,,0), while right-handed ones

1

transform as (0,—,).
If objects are composites of preons, we use the

naive decomposition rule for products of representa-
tions of preons to find out the Lorentz properties of
composites. For example,

LLL =(-„0)X(-, ,0) X(-„0)

=(—„0)+2(—„0), (2.1)
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Our point of view can be regarded as the relativis-
tic version of nonrelativistic SU(6}. Since we have
fixed how to combine spins, we can discuss the gen-
eralized Pauli principle, including spins of compos-
ites.

III. METACOLOR GROUP

3C(R)=0 (mod N), (3.1)

A. Possible metacolor groups

We investigate the possible metacolor groups.
Cvitanovic' some time ago discussed the possibili-
ties for the color group, using the defining (basic)
representation R. Here, we discuss the problem of
the metacolor group' from the viewpoint of the
necessary condition, using congruence number. '

Although necessity does not imply sufficiency, we
can eliminate a great number of representations.

We assume that metacolor singlets consist of three
fermions with one single irreducible representation R
of the metacolor group G. (It is simple to extend
our method to five-fermion singlets, etc.) Group-
theoretically, we look for a simple group 6 which
has an irreducible representation R that satisfies
R)&R)&R D1. In terms of the congruence number,
we must have

(mod N). One immediate consequence is that any
representation R with C(R)=0 (mod N) for any
simple group 6 can be a candidate for
R )&R )&R D1. However, are there any other repre-
sentations with C(R)&0 (mod N) that still satisfy
R gR )&R D1? We investigate each simple group.

For SU(n) (n )2) (=A„&), the congruence num-
ber' is defined by

n —1

C(R)= g kmk (mod n), (3.3)

where R =gmJA~ and AJ are the fundamental

weights. Then, the necessary condition becomes

3k=mn (&3n), (3.4)

where C (R ) =k ( & n) and m is an integer. Since 3 is
prime, we have either m =3l' or n =31 where l' and
l are integers. However, the case where m =3l' con-
tradicts the fact that k &n, except k =0. Thus, the
necessary condition is either G=SU(3l) with
C(R)=ml (m =0, 1,2), or G=SU(n) with C(R) =0.
If we limit ourselves to the basic representation,
R =A,

&
[C(R)=1], then only SU(3) with 3 survives

and we have a singlet in the totally antisymmetric
part of 3+3)&3.

For SO(2n+1) (n &3) (=B„), the congruence
number is

where X depends on the group 6. This is because
the congruence number C(R) satisfies the relation': C(R)=m„(mod 2), (3.5)

C(R) XRq)=C(R))+C(Rq) where R =gmJAJ. Thus, the necessary condition is

=C(R3)=C(R4) = (3.2) C(R) =0 (mod 2) . (3.6)

where R
& &R2 ——R3+R4 . . and RJ denotes an ir-

reducible representation of G. Thus, the necessary
condition that 6 is a metacolor group with an irredu-
cible representation R is that there exists an irreduci-
ble representation R of G which satisfies 3C(R)=0

I

The basic representation R =A,
~ (vector) satisfies this

condition since C(A, &) =0. However, this is not suf-
ficient and we show that R &&R &(R with R =k&
does not contain a singlet, by explicitly calculating
the decomposition:

(300 )+2(110 . )+3(100 )+(0010 ) for B„(n)4),
(100 . )x(100 . )x(100. )=.

(300)+2(110)+3(100)+(002) for B3,

C(R)=m~+m3+m5+ . (mod 2), (3.8)

where R =gmJ Al. Thus, the necessary condition is

where we have used the Dynkin notation, ' i.e.,
(m f m 2 m 3 ~ ~ ) denotes the representation
R =pmj A J.. Thus, the basic representation of
SO(2n + 1) cannot do the job.

For Sp(2n} (n )2} (=C„},the congruence number
1s

C(R) =0 (mod 2) . (3.9)

Since the basic representation R = I,
~

has C (R ) = 1,
this cannot do the job.

For SO(2n) (n )4) (=D„), the congruence number
is defined by

C(R)=[m„~+m„2m~+2m3+ .

+2m„3+ (n —2)m„~+nm„]
for even n, (3.10)
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C(R) =[m„~+m„2m ~+2m3+ +2m„

+ (n 2—)m„&+nm„) for odd n,
(3.11)

where the first term in the bracket is calculated mod
2 and the second term is done mod 4. Thus, we
have

C(R)=(0,0),(0,2), (1,0), (1,2) for even n,
(3.12)

C(R)=(0,0),(0,2), (1,1),(1,3) for odd n .
(3.13)

I

In both cases, the basic representation R =A, , (vec-
tor) cannot do the job, since C(R)=(0,2). The spi-
nor representation R =A,„also cannot do the job,
since C(R)=(l,n). Only R with C(R)=(0,0) can
be a candidate.

For E6, the congruence number is

C(R)=m& —mz+m& —m5 (mod 3) . (3.14)

Thus, the necessary condition is satisfied by any rep-
resentation. %e can check that the basic representa-
tion R =A, 5 actually satisfies the condition
R XR XR & 1 (Ref. 20):

(000010)X (000010)= (000020)+(000100)+ (100000),

( 100000)X (000010)= (000000)+ (000001)+ ( 100010),

(000100)X (000010)= (000001)+ ( 100010)+ (001000)+ (000110),

(000020) X (000010)= (000030)+ (000110)+(100010),

where the dimensions of the representations are

(000010)=27, (100000)=27, (000001)=78, (000020)=351, (000100)=351,

(100010)=650, (001000)=2925, (000110)=5824, (000030)=3003 .

(3.15)

The reason why R =A,5 satisfies RXRXR D 1 is
that E6 has one "primitive invariant tensor"' d,b„
which is totally symmetric, in addition to primitives
d' ' ' ', f ' ' ', 5~,e

' ' ', which are totally sym-
metric, totally antisymmetric, 5, and Levi-Civita
tensor, respectively. Thus, we have a singlet in the
totally symmetric part of 27 X27 X27 of E6.

For E7, the congruence number is

C(R)=m4+ms+m7 (mod 2) . (3.16)

26X26=1+26+52+273+324 for F4,

7X7=1+7+14+27 for G2 .

(3.17)

Therefore, all the basic representations of E8, F4,
and G2 satisfy R XR XR D1. This is related to the
fact' that E8, F4, and G2 have primitives C,b„d,b„
and f,b„respectively. That is, while F& has a singlet

The basic representation R =A,6 does not satisfy
C(R) =0. Hence, the basic representation cannot do
the job.

For E8, F4, and G2, the congruence number is zero
for any representation. Note that one only has to
show R XR DR for these groups, since R-R and
R XR 01. For the basic representations of Es, Fq,
G2, we have

248X248=1+248+3875+30380+27000 for E8,

I

in the totally symmetric part of R XR XR, E8 and
Gz have singlets in the totally antisymmetric part of
R XR XR.

We summarize our results as follows: among the
basic representations of various metacolor groups,
only SU(3), Es, E6, and Gz can satisfy the relation
R XR XR 01, where for SU(3), Es, and Gz, a sing-
let is contained in the totally antisymmetric part of
the product representation, while for E6 and F4 a
singlet is contained in the totally symmetric part of
the product representation.

Because of its mathematical interest we give in
Appendix A the metacolor groups that satisfy the
condition R XR XR 01, when R is not a basic rep-
resentation.

At this stage we have no reason to choose
G(MC) =SU(3)Mc from among the five possible
metacolor groups enumerated above. In the case of
the color group, arguments for SU(3) come from
several directions in addition to the R ratio in ee re-
actions and ~ —+2y decay. ' If we limit ourselves to
basic representations as for metacolor, we would
have the same five color-group candidates as for
metacolor. The success of SU(6} reduces these five
possibilities to three: SU(3}, Es, and Gz. The possi-
bility of having E8 or G2 as the color group can be
eliminated as follows. Since E8 and G2 do not have
complex representations, we would have color-
singlet states qqq and qq q, in addition to qqq, where



THREE PREPN MPDE1.S Pp QUARKS AND LEPTPNS AND THE. . . 621

q denotes a quark. These new color singlets are
fractionally charged objects. Another reason is
given by Okubo. He has found a G-parity-like
operation for simple groups and, using this, the
nonexactness of the Okubo-Zweig-Iizuka rule allows
only SU(3) among SU(3), Es, and G2. [Okubo's ar-
gument by itself permits, among simple groups, only
SU(n) (n &3), SO(4n+2) (n &2), or Es.] A com-
pletely different approach, deriving from the condi-
tions of grand unification, also leads to the SU(3}
color group. However, none of these arguments
appears to be applicable to the metacolor group and
so we must keep an open mind about the precise na-
ture of this group —including the possibility that it
may not be vector —assuming that such a group ex-
ists and that quarks and leptons are metacolor sing-
lets."

B. Asymptotically free condition
for the metacolor group

n & 33 for SU(3),

(22 for E6,
11

for E, ,
33

for F4,

&22 for Gg.

(3.22)

Since Weyl spinors have quantum numbers in both
G(MC) and G(CF), the condition for asymptotic
freedom is a very stringent condition, as we will see
in the next section.

It is amusing to note that all asymptotically free
representations of the exceptional groups listed
above, i.e., 27 and 78 of E6, 248 of E8, 26 and 52 of
F4, 7, 14, and 27 of G2, satisfy the relation
R)&R gR D l. Also note that they are the lowest-
dimensional and the adjoint representations of these
exceptional groups, except 27 of G2.

where

3

16m'
(3.18}

Asymptotic freedom for metacolor is required to
give meaning to the composite preon model. We in-
vestigate the asymptotically free condition for the
metacolor groups SU(3), Es, Es, F4 and Gz. As is
well known, the P function for left-handed Weyl
spinors of irreducible representation R is given by

IV. GUT PREONS

A. Quantum numbers of preons

We discuss the case where G(CF) is one of the
GUT groups. Since we want to have complex repre-
sentations for quarks and leptons, G(CF) is SU(n)
(n & 3), Es, or SO(4n +2) (n &2). We take the sim-
plest choice for preon representations of G(CF}:
only R and/or R of G(CF). Thus, the possible preon
quantum numbers are

8= —,[1ll(R,dj) —2Xl(R)], (3.19)
T+ (r,R)L——, T =(r,R )L, ,

(4.1)

1(R)= I2(R)
d(R)

adj

(3.20)

with d(R) and I2(R), respectively, the dimension
and the eigenvalue of the second-order Casimir in-
variant for an irreducible representation R. The
summation over l(R) is over all preon degrees of
freedom n The va. lues of 1(R,d, ) and l(R) are as
follows:

V+ ——(r,R)I, V =(r,R }L, ,

where r denotes the metacolor representation. While
we allow four low-dimensional preon chiral repre-
sentations at the start, we shall soon show that we
end up with at most two preon chiral
representations —consistent with condition (1) in
Sec. I—depending on the metacolor group.

The first observation is that if G(MC) is Es, F4, or
G2, then the passible preon representations are only

SU(3): l(R,dj)=3, l(R)= —, with R =3,

E6: l(R,d;)=12, l(R)=3 with R =27,

Es. 1(R,d;)=l(R)=30 with R=248,

F4. 1(R,d;) =18, l(R) =6 with R =26,

G~. 1(R,d; )=12, l(R)=3 with R=7 .

(3.21)

From the condition for asymptotic freedom, we find
the condition

T =(r,R)L, V =(r,R )I (4.2)

since r-r for these metacolor groups. We assume
the absence of Rl of G(CF) at the composite level
since the existence of RL implies the existence of
parity doublets for quarks and leptons, or Rl would
be eaten by RL to become heavy. This condition
immediately excludes T from consideration since, if
T&0, the preon composite TTT =(R XR XR)
would contain the unacceptable RL [remember that
r Xr Xr contains a singlet for G(MC}=Es, F„, or
Gz]. Thus, the only composites are
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VVV=(R XR XR)L

and (4.3)

T+T =0, V+ V =0,
T V+ V =0, V T+T =0

(4.4)

since T+T T, V+ V V, T+ V+ V+,
V+ T+ T+, T—V+ V—, and V—T+ T— all have
RXRXR, which contains RL. The solutions of Eq.
(4.4) are

Case 1: T+ (r,R——), V =(r,R ),
Case 2: T =(r,R), V+ (r,R)——,

Case 3: T =(r,R), V =(r,R) .
For case 1, we have composites as follows:

T~ T+ T+ =(R XR XR), Tp V V =(R XR XR),
V T+T+ (R XR X——R), V V V =(R XR XR) .

We have a real representation as a whole. Case 2
yields a similar result. Consequently, cases 1 and 2
are ruled out. For case 3, we have

T T T =(RXRXR), T V V =(RXRXR),

VVV=(R XR XR)L, .

The absence of RL of G(CF) at the composite lev-

el also reduces the number of possible preon repre-
sentations for G(MC) =SU(3) or E6. We then have

T=(r,R)I, V=(r, R)L, , (4.6)

where the color-flavor group with representation R
is either E6 or SO(4n +2) (n & 2). For Es, F4, or Gz
metacolor, the quantum numbers for GUT preons
can only be

representation for G(CF) =E6, the spinor representa-
tion for G(CF)=SO(4n+2) (n &2), and the totally
antisymmetric representation for G(CF) =SU(n).
However, the use of a single totally antisymmetric
representation for G(CF) =SU(n) yields the anomaly
for preons. Hence, SU(n} GUT preons are not al-
lowed. In particular, SU(5) GUT cannot be the
color-flavor group of a preon model satisfying our
conditions. Indeed, we shall see that every GUT or
PUT preon model satisfying our conditions contains
SU(2)L X SU(2)x XU(1)s I, as a subgroup.

Does R gR &(R contain R? For E6, it does not,
since the congruence numbers of 27 and 27 are + 1

(mod 3) and —1 (mod 3), respectively. For
SO(4n+2) (n &2), it does. This is because the
congruence numbers for antispinor R and spinor R
are (1,2n —1) and (1,2n +1) (mod 2, mod 4). Thus,
C(R XR XR)=(3,6n —3)=(1,2(n —1)+1)=C(R).
However, congruence-number mismatch only
reduces the predicted number of quark and lepton
generations but does not rule out the group (see
below).

Summarizing, we obtain:
Lemma 1. For SU(3} or E6 metacolor, the quan-

tum numbers for GUT preons can only be

(4.5)
V=(r,R)1 (4.7)

V T T =(RXRXR), V V V =(RXRXR),
which are complex as a whole; therefore case 3 is a
candidate for a permissible preon model satisfying
our conditions.

What is the representation R of G(CF)7 Since
R &R &R always contains R, we must take the 27

I

where the color-Aavor group is the same as above.
Now we look at the color-flavor quantum num-

bers of preon composites. For concreteness, we con-
sider two cases: G(CF)=SO(10) with R =16 and
G(CF)=E6 with R =27. We have the following
decompositions:

for SO(10),

16X 16X16=2(16)+3(144)+560+672+2(1200),

16X16X16=3(16)+2(144)+2(560)i1200+1440;

for E„
27 X 27 X27= 1+2(78)+3(650)+2925+2(5824)+3003,

27X27X27=3(27)+2(351)+351'+2(1728)+7371+7722.

(4.8)

(4.9)

Therefore, for SU(3) or E& metacolor, we have at
most ten families for G(CF)=SO(10) and six fami-
lies for G(CF) =E6, if we regard 16 of SO(10) and 27
of E6 as one family. For E8, F4, or Gg metacolor, we
have at most five families for G(CF)=SO(10) and

I

four for G(CF) =E6. We will see in the next subsec-
tion that these numbers are reduced considerably by
the imposition of the Pauli principle (generalized to
include the metacolor degree of freedom).
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3X3X3=1+8+8+10, (4.10)

i.e., four possible baryon multiplets out of three-
quark composites. Since we assume that quarks
transform as (3,3) in (SU(3)-color, SU(3)-flavor) and
baryons must be color singlets [totally antisym-
metric (A) in color indices], the Pauli principle (gen-
eralized to the color degree of freedom) requires that
composite states must be totally symmetric (S) under
the symmetry [SU(3)-flavor X spin]. Hence, they
transform as (8,2) or (10,4) under (SU(3)-flavor,
spin). We end up having two octets with spin —,

and one decuplet with spin —,. However, experimen-

tally we have only one octet and one decuplet. We
need more restrictions. As is well known, the SU(6}
group combining SU(3)-flavor and -spin was invent-
ed to do the job. Under SU(6), the flavor and spin
are embedded as

B. Generalized Pauli principle and generations

We recall the connection between SU(3) flavor
symmetry and the Pauli principle. Without the Pau-
li principle, we have

for SO(10),

16X 16=126(S)+120(A)+ 10(S),

126(S)X 16=16+560+1440,

120(A) X 16=16+ 144+.560+ 1200,

10(S)X 16=16+144,

(4.13)

A] or A (since Es-metacolor is S) for the symmetry
G(CF)X spin. Then, we have (S,S) or (M,M} for
SU(3)-metacolor and (A, S) or (M,M) for E6-
metacolor, where (S,S}, (M,M), or (A, S) now indi-
cates the symmetry of (G(CF), spin ). Since S for
spin implies spin —,, we must have M for G(CF)
independent of whether SU(3) or E6 is the
metacolor. Consequently, TTT has only one 16 (not
two) for G(CF) =SO(10) with R = 16. For
G(CF) =E6, TTT does not have any 27.

For TVV and VTT, we apply the Pauli principle
for (VV) and (TT) pairs. Since (VV) and (TR must
have A for spin [T,V-(0, —,)], they have A in G(CF)
for SU(3)-metacolor and S in G(CF) for E6-
metacolor. Using the decompositions

6=(3,2) of (SU(3)-flavor, spin) . (4.11)

The Pauli principle for the SU(6) group then yields

I)+(I I I I, I I I I),
(4.12)

i.e., one octet with spin —, and one decuplet with

spin
We propose to apply a similar strategy to preon

composites taking into account the metacolor degree
of freedom. We first discuss the case where SU(3)
or E6 is the metacolor group. For composites TTT
or VVV, we have either S [since SU(3)-metacolor is

I

for E6,

27 X 27 =351(S)+.351'(A )+27(S),

351(S)X 27 =27+ 1728+7722,

351'(A ) X27 =27+ 351+1728+7371,

27(S)X 27= 27+ 351+351',

(4.14)

we see that TVV has one family for SU(3)-
metacolor, or two families for E6-metacolor. Sum-
marizing, after applying the Pauli principle, we have
the following number of families:

4 = 1+1+1+1 for G(CF) =SO(10), G(MC) =SU(3),

6=1+2+2+1 for G(CF) =SO(10), G(MC) =E6,

2=0+1+1+0 for G(CF}=E6, G(MC) =SU(3},

4=0+2+2+0 for G(CF) =E6, G(MC) =E6,

(4.15)

(4.16)

(4.17)

(4.18)

where the first, second, third, and fourth terms indi-

cate the contributions from TTT, TVV, VTT, and
VVV, respectively.

Clearly, the choice G(MC) =SU(3), G(CF) =E6 is
ruled out because it predicts only two families. Oth-
er possibilities can be ruled out if we impose the
condition of asymptotic freedom on the metacolor
sector. Then SU(3)(MC) X SO(10)(CF) is the unique
choice from among G(MC) =SU(3), E6 and
G(CF)=E6, SO(4n+2) (n )2). The reason is that

I

for G(CF) =E6 with R =27, we have n =54 and this
is too large for G(MC) =E6 [see Eq. (3.22)]. Among
G(CF) =SO(4n +2) (n )2), SO(10) with R =16 has
the lowest value of n, namely, 32, and G(MC) =E6 is
therefore ruled out; however, SO(10) for the color-
flavor group and SU(3} for the metacolor group has
a positive but exceedingly small value for B ( —,—this
is to be compared to B =9 for QCD for u, d, s
quarks).

For the case where E8, F4, or 62 is the metacolor
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group, we have

2 =1+1 for G(CF) =SO(10),

G(MC) =Es,G2,

3=1+2 for G(CF)=SO(10),

G(MC) =F4,
1=0+1 for G(CF)=E6,

G(MC) =Es,G2,

2=0+2 for G(CF)=E6,

G(MC) =F4 .

(4. 19)

(4.20)

(4.21)

(4.22)

Only G(CF)=SO(10) with G(MC)=Fq has three
generations. It is also asymptotically free—by a
much better margin (8 =2) than SU(3)Mc
X SO(10)cq but still small compared to QCD.

We are thus left with two GUT preon models:
one is G(MC)XG(CF)=SU(3)XSO(10) with two
preon representations: T =(3,16)l. and V=(3, 16)l .
The left-handed composites are TTT, TVV, VTT,
and VVV and four quark and lepton generations are
predicted. The other GUT preon model is
G(MC) X G(CF) =F4XSO(10) with one preon repre-
sentation: V=(26, 16)L. The left-handed compos-
ites are VVV and VVV and three families of quarks
and leptons are predicted. In both cases, the rate of
decrease of the metacolor coupling constant is suffi-
ciently slow that the asymptotic energy region for
metacolor should be higher than the Planck mass.
Therefore, we do not think that these two models
are plausible.

V. PUT PREONS

A. Quantum numbers of preons

Here, we consider the possibility of preons having
the quantum numbers of SU(n) c XSU(2)L
X SU(2)~„ in addition to metacolor quantum num-
bers. The group SU(n)c contains the Pati-Salam
SU(4)c. We show that the preons are only in the
(n, 2, 1)I and (n, 1,2)i representations of SU(n)c
XSU(2)L XSU(2)~. To prove this, we assume that
no superheavy objects, composed of preons, can exist
at the SU(n)c X SU(2)i XSU(2)z level. In group-
theoretical terms, this implies that no real composite
representations exist at this level. Furthermore, in
accordance with the conditions stated in Sec. I, no
anomalies exist at the SU(n)c X SU(2)l. XSU(2)z lev-
el. Finally, we assume that the preons have at most
the following quantum numbers of SU(n)c
XSU(2)L, XSU(2)g (it appears that we are contra-
dicting one of our conditions —that at most two
chiral representations will be allowed for the

preons —but the point is to show that four of the six
chiral representations, including the two "color"
singlets, are ruled out):

T+ (n, 2, 1)I, V+ (n, 1,2)I,
Tp(1 2 1)L, Vp(1 1 2)L,

T (n, 2, 1)I, V (n, 1,2)L, .

(5.1)

We proceed with the proof. We look at the FFF
combinations. Permitting at first all possible FFF
combinations to be realized, we argue that Tp and
Vp are not allowed. The reason is that they produce
real representations: Tp Tp Tp 0 ( 1,2, 1)i and
Vp Vp Vp D( 1 1 2)L . Next, we show that T+ and
V are not allowed. Since T+ T T D(n, 2, 1)I,
V+ V+ V D(n, 1,2)L, T+ V V D(n, 2, 1)L, while
T V+ V+ D(n, 2, 1)1, T T V+ D(n, 1,2)L, , it is
possible for (n, 2, 1)I and (n, 2, 1)L, to combine and
become superheavy. Thus, we must have

T+T =0, T+ V =0, and V+V =0 (5.2)

since we must kill (n, 2, 1)L [remember that (n, 2, 1)l
contains (4,2, 1)L]. If T+&0, then we would have
(T+, V+) which is not anomaly free in the SU(n)c
sector. Hence, the surviving preon representations
are T and V+.

If we include the metacolor representation, we can
say that FFF composites can only be constructed out
of

T =(r,n, 2, 1)1, V =(r,n, 1,2)L, , (5.3)

where the metacolor representation is r and the
metacolor group is SU(3), E6, Es, F4, or G2. Howev-
er, it is evident that if SU(3) is the metacolor group,
the preon set (5.3) is not anomaly free in the
metacolor sector. This objection can be overcome by
simply changing r to r in V so that we have

T =(r, n, 2, 1)L, V=(r, n, 1,2)L (5.4)

(r, n, 2, 1)L, (r, n, 1,2) , I

where r is the representation of the metacolor group
SU(3), E6, Es, F4, or G2.

It is not necessary to have all four types of preon
representations in order to have an anomaly-free set.
If we limit ourselves to two representations, there
are two alternatives' ' '.

T =(r, n, 2, 1)i, V =(r,n, 1,2)i (5.5)

for G(MC) =SU(3). This leads us to the following.
Lemma 2. The representations of PUT

[SU(n)cXSU(2)L XSU(2)~] preons must be chosen
from among

(r, n, 2, 1)L, (r, n, 1,2)I,
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T =(r,n, 2, 1)L, V =(r, n, 1,2)r, , (5.6)

where in the first set, Eq. (5.5), the metacolor group
can be, in principle, SU(3), E6 Es, F4, or G2, while in
the second set, Eq. (5.6), the metacolor group cannot
be SU(3), because of the anomaly.

Actually, for the metacolor groups E„Fq, or G2,
there is only one possibility, since these groups have
only real representations (r-r). Furthermore, all
possible left-handed combinations of three preons
are metacolor singlets, since all of r Xr Xr, r Xr Xr,
r Xr Xr contain singlets for these groups. Thus, we
have composites as follows: TTT, TTV, TVV, VVV,
TTT, TTV, TVV, VTT, VTV, and VVV. Among
them, TVV and VTT contain the forbidden compos-
ite representations (n, 2, 1)L and (n, 1,2) .LTherefore,
G(MC)=Es, F4, or G2 is excluded. In other words,
the possible metacolor group for Eq. (5.5) is either
SU(3) or E6, while the possible metacolor group for
Eq. (5.6) is only E6.

The first set with G(MC)=SU(3) and n =4 was
taken by Achiman. ' The preon composites are as
follows:

TTT =(l,n Xn Xn, 2X2X2, 1),
TVV=(1,n Xn Xn, 2,2X2),

VTT=(l, n Xn Xn, 2X2,2),
VVV =(l,n Xn X n, 1,2 X2 X2) .

(5.7)

The second choice was taken by us'; the preon corn-
posites are

TTT =(l,n Xn Xn, 2X2X2, 1),
TVV =(l,n Xn Xn, 2,2X2),

(5.8)
TTV =(l,n Xn Xn, 2X2,2),
VVV=(l, n Xn Xn, 1,2X2X2) .

B. Generalized Pauli principle and generations

In this subsection, we formulate the generalized
Pauli principle for our PUT preons and consider its
effect on the number of predicted generations. We
count the number of generations (families) at the
SU(4)CXSU(2)1. XSU(2)~ level, after applying the
"survival hypothesis. " For this purpose, we list
the decompositions of the three SU(n) representa-
tions into SU(4) representations as follows:

+4+ (n——4)6+ —,(n 4)(n ——5)4+ , (n —4)(n—5—)(n —6)1, (5.9)

I
~20'+(n —4) 10+—,(n —3)(n —4)4+ , (n —2)(—n—3)(n —4)1, (5.10)

I ~20+(n 4)10+—(n —4)6+(n —4) 4+ (n —3)(n 4)—(n ——5)1 . (5.11)

We are now in a position to investigate the preon
model defined by Eq. (5.5). For TTT, we have

(I I I I+ & I+, I I I I+2

(5.12)

where the quantum numbers are indicated in the or-
der SU(n)c, SU(2)1, SU(2)~, spin. We examine
which of these satisfy the Pauli principle. We fol-
low the SU(6) approach: consider the largest sym-

I

I

metry and apply the Pauli principle. The symmetry
in this case is SU(4n) with the embedding of
(4n)=(n, 2,2) of SU(n)cXSU(2)L, X spin. The sym-
metry of TTT with respect to SU(4n) is A or S, de-

pending on whether the metacolor part is S or A.
For SU(4n)~SU(2n)X spin, the spin-~ part re-

quires SU(2n) mixed symmetry (M), independent of
the metacolor symmetry, since S=(S,S)+(M,M)
and A = (A,S)+(M,M) where the symbols in
parentheses indicate the symmetry of (SU(2n),
spin). With the use of the decomposition

Q-(~ ~ ~ ~ p}+(Ep ' ' ~ ~&+(- Ep}+(EF}Ep}: SU(2n)~SU(n)XSU(2), (5.13)

the left-handed spin- —, composites are
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(I I I 1, 2, 1),(,2, 1},(EF(,2, 1), and (EFj,4. , 1}, (5.14)

where the symbols in parentheses indicate the SU(n)cXSU(2)1 XSU(2)~ quantum numbers. We count the
number of (4,2, 1)1 and (4,2, 1)L representations in the decomposition, using Eqs. (5.9)—(5.11). We find

No. of (4,2, 1)1 ——1, No. of (4,2, 1)L,
——2(n —4) (5.15)

For TV V, we apply the Pauli principle for ( VV). This factor must be A for SU(2), A for spin. Hence, the
SU(n) symmetry is S or A, depending on whether the metacolor part is A or S. Thus, the surviving composites
of type TVV are

(' I, 2, 1)~, (I I I l, 2, 1)L

l, 2, 1)„,(,2, 1)L

for A in metacolor,

for S in metacolor .
(5.16)

They contain

No. of (4,2, 1)I ——0, No. of (4,2, 1)L (n —4——) + , (n ——3)(n—4) for A in metacolor,

No. of (4,2, 1)=1, No. of (4,2, 1)L (n ———4) + , (n 4—)(—n —5) for S in metacolor .
(5.17)

Combining Eq. (5.17) with Eq. (5.15},we obtain the number of surviving (4,2, 1)L (i.e., the number of gen-
erations), which is given by

No. of generations =1—3(n —4) —, (n ——3)(n—4) for A in metacolor,

No. of generations =2—3(n —4) ——,(n 4)(n ——5) for S in metacolor .
(5.18)

Therefore, in the Achiman model, ' the number of generations is at most 2, for n =4, i.e., SU(4)c. Thus, we
do not discuss this model further.

Now, we discuss our model. ' The preon quantum numbers are given in Eq. (5.6} with Es-metacolor. For
FFF where F=T or V, we can use SU(8n) symmetry, which branches into the following:

SU(8n)~SU(4n) X spin with 8n =(4n, 2),

SU(4n)~SU(2n)-VXSU(2n)-T with 4n =(2n, 1)+(1,2n),

SU(2n)-V~SU(n)XSU(2)z with 2n=(n, 2),

SU(2n)-T~SU(n)XSU(2)L with 2n=(n, 2),

(5.19)

where we have specified the embedding. While the metacolor symmetry is S (E6-metacolor), the SU(4n) sym-
metry associated with the spin- —, part is fixed as M, since A =(A,S)+(M,M) where the symbols in parentheses
indicate the symmetry of (SU(4n), spin). Note the following decomposition:

EP IEP. 1I+I1
El j(+(El &I+I™ I+((:I I:I j(+( g}: SU(4n)~SU(2n) —VXSU(2n) —T, (5.20)

[P-(g, EFII+II ~ ~ ~, Pi+I:,EFII+(g, I ~ ~ I&: SU(2n)~SU(n)XSU(2) .

Therefore, we obtain

(5.21)

TVV= ( x [3,2, 1)zt ( x~, 2.1)& + ( x p, 2, &)a+ (C3x CZl, 2, 5)a

where we have indicated the SU(n)c X SU(2)l X SU(2)z X spin quantum numbers.
Using the decomposition of SU(n) into SU(4} such as

(5.22)
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j = 10+(n —4)4+ , —(n —3((n —4)1,

—=6+(n —4)4+1/2(n 4—)(n —5)1,

=4+(n —4)1,

x j j ( =[1+(n —4) ]4+ (n ——3)(n —4)4+36+(n —4)15+(n —4)10

+[(n —4)+ —,(n —3)(n —4) ]1,
+ " —= [1+(n —4) ]4+ (n 4—)(—n —5)4+20+(n —4)15+(n —4)6

+[(n —4)+ , (n ——4)(n —5)]1,

we count for TVV and TTT

No. of (4,2, 1)z ——3+2(n —4)

No. of (4,2, 1)z ——3 —(n —4)

Thus, we obtain

No. of generations=3(n —4) (5.23)

Our model predicts three generations of quarks
and leptons for SU(4)c X SU(2)z X SU(2)z. (Without
the generalized Pauli principle, the prediction would
be four generations. '

) The metacolor group is E6
and the metacolor part is asymptotically free by a
wide margin [8=12—see Eq. (3.22)]. It appears
therefore that the PUT preon group

G (MC) X G(CF) =E6(MC) X SU(4)c

X SU(2)z X SU(2)g

gives the most promising three-fermion preon model
of quarks and leptons. It predicts precisely three
generations and its degree of asymptotic freedom
makes physical sense. However, this model —like all
preon models —must pass some other important
tests, of which the chief one is that the masses of all
three generations of quarks and leptons must be
small on the metacolor scale AMc. (This is different
from QCD where the hadronic masses are of the or-
der of AQcD) We must therefore show that our
model can guarantee the masslessness of the quarks
and leptons in the unbroken symmetry limit. We
turn to this question in the next subsection.

d (R)I2(R)
bn(L)=2 v=2l(R)v,

adj

(5.24)

I

known 't Hooft condition, requiring the "conserva-
tion" of anomalies in going from the preon to the
composite level —in order to protect the composite
quarks and leptons from acquiring masses. The 't
Hooft anomaly condition is a very severe con-
straint and, indeed, it is easy to show that our
PUT preon model does not obey it (see below). For-
tunately, 't Hooft's anomaly condition is only a suf-
ficient condition and there are other ways to ensure
the masslessness of quarks and leptons in composite
models. Our gauged PUT preon group can guaran-
tee masslessness in two other ways. The first
guarantee follows from the fact that our preon
group contains the gauged SU(2)z XSU(2)z chiral
group which manifestly prevents the composite
quarks and leptons from acquiring mass on the
metacolor scale.

The second way to ensure massless quarks and
leptons is more complicated and requires a slightly
modifed version of another argument by 't Hooft.
't Hooft has shown that instantons can break the
U(1) axial symmetry implicit in gauged groups and
reduce it to a discrete symmetry. Since the U(1) axi-
al charge is equal to the difference between the num-
ber of left-handed particles and the number of
right-handed particles, we can reinterpret his results
as follows: for a massless left handed Weyl s-pinor,
which belongs to a representation R of a gauged
symmetry G, instantons of G induce

C. Masslessness of quarks and leptons

The problem of ensuring the masslessness of
quarks and leptons in composite models has been ex-
amined in detail by 't Hooft. ' He derived the well-

where b,n(L) denotes the change of the number of
left-handed spinors and I2(R) and d(R) denote,
respectively, the eigenvalue of the second-order
Casimir invariant and the dimension of the repre-
sentation R of G. This is because we have
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d(R)Ip(R) g2

2

d/g G G lv
64~

ab pv

(5.25)

(TTT)'C(TTV) and (TVV)'C( VVV). Furthermore,
if the discrete symmetries, Eq. (5.30), are not bro-
ken, then all the mass terms are forbidden, as can be
seen from the table. That is, masslessness of the
composites is guaranteed by the discrete symmetries.
Thus, we have shown that masslessness of our quark
and lepton composites is guaranteed by two mechan-
isms; gauged chiral symmetry and discrete sym-
metries.

D. Concluding remarks concerning PUT preons

b,n (1.) =v . (5.27)

We can use Eq. (5.1) to examine the masslessness of
composites if the discrete symmetry is not broken
spontaneously. There is a possibility that no chiral
symmetry is preserved, but still no mass terms are
generated, because of the discrete symmetry.

In our case, the global symmetry of our model is

SU(8)TXSU(8)yxU(1)z XU(1)y

which is broken by metacolor instantons into

(5.28)

SU(8)T XSU(8) y X U(1)T V X ZT XZV, (5.29)

where Z denotes the discrete symmetry. The ex-
istence of U(1)z v is obvious, since

b,n (T)= 161(r), b n ( V) = 161(R) . (5.30)

The SU(8)r XSU(8)q anomalies for composites do
not match those for preons so that the 't Hooft
anomaly condition is not satisfied. However, the
U(1)r y anomaly trivially matches, since (A stands
for anomaly):

A(preons)=1 +(—1)

A (composites) =3 +2( —1) +2 1 + ( —3)

Therefore, the U(1)T q symmetry can be an unbro-
ken symmetry. Glancing at Table I, we find that
this symmetry forbids part of the mass terms,

TABLE I. Mass terms for PUT preons.

din (T) dkn ( V) 4n (T)-din ( V)

(TTT)'C( VVV)

( TTT)'C ( TTV)
( TVV)'C ( TVV)
( TVV)'C ( TTV)

0
4

—4
0

(winding number), (5.26)

and left-handed fermions contribute only —, to the
right-hand side. For a basic representation of
SU(n), we have d(R)=n, I2(R)=(n —I)/(2n),
d(R,d;)=n 1, a—nd thus

Having demonstrated that the PUT preon model
mandates the masslessness of the composite quarks
and leptons on the metacolor scale AMc, we must
now ask how the small —but nevertheless real—
quark and lepton masses are generated within our
model. In the usual theory, the masses of quarks
and leptons are generated by the doublet Higgs sca-
lar responsible for the spontaneous breaking of
the gauged electroweak group [whether it
be SU(2)i XU(1) or SU(2)L XSU(2)~ XU(1)~ L, ].
Under plausible assumptions about the effective Yu-
kawa coupling s, the vacuum expectation values
(VEV's) of the Higgs scalars turn out to be small on
the metacolor scale. It would therefore be discon-
certing if the preon model allowed two-preon scalar
condensates to give masses since the natural values
of VEV of scalar condensates would be of the order
of AM&. We shall see that both two and four-preon
scalar condensates cannot give masses to quarks and
leptons in the PUT model while six-preon scalar
condensates can do so.

Let us consider the possibility of giving masses to
fermion composites (e.g., quarks or leptons) via the
mechanism of scalar preon condensates. Scalar
preon condensates must have quantum numbers
(1,2,2) in SU(4)c X SU(2)1 XSU(2)~. Thus, scalar
preon condensates consist of odd numbers of T
preons and odd number of V preons For two-pre. on
scalar composites we have two candidates T'CV and
TPV, where C (D&) denotes the charge-conjugation
operator (covariant derivative). However, T'CV is
not a metacolor singlet, since both T and V
transform as 27 of Es. The combination TgV
transforms as 4X4 of SU(4)c. Hence two-preon
scalar condensates cannot give masses to fermion
composites. Hereafter, we omit and C and g.

For four-preon scalar composites, we have either
three T's and one V or three V's and one T. How-
ever, TTTV is not a metacolor singlet. Neither the
combination T TTV nor TTT V transforms as a
singlet of SU(4)c. Hence, four-preon scalar conden-
sates cannot give masses to fermions either.

It is obvious that six-preon scalar condensates can
give masses, since quarks and leptons are three-
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(P, 2, 1),=(2P, 2, &l, ,

(ETj, 4, 1) = ( 20, 4, 1)

( I I I I, 2, 1),= ( 20', 2, 1.)„,
(5.31)

from TVV,

(C], 2, 3)~ = ( 4, 2, 3)„, ( EP, 2, 3)~= ( 2P, 2, 3)„

( I I, 2, 3)„=(36,2, 3)

( I l, 2, 1$=(36,2, 1}

(PP, 2, &}„=(2P,2. Z}, ,

(5.32)

All the fermion composites in Eqs. (5.31) and (5.32)
are massless on the AMc scale—like the quark-
lepton composites —and are therefore a class of exot-
ics that were not eliminated ab initio from the
theory since they belong to the same congruence
class of quarks and leptons. It should be em-
phasized that there exist no exotics which belong to
other congruence classes, e.g., that of the mirror fer-
mions.

We argue that the SU(4)c exotics can be made
heavy, using an old argument of Nambu and Han to
explain why the higher-dimensional representations
of color SU(3) give larger masses than the low-
dimensional representation. An analogous argu-

preon composites. This desirable feature of the
PUT preon model may solve one small hierarchy
problem of the left-right symmetric electroweak
model. The problem is to understand why the
right-handed weak gauge bosons are much heavier
than the left-handed ones. An explanation may lie
in the fact that while two- or four-preon scalar con-
densates cannot give masses to quarks and leptons,
they can give masses to the right-hand-
ed weak gauge bosons. Indeed, one may expect a
difference in the values of VEV between, say, the
Higgs triplet hz responsible for the mass of Wz and
the Higgs doublet P responsible for the mass of 8'L
in the LRS model. This follows from the observa-
tion that hz can be two- or four-preon condensate
in the PUT model (since now an even number of T's
and Vs can contribute) whereas P can only be a six-
preon condensate.

Finally, we comment on the exotic fermion com-
posites predicted by the PUT preon model. Al-
though we eliminated low-dimensional exotics, i.e.,
(V+A) counterparts of quarks and leptons that be-
long to the same congruence classes, we end up with
some higher-dimensional exotics that belong to the
same congruence classes as quarks and leptons.
These exotics are the following [see Eqs. (5.21) and
(5.22)]:

from TTT,

ment can readily be extended to SU(4)c. Consider
that the fermion composites must ultimately acquire
mass through some symmetry-breaking process.
These particles would then have to become Dirac
particles and they would have mass terms which
take the form

M =Mp+AI2(R), (5.33)

where Iq(R) denotes the eigenvalue of the second-
order Casimir invariant for an irreducible represen-
tation R of SU(4)c. As shown in Appendix 8, the
higher-dimensional representations of SU(4)c have
larger eigenvalues for I2(R) than does the basic rep-
resentation. A similar argument cannot be applied
to the weak exotic (4,2,3)L and this is still an open
question.

VI. GENERAL CONCLUSIONS

The popular grand unified groups —such as SU(5)
and SO(10)—achieve unification of the strong, elec-
tromagnetic, and weak interactions at a mass of the
order of AG~T-10' GeV. Unfortunately, these
GUT's do not explain the proliferation of quark and
lepton generations. We also know that quarks and
leptons exhibit no structure down to 10 ' cm
(-10 GeV). The region between 10 and 10' GeV
is therefore terra incognita (desert or otherwise) and

may just accommodate a composite preon model
that both gives structure to the quarks and leptons
and predicts the right number of families (at least
three).

In this paper, we have examined the group-
theoretic consequences of the preon model under a
number of plausible assumptions spelled out in Sec.
I. Despite our very restrictive assumptions, we do
find two GUT preon models and one PUT preon
model satisfying all our conditions. We manage to
do so because we can ensure the masslessness of
quarks and leptons on the metacolor scale
(AMC»10 GeV) via a mechanism (gauged chiral
subgroup or discrete symmetry) other than con-
sistency with 't Hooft's anomaly condition. '"

The two permissible GUT preon models are
SU(3)(MC) X SO(10)(CF) and Fq(MC) XSO(10)(CF).
The first model works with two basic preon chiral
representations: T = (3, 16)L and V = (3,16)L and
the composite three-fermionic objects defining
quarks and leptons are (TTT}L, (TV V)L, , (VT T)L, ,
and (VVV)L, . With the use of the Pauli principle
generalized to the metacolor degree of freedom, the
number of massless quark and lepton generations is
four. The second model only requires one basic
preon chiral representation V=(26, 16)L. There are
three generations of quarks and leptons arising from
(VVV)L and (VV V)L. In both GUT preon models
(particularly the first), the rate of decrease of the
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metacolor coupling constant is so slow that the
asymptotic energy region for metacolor would be
higher than the Planck mass (-10' GeV) and
hence both GUT models are highly unlikely.

The only PUT preon model satisfying our condi-
tions is E6(MC) X SU(4)c XSU(2)L XSU(2)z with
T = (27,4,2, 1)i and V = (27,4, 1,2)I . Precisely
three generations of quarks and leptons are predict-
ed from (TTT)z, (TVV)L, (VTT)z, and (VVV)L.
The generations are exact copies in the sense of the
G(CF) representation, but differ in their composi-
tions, thereby opening up the possibility of different
masses for the three generations when the original
preon symmetry is broken. The asymptotic behavior
of the metacolor constant in the PUT model is
much faster (even faster than in QCD) than in the
two GUT models. For this reason alone, the PUT
preon model is the most promising of all three
models.

Several interesting consequences of the PUT
preon model —with regard to scalar preon conden-
sates, higher-dimensional exotics, etc.—were pointed
out in Sec. V D. Here we note some features of the
model which are especially challenging. (1) The
metacolor group G(MC) is E6 and only its sym-
metric part [the reverse is true when G(MC) is
SU(3)] contributes to the total antisymmetrization
(generalized Pauli principle) of the metacolor,
color-favor, and spin degrees of freedom; this im-
plies that the PUT group SU(4)c X SU(2)I XSU(2)ii
(with the metacolor state now singlet) for the
quark-lepton three-preon composites automatically
obeys the Pauli principle for the color-flavor and
spin degrees of freedom. (2) The quark-lepton com-
posites belong to representations (albeit different) of
the same color-flavor group as do the preon repre-
sentations. Perhaps this is an indication that there
will be no need for pre-preons, etc. (3) A PUT
preon model exists that satisfies all of our conditions
except the limitation to a maximum of two chiral
preon representations. It is SU(3)(MC) X SU(4)c
X SU(2)L, XSU(2)R with the three chiral preon repre-
sentations (3,4,2, 1)L, (3,4, 1,2)L, , and (3, 1, 1, 1)I .
The last representation (there are 16 of them) is
needed to cancel anomalies on the metacolor level
when SU(3)(MC) is used. However, the number of
preonic degrees of freedom is increased to such an
extent that asymptotic freedom is barely achieved
(B = —,) as in the GUT preon model SU(3) XSO(10),
and the objection is the same. A small number of
chiral preon representations is mandated by the con-
dition of asymptotic freedom for the metacolor
group. (4) 8 L is a generat—or of the PUT preon
group (the two candidate GUT preon groups share
this property) and therefore can be a broken local
symmetry. (5) Color-flavor asymptotic freedom

does not hold —in contrast to metacolor asymptotic
freedom —for the preons in the PUT model. This
may be connected with the fact that it is not possible
to have a "meta-GUT" group, i.e., to unify E6(MC)
and SU(4)c XSU(2)L, X SU(2)ii because an excep-
tional group of sufficient rank does not exist. The
color and flavor coupling constants could then be-
come large at the preon level and new physics would
be indicated. Of course, color and flavor asymptotic
freedom still holds for the preon composites which
comprise the quarks and leptons. (6) Crucial experi-
mental tests of many of these ideas would be the
detection of neutron oscillations and the observation
of deviations from the structureless character of
quarks and leptons.
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APPENDIX A: NONBASIC REPRESENTATIONS
OF METACOLOR GROUPS SATISFYING

RXRXRD1

If we do not limit ourselves to basic representa-
tions, then any metacolor group can have a represen-
tation R which satisfies R g R XR D 1. Candidates
are those with C(R) as follows:

C(R)=ml (m =0, 1,2) (mod 3l) for SU(3l),

C(R) =0 (mod n) for SU(n) (n )2),

C(R)=0 (mod 2) for SO(2n+1) (n)3),

C(R)=0 (mod 2) for Sp(2n) (n)2), (A 1)

C(R) =(0,0) (mod 2, mod 4) for SO(2n) (n )4),

C(R) =0 (mod2) for E7,

C(R)=any for E6, Es, F4, G2 .

Note that the condition is only necessary. For
groups SO(2n +1). SO(4n), Sp(2n), E7, Es, F4, and
62 and real or pseudoreal representations of SU(n),
E6, and SO(4n +2), it is enough to look for R which
satisfies the relation that R XR DR. For example,
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SO(7} with 21,27, . . . ,

So(8) with 28, . . . ,

SO(9) with 36, . . . ,

SO(10) with 45, 54,210,. . . ,

Sp(4) with 10,. . . ,

E7 with 133,. . . .

APPENDIX B: EIGENVALUES OF I2(R)
FOR ARBITRARY 8 OF SU(X)

(A2)

Then we have

(85)

we have

'(R)=/I' '(R' )
d(R') d(R,q )

d(R) d(R,'„)
Q.E.D.

Hereafter, we use the normalization of I2 '(R) of
SU(2) as

We express the eigenvalues of the second-order
Casimir invariants of SU(N) in terms of those of
SU(M) (M &N). Thus, we can calculate all eigen-
values of the second-order Casimir invariants of
SU(N) in terms of the SU(2) values, which are easy
to calculate. Although the general expression for
eigenvalues of the second-order Casimir invariants
exist, ' the method below is greatly simplified.

Lemma. The eigenvalue of the second-order
Casimir invariant for an irreducible representation R
of SU(N) can be expressed in terms of those of
SU(M) (M &N), using the branching of R(SU(N))
into (I)JRJ' (SU(M) ) as follows:

Ip (R)= Ip (RJ )
()v) (~) d (RJ' ) d (R&a) )

d(R,'a;)
(81)

where d(R) is the dimension of R and Iq(R) is the
eigenvalue of the second-order Casimir invariant.

Proof. We denote generators of an irreducible
representation R, of SU(N) by X&
[p = 1,2, . . .,(N 1)]. Then we—have

(82)
d R,a,

where gz„ is the Killing form'9 and

I2 '(R)=g&~)'X". We embed SU(M) in SU(N)
(M &N) such that X [a=1,2, . . . , (M —1)] become
generators of a reducible representation of SU(M).
Then, Eq. (A2) holds for SU(M) also, if we limit the
indices to those of SU(M). Multiplying by g P

[a,P =1,2, ,(M —1)],we have

(I I I) = P, [, (I I I I) = ~~ (86}

since d(R,e) )=15 and d(R,'e&) =3. We calculate the
eigenvalues of the second-order Casimir invariant of
SU(4) for the representations we use in the text. The
branchings of these representations are

CI ~ CI ~ Z1,
I I I ~

I I I + 2Q + 31

I I I I ~ I I I I+ Pl I I+ 3 ++41, (88)

P I I 1+ 5Q + 41

I I I+ 4I I I+ (Q+ gl

Therefore, we obtain

I, (g}= '~, I, (CZ])= ~, I, (( ( ( ()= (),
(89)

Evidently, the lowest value corresponds to the basic
representation.

To express the SU(4} eigenvalues in terms of the
SU(2) quantities, we use

I2 '(R)=5+Ig (RJ )d(RJ )Id(R)

g WrX Xi) —— I2 (R)g g p .()v) ay
d R,g)

(83)
APPENDIX C: ANOMALY

COEFFICIENTS A ~ '(R)
FOR ARBITRARY R of SU(N)

g TrX X~=QI2 '(RJ')d(RJ') . (84)

Using the fact that

g ~g~~ d(R,' )[ea,P=1,2——, . . ., (M —1)]

Since R branches into jRj where R& are irreduci-
ble representations of SU(M), we have We show how to calculate the anomaly coeffi-

cients A' '(R) for arbitrary R of SU(N) in terms of
those of SU(3). Although the general expression for
A' '(R) exists, the method below is easy for quick
calculation.

We define the anomaly coefficient A' '(R} for an
irreducible representation R of SU(N) as follows:
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Tr[X {Xp,XrI)=d prA(R), (Cl)

where d~p& is totally symmetric and X~ is an ele-
ment of the SU(N) Lie algebra in the representation
R. From the definition, it is easy to derive the fol-
lowing:

since N =3+(N —3)1.
For example, we calculate A' '( , N—(N+1)),us-

ing Eqs. (C2)—(C7). Using the branching

—,N(N +1)=6+(N —3)3

A (1)=0,

A (R)= —A (R),

A QRJ ——gA (RI ),

A (R ) XR2) =A (R t )d (R2)+A (R2)d (R ) ) .

(C2)

(C3)

(C4)

(C5)

we obtain

+ —,(N —2)(N —3)1

However, we have

A'"'( —N(N+ 1))=A'"(6)+(N —3) &'"(3)

(C8)

A'"'(R) =+A"'(R,')
J

(C6)

since we use the embedding of SU(3) into SU(N)
such that X (a = 1,2, . . .8) out of X
[ct = 1,2, . . .(N 1)] becom—e generators of a reduci-
ble representation of SU(3). From Eq. (C4), we im-

mediately obtain

Using these formulas, we can calculate all anomaly
coefficients of SU(3), starting from the basic repre-
sentation.

The calculation of the anomaly coefficients of
SU(N) can be reduced to that of SU(3), using the
branching of R (SU(N)) into SJR~'(SU(3)). We ob-
tain

A'"(3 X 3)=A'"6+A "(3)

while

=A' '(6) —A' '(3)

A"'(3 X 3)=2A"'(3)d(3) .

Thus,

A' '(6)=[2d(3)+1]A' '(3)

=7A' '(3) .

Combining Eqs. (C7)—(C9), we have

A' '( , N(N+1—))=(N —3+7)A' '(3)

(C9)

A' '(N)=A' '(3) (C7) =(N+4)A'"'(3) .
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