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Consideration is given to some experimental tests of the Kobayashi-Maskawa model of
weak interactions for the case in which the CP-violating effects could be expected to be

maximal, that is, 6 =m /2. A reanalysis of the model is carried out to verify that 5 =m /2 is

consistent with existing data. In addition to the usual contributions of the high-energy

quark box diagram, this analysis takes into account low-energy dispersive terms, which de-

pend on the energy boundary p. Double penguin diagrams are also shown to give a signifi-

cant contribution to Am, depending on p. Fitting of the result for Am(p) to the measured

mass difference leads to p=1 GeV, if the top-quark mass m, &45 GeV. This places an

upper limit on m, since, for larger m„ the calculated hm is too high for all p. The results

of the analysis are applied to the dilepton asymmetry in B, B production by e+e col-

lisions and similar effects that can be obtained by comparing antineutrino with neutrino

production of dileptons. When large asymmetries are found to occur, the rate is found to be

hopelessly small because interference effects are suppressed. Large interference effects can
occur if the parameters are chosen appropriately, but then the asymmetry is only 1 or 2%.
It is also found that interference effects between T and T are enormously suppressed for
any choice of the parameters.

I. INTRODUCTION

The six-quark model of the weak interactions sug-
gested by Kobayashi and Maskawa' places the bur-
den for CP violation on a relative phase of terms in
the weak current connecting quarks of different
families. Although the CP-violating effects that
have been observed are quite small, they do not in-
volve the heavy quarks directly and it is conceivable
that larger effects might be found in experiments on
phenomena for which the heavy quarks play a direct
role. If larger effects were to be found, they might
provide additional opportunities to investigate the
elusive origins of the CP violation, a possibility
deserving close attention because of the fundamental
nature of the CP and time-reversal symmetries.

In any model, the term in the effective Hamiltoni-
an leading to CP or T violation is "imaginary" in
the (Wigner) sense of time reversal. That implies
the introduction of a complex phase between terms
in the Hamiltonian. For the Kobayashi-Maskawa
(KM) model, the phase factor e' is introduced in
the quark currents as one of the parameters in the
unitary Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix relating the quarks of different families. The
three other parameters in the matrix are the
Cabibbo-type angles 0&, 02 93.

Since CP violation is determined by the imaginary
part of the effective Hamiltonian, it is clear that sine

5 will provide a measure of the effects to be expect-
ed from the KM model. The largest effects then
correspond to 5=tr/2, and we refer to this as the
case of "maximal CP violation" within the context
of the model. Because it offers the "best" experi-
mental situation that one may hope for within the
context of the model, the case of maximal CP viola-
tion appears to us to warrant special attention. If
the calculated effects for a particular experiment
should turn out to be large the experiment will pro-
vide good opportunities for testing the KM model in
some detail. On the other hand, if the estimated ef-
fects are small even for 5=m. /2, it is unlikely that
the experiment can provide detailed information.

Before any such tests are considered, it is neces-
sary to confirm that the assumption 5 =n /2 is con-
sistent with existing information on the weak in-
teractions. There have been several analyses of the
limitations imposed on the CKM matrix by experi-
mental data under a variety of assumptions and ap-
proximations. Generally, these allow a range of
values of 02, 03, and 5, including in some cases the
possibility 5=~/2, although much of the emphasis
has been placed on small values of 5 to account for
the small value of

~

e
~

. However, there are many
uncertainties in such analyses because exact calcula-
tions of hadronic effects are not available. We find
that there are two qualitative aspects of the deter-
mination of the EL Ez mass differen-ce b,m that
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have not been included in the analyses that should
be taken into account if one is to have confidence in
the main features of the results. One of these is a
severe constraint that can be placed on the low-
energy (long-distance) contributions to the dispersive
term in the mass matrix, which has been neglected
without adequate justification or treated as an un-

determined parameter in other analyses. The other
is the effect of the high-energy (short-distance) con-
tributions of double penguin diagrams, which can-
not be ignored if, as some authors have suggested,
the single penguin diagram makes a significant con-
tribution to the Es decay amplitude. Of course
none of these contributions can be evaluated exactly,
but it is important that each be estimated at about
the same level of plausibility.

The purpose of this work is to reconsider these
analyses of the parameters in the CKM matrix for
the interesting special case 5 =m/2, ta.king compar-
able account of each of the contributions, and to ap-
ply the results to obtain an estimate of CP violation
in several types of high-energy experiments. The
determination of the parameters leads to two new re-
sults: (1) the lower limit ("infrared cutoff') of the
region of asymptotic freedom is constrained to be
about p= 1 GeV by the condition imposed on the
dispersive term, and (2) the introduction of the dou-
ble penguin diagram leads to an upper limit on the
mass of the t quark, m, & 45 GeV.

A generic analysis of possible high-energy experi-
ments on CP violation has been carried out by Pais
and Treiman and several authors have considered
specific tests on the 8-meson or T-meson systems.
The most promising of these appear to be measure-
ments of the charge asymmetry in the production of
like-charge dimuons. The earlier analyses have been
repeated here using values of the parameters that
emerge from our assumption of maximal CP viola-
tion.

The experiments usually considered for this pur-
pose would make use of e+e collisions to produce
the dimuons. We call attention to the fact that
dimuons produced by neutrinos and antineutrinos on
a heavy target may also be used for this purpose.
The ratio of the dimuon charge asymmetries for the
neutrino and antineutrino experiments provides a
measure of essentially the same parameters as those
obtainable from the e+e experiment.

II. THE DISPERSIVE TERM
IN THE MASS MATRIX

The essential experimental constraint on 5 is the
experimental value'

~

e
(
=2.28X10-'

of the parameter measuring the CP-violating admix-

ture of K and K states in EL. An additional con-
straint is imposed by the measured value of the EL-
Es mass difference

dm =0.48rs (2)

where I s is the total decay rate of Es. Use is also
made of the result

arge =P,
where

P =arctan(26m /I s ) =—.
4

(4)

The quantities e and hm are directly related to
the mass matrix M which is to be expressed in
terms of the parameters of the CKM matrix. If we
introduce the notation ~K )=

~
1), ~K )= ~2),

then

and

6 =(M)2 —M2))/2(ZS —Zg )

and

M = —,(m+m'), (8)

where M ~ is the Hermitian conjugate of M.
The phenomenological mass matrix can always be

expressed in terms of an effective weak Hamiltonian
H„by means of the Weisskopf-Wigner perturbation
theory. " In general, H„ is made up of two terms, a

~

b,S
~

= 1 contribution H' ' and a
~

hS
~

=2 contri-
bution H~ ', where S is the strangeness. The contri-
bution of H'" to the mass matrix arises through the
virtual decay amplitudes

A,'(E)=(c, out
~

H"'
~

1)[2n.p, (E)]' e sc' '

(9a)

and

A, (E)= (c, out
~

H'"
~
2) [2n p, (E)]'~ e ' c' ',

(9b)

where E is the energy in the decay channel
~
c),

p, (E) is the density of energy states in that channel,
and 25, (E) is the eigenphase of the strong-
interaction S matrix for channel c. Then, if we let

—5m =ms —mL ——M$2+M2],

when corrections of order e are neglected. Here, Zs
and ZL are the eigenvalues of M associated with the
Eq and EL, states:

1zs=ms ——)rs
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a,P = 1 or 2, the mass matrix has the form
1

~ap =Map ——,«&p

with

A, (E)AP(E)
M~p= — QP J dE

C

U, .C,t

,c,t

where P denotes Cauchy principal value, and

I p= gA, (mx)A~(mx) . (12)

From Eq. (6) it is evident that b,m depends on a
dispersive term as well as a ES=2 term. The
dispersion integral depends on the virtual decay am-
plitudes A, (E) to all channels at all energies and
early attempts' to calculate it were impaired by the
apparent divergence at high energy of contributions
arising from channels with increasing numbers of
particles. However, for the effective Hamiltonian
produced by the six-quark model, the Glashow-
Iliopoulos-Maiani (GIM) mechanism' guarantees
the rapid convergence of these amplitudes and the
dispersion integral will contribute to Am only over a
range of energies below the mass of the heaviest
quark. Therefore the dispersive contributions at en-

ergies above p may be obtained by using the usual
effective AS=2 Hamiltonian, while the low-energy
part can be estimated reliably by inserting the mea-
sured decay amplitudes in the integral. This pro-
cedure yields a reasonably unambiguous dispersive
term depending only on the choice of the cutoff en-

ergy.
The dispersive contribution, which turns out to be

of order —,Am, must be taken into account because it
is the outcome of the most general principles of
quantum mechanics (or, of course, quantum field
theory' ) for any decaying system. Although others
have included it as an adjustable parameter, as sug-
gested by Wolfenstein, in their evaluations of the
CKM parameters, we find that there is little room
for adjustment. The fact that its value is appreci-
able for a cutoff as low as p =1 GeV acts as an im-
portant constraint on the CKM parameters.

In the KM model, contributions to M from quark
energies above p, the lower bound on the domain of
asymptotic freedom, can be estimated by the method
of Gaillard and Lee, ' which makes use of the box
diagram, Fig. 1, to obtain, in effect, a

~

b,s
~

=2
weak Hamiltonian. Strong interaction corrections to
this H' ' have been considered in the limit of
asymptotic freedom by Gilman and Wise, ' who
have shown that its magnitude is markedly reduced

FIG. 1. Standard box diagram for the K ~K mass
matrix element M».

in the leading-logarithm approximation. A com-
plete description of the strong-interaction correc-
tions would take account of all possible quark-loop
insertions inside the box of Fig. 1 and, in part, they
include confined quarks which are outside the
asymptotic freedom limit and correspond to virtual
hadron states which should be included in the
dispersive term in Eq. (11). See, for example, Fig. 2.

We shall make the assumption that the unadorned
box diagram includes both the "pure"

~

bS
~

=2
contribution (the reduced value given by Gilman and
Wise) and the high-energy contributions to the
dispersive term. In essence, we are conjecturing a
sum rule to the effect that the result of making all
quark-loop insertions in the box and introducing all
gluon corrections and confinement effects is about
the same as that obtained from the skeleton. Since
the conjecture applies only to the high-energy con-
tributions, the error in our final result should not be
large both because we will find that the resulting
contribution to the mass matrix is only a fraction of
the low-energy contribution and because the GIM
mechanism sharply limits the contributions of all of
these high-energy diagrams.

Our procedure, then, is to take over the work of
others on the simple box diagram to obtain contribu-
tions to M from the range of energy above the "in-
frared" cutoff p and to carry the dispersion integral
up to energy p. The appropriate choice of p is

FIG. 2. Schematic of a box diagram modified by a
quark-loop insertion. In the nonperturbative (infrared)
limit such diagrams become entangled with two-meson
dispersive terms.



27 MAXIMAL CP VIOLATION IN THE SIX-QUARK MODEL

determined by joining the two contributions (and a
third from the double penguin diagram) smoothly
and fitting the result to the measured value of hm.

To evaluate the amplitudes appearing in the
dispersion integral we note that the effect of con-
finement presumably dominates any calculation of
the low-energy contributions of the quark currents.
Therefore, we should be able to estimate low-energy
decay amplitudes by treating the quark field opera-
tors as interpolating fields for constituent quarks, in
the spirit of a bag model. ' At small values of E,
the matrix elements appearing in the amplitudes Eq.
(9) can be expected to be nearly independent of ener-

gy because they depend primarily on geometrical
factors resulting from the overlap of the constituent
quark states. Hence, for 0&E &p, where p is the
limit of "low energy, "A, (E) can be replaced by

A, (E)~A, (m»)[p, (E)/p, (m»)]'

—,(p/2m~) +(m»/2m )(p/2m~)
Xmas (p)= —Am

(m»/2m )[(m»/2m~) —1]'

(17)

A similar estimate of the 3~ contribution to hm can
be made by making use of the measured 3m decay
rate of Kl . Although the rate is very much smaller
than I s because of the small density-of-states fac-
tor p3g (E) increases with E much more rapidly than
pz (E) so that the ratio hm3 (p) to b,mq (p) grows
rapidly with p. However, it turns out that at p=1
GeV the ratio is still only about 2%, and this contri-
bution can be neglected.

The one-particle contributions have been estimat-
ed by Itzykson, Jacob, and Mahoux' in terms of I &

by making use of soft-pion theorems and (to include
the rl channel) SU(3) mixing coefficients of the m

and g states. %e take over their result:

0 &E &p, (13) 4m 0+km& ———1.446m . (18)

in which A, (m») is the observable decay amplitude
and p, (E) the density of states. The corresponding
contribution to the dispersive term in the mass ma-
trix can thereby be obtained with a reasonable degree
of reliability.

Since it will turn out that p =1 GeV, the only am-
plitudes that contribute to the dispersive integral are
the one-particle amplitudes A o and Az, the two-

pion amplitudes Al, where I=0,2 is the isotopic
spin, and possibly, the dominant part of the three-
pion amplitude A3

Since the 2m decay mode is dominant, we first
consider the contribution of the I=0 and I=2 am-
plitudes to the dispersive term in M12 and M21, to
terms of order e. From the CPT theorem it fol-
lows' that Ai =21' and then, from Eq. (13) we find
that this dispersive term is

D = — P (E)
2m pq~(m») 0 E m»—

The sum of the terms of Eqs. (17) and (18) is the
dispersive contribution expressed in terms of the
measured mass difference b,m.

III. HIGH-ENERGY CONTRIBUTIONS
TO THE MASS MATRIX

Vud Vu. Vub

V= Vd V„Vb

Vtb

(19)

where the subscripts refer to quark flavors up,
down, etc. In the standard KM notation (with/2).

The short-distance contributions, i.e., those for
E & p, , to M~q lead to an effective

~

bs
~

=2 Hamil-
tonian H~ ' that arises from quark currents governed
by the CKM unitary matrix

m 'IS AQ2+A22 (15)

Since

where use has been made of the experimental results,
Eq. (2), in the approximate form

Vud —C1 ~ Vus $1C3 ~ Vub 1$3

Vcd = —$1C2~ Vcs =C1C2C3+l$2$3

Vcb =C1C2$3 —l$2C3 y Vtd —$1$2,

Vts C1$2C3 EC2$3

Vtb c1$2$3 +Lc2c3

(20)

pq (E)-E(E 4m )'~—
the integral in Eq. (14) can be evaluated in closed
form. The result to leading order in p/2m, when
inserted into Eq. (6), yields the contribution of the
2m amplitude to hm

where c; =cos8;,s; =sin0;. Because of our assump-
tion of maximal" CP violation, the KM phase 5
has been set equal to a/2.

The original treatment of the box diagram, Fig.
(1), by Ellis, Gaillard, and Nanopoulos led to an ef-
fective Hamiltonian Hb,„——CEJA (in the notation of
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Shrock and Treiman ) where WqJ is an operator on
quark fields and

Q 2

2g 2+ 2g 2

16

with

2Ac~~mc

1 —m, '/m, '
m,

mc

(21)

A,g
——V„g Vg„)t,, = V,d V,"„A,, = V,d V,', ,

A,„+A,, +A,, =O .
(22)

box 2 2Mzi = , fx ~xc— (23)

where fz is the kaon decay constant fx -1.23m~.
The possible importance of contributions arising

from the double penguin diagram, Fig. 3, which is
topologically distinct from the box diagram, to an
analysis of the mass matrix has been suggested by
Hill on the basis of the argument that penguin dia-
grams may make a significant contribution to the
two-pion decay amplitude. He considered the low-

energy contributions of this type of diagram, treat-
ing them as contributions to the dispersive term just
as has been done here.

Note that the term depending on the "infrared cut-
off' p is so small as to be neglected for the range of
parameters considered here. This is an excellent ap-
proximation because m, /m„ is so large.

We adopt the result of the bag-model'7 calcula-
tion of the matrix element by Shrock and Treiman
to obtain, in round numbers,

FIG. 3. Double penguin diagram for Mz&.

Strong-interaction effects on the high-energy con-
tributions to the "bare" single penguin diagram have
been considered in some detail, especially by Gilman
and Wise, and by Guberina and Peccei. ' In addi-
tion to corrections of this kind to the double
penguin of Fig. 3, there are quark-loop corrections,
such as those associated with Fig. 4 and these clear-
ly include dispersive terms associated with a great
variety of virtual states. Again, in the spirit of our
treatment of the box diagram, we assume that the
effective

~

AS
~

=2 Hamiltonian obtained from tne
high-energy contributions to the bare double
penguin diagram, Fig. 3, includes both the (high-
energy) dispersive term and the actual

~
bS

~

=2
term.

In contrast to the case of the box diagram, the
large contributions to the integral over the quark-
gluon loop arise from the low-energy end of the
range, and the result depends sensitively on the in-
frared cutoff p. The contribution to the effective

~

bS
~

=2 Hamiltonian is

Hp, „'s D f d x s(x)——y„(1 y5)T'T d(x)s—(x)y "(1 y5)T T'd(x)—+H.c. , (24)

where"

2 2GF 2 mcD= m, A ln
18(4m. ) p

2

m,—A,,ln
mc

(25)

The T' are the eight 3&3 matrices representing the
generators of color SU(3).

Since the matrix element is taken between color-
singlet states, only the color-blind part of the opera-
tor, having the same color structure as Hbpg w'ill

contribute and it can be expressed in terms of Mz&".

MP" /D = —,Mg'"/C (26)

Then from Eq. (23) based on the bag-model calcula-

FIG. 4. A quark-loop schematic correction to the dou-
ble penguin diagram corresponding, as in Fig. 2, to a
two-meson dispersive term in the nonperturbative limit.
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tion of Shrock and Treiman, we find, again in
round numbers,

(27)

There is no contribution to I &z from either the
box or the double penguin diagrams. Therefore Eqs.
(23) and (27) provide the required information on
the high-energy part of the mass matrix.

IV. EVALUATION OF CKM MATRIX ELEMENTS.

The parameters in the CKM matrix are evaluated
by fitting the theoretical expressions Eqs. (5) and (6)
for e and b, m to the experimental values, Eq. (1), (2),
and (3) under the assumption (3 =m /2, that is, using
Eq. (20). First we note that, since M

~
and I tt are

Hermitian, Eq. (5) may be rewritten as '

[i ItnM21+ iml 21]~[~m+ i(l s —I L. )1

not very sensitive to the value of p. A reasonable
guess is rM=1 GeV, and that will be used here. Ac-
tually we will determine p from the fit to hm and it
will be seen that this is a good guess. ImC and ImD
may be obtained from Eqs. (21), (22), and (33) to
yield a cubic equation for sq. Solutions are present-
ed in Table I for the central value s& ——0.28 and, for
comparison, s q

——10
By making use of these values of sq, we may now

express Am as a function of m, and JM by adding to-
gether 6mb, „,Am~, „g, and the dispersive term. The
expression for 5mb, „given by Eqs. (6) and (23) is

6mb, „———
3 fx mkReC, (34)

which is independent of JM and essentially indepen-
dent of m, over the range of interest because of the
very small values of s& . We find, for
10&m, /m, &30,

6mb, „——0.3146m . (35)

From the experimental result, Eq. (3), it can be con-
cluded that

According to Eq. (18) the value of b, m o+hm„ is
also independent of m, and p. Therefore,

Imr3i
I
«

I
imM21( . (29) b,m(p) =b,mp„(p)+b, mp, „s(p)—1.246,m .

and

i
ci

i

=0.974+0.003 (30)

~

sic3
~

=0.22+0.002

from which we take the value of s i to be

But our analysis of the dispersive term shows that
the long-distance contributions to Mq~ are of the
same order as I zi. Therefore, we conclude from Eq.
(29) that, in calculating ImM3i, the long distance-
dispersive contribution to Iraq~ is negligible, and
only the terms arising from the box and double
penguin diagrams need be included.

As a starting point for determining the parame-
ters, we take the Cabibbo fit of Shrock and Wang

(36)

The expression for bmoc~(p) is Eq. (17) and that
for bm„,„s(p) obtained from Eqs. (6) and (27) is

Amp, „s(p)= , ftt mttReD—, (37)

where D is given by Eq. (25). The function bm(p)
given by Eq. (36) is shown in units of the experi-
mental value of b m as the set of curves in Fig. 5 for
the values of m„sq, and s~ given in Table I. The
only values of p that are consistent with the mea-
sured hm are those corresponding to the intersec-
tions of the curves with the horizontal line corre-
sponding to hm =1.

The horizontal band is shown in Fig. 5 to give
some indication of the sensitivity of the results to

s i
——0.23

and the upper limit on s& to be

s& &0.42

(31}

(32) TABLE I. Values of sq ——sin8& determined from
~

E
~

for various values of sq and m, .
with a central value sg -0.28.

The first step is to determine sz by fitting Eq.
(28), which reduces to

sg

(GeV)
sp

2 sc mlc
(33)

0.28 15
30
45

06X10 ~

0.18X 10
0.15 X 10-'

to Eq. (1}. For this purpose we take m, =1.5 GeV
and evaluate sz as a function of m, . Since ImC is
independent of the infrared cutoff p, and ImD has
only a logarithmic dependence, the values of sz are

10 15
30
45

0.13
0.67 X 10
0.39X 10
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1.50—
by setting c& ——c2 ——c3 ——1. Then we find the matrix
(unitary to first order in s;)

l.25— V= —si

$)

1

$)$3

$3 —LS2 (39)

1 00 PEEP
ÃEPZY/i

—S )$2 S2 —l$3

where we have also set s2s3 ——0 since, according to
Table I,

Q.75—
fTl $2$3 & 1.8&& 10 (40)

0.5Q—
m

0.25—

I

0.8
i

1.0

p. (Ge(t)

I

l.2

FIG. 5. Sum of contributions to hm, Eq. (36), in units

of the measured value, given as a function of the infrared
cutoff p. The shaded band corresponds to an uncertainty
in the calculation of +10%.

m, &45 GeV. (38)

This limit also depends on m„which has been taken
to be m, =1.5 GeV, but it does not scale with m, as
might have been expected because of the important
contribution from the low-energy terms.

The important consequence of assuming maximal
CP violation is the way it affects the form of the
CKM matrix V. Since s&, s2, and s3 are small we
can expose the important qualitative features of V

corrections. The width corresponds to a variation of
+10% in Am. The curves are shown for s3 ——0.28
but the shift in the curves for the alternate choice
$3 —10, is insignificant.

All of the intersections shown correspond to p = 1

GeV, in good agreement with the usual estimate of
the limits of the small-distance approximation. The
stability of the result is particularly gratifying.

Because of the p dependence of b,m~, „s, there is a
minimum in each of these curves (note that the ori-
gin of the p scale is not shown) and the position of
this minimum depends strongly on m„because of
the strong m, dependence of Am. p g

As a result,
for m, )45 GeV there is no intersection. Therefore,
within the context of the model, an upper limit can
be placed on m, of

Of particular interest is the fact that, aside from
corrections of second order in s2 and s3, the diago-
nal element V~b is purely imaginary. Also, V„ is

nearly imaginary if s3 is close to its maximum and

V,b is nearly imaginary if s3 is very small. These re-

sults, taken along with the small size of Vt~ and V„b

suggest that the Cabibbo-type mixing of top and
bottom quarks with the other flavors is rather small
but that, for some reason, the unmixed top and/or
bottom states are out of phase with states carrying
the other flavors. Confirmation of this characteris-
tic would surely have important implications con-
cerning the origin of CP violation.

V. IMPLICATIONS FOR SOME EXPERIMENTS

Experiments that might be expected to manifest
substantial CP-violating effects on the basis of the
CKM matrix Eq. (39) are those involving b and t
quarks directly. Such experiments also would pro-
vide a direct determination of the parameters s2 and

s3 for comparison with the entries in Table I. One
measurement bearing on the value of s2/s3 would be
the determination of the probability of B,B mix-

ing, which is governed by a mass matrix M analo-

gous to M for the E,IC system. Okun, Zakharov,
and Pontecorvo have noted that a measure of the
degree of mixing of D,D is given by the ratio of
the number of like-charge dilepton (l, l) events to
the total number of dilepton events in the produc-
tion of D,D pairs in e+e collisions and the same0 —0

can be said of the dilepton events in B,B produc-
tion. It should be remarked that dilepton events re-
sulting from the production of B +l by neutrinos
or B +I+ by antineutrinos may be used in the same
way.

The ratio of like- to unlike-charge dileptons is
roughly proportional to (bm~/I' s) which can be
estimated by means of the calculation of the box di-
agram by Hagelin. We find that for a CKM ma-
trix of the form Eq. (39)

ma 1 m~ m~ 1 Si s2 2 2 2

, +ln
mg mg 3 $2 +$3

(41)
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N(1+1+) N(1 1 —)

N(1+1+)+N(l 1 )
(42)

in the dipleton production through B,B pairs serve
as an especially sensitive measure of the phase in the
CKM matrix. If one writes

which is very sensitive to sq/s3, varying from infini-
tesimal values at sz/s3 «1 to values of the order of
2 (m, /10mii) for s2/s3 & 1. Thus for our solutions

in Table I, the case s3 ——0.28 mould correspond to no
detectable like-charge dilepton production. On the
other hand, the solution for s3 ——10 corresponds to
a like-charge dilepton rate ranging between 0.5 and
50%, depending on the value of m, /ms.

The direct test of our assumption of maximal CP
violation is, of course, a measurement of CP viola-
tion. Pais and Trieman have carried out a generic
analysis of possible tests making use of charmed
particles. Several authors have considered specific
tests on the B-meson system. In particular, Carter
and Sanda, and Hagelin have emphasized that the
absorptive contribution to the mass matrix makes
the like-charge asymmetry

and

ImM I2Rel I2 —ReM IzImI &2

B B B
x=-

B B
I
~iz~zi

I

(48)

VI. CONCLUSION

We have already seen that for s3 ——0.28 the in-
terference effects are expected to be extremely small
in the KM model. For the other case we have con-
sidered, s3 ——10, both the asymmetry a for the
e+e experiment and 8 —1 for the neutrino experi-
ment turn out to be of the order of 1 or 2 Vo.

One might expect the situation to improve for
T,T production because of the large imaginary
matrix element V,b. CP and T--violating effects for
this process have recently been considered by
Cheng. Unfortunately, just because the magnitude
of V,b is large, the decay rate I r is very large com-
pared to hm, which is suppressed by a factor of
(mb lmz. ) because of GIM cancellation, and by
factors of s;. Therefore tests of CP depending on
To Tinter-ference effects do not appear to be feasi-
ble within the context of the KM model.

a a ~ aMp ——Mp ——I p2
(43)

in analogy with Eq. (10), it is not difficult to show

ReM I2ImI I2 —IrnM I2ReI I2
B 8 B 8

a= 2

I ~iz I

'+ —I i2
2

(44)

Another method for getting at this important in-
terference effect is to make use of the production of
dileptons through 8 or B states by neutrinos or
antineutrinos, respectively. The quantity of interest
in this case is the ratio

[N(1+1 ) N(l 1 )] [N—(1+1 )+N(1+1+)]
[N(1+1 )+N(l 1 )] [N(1+1 ) N(1+1+)—)

'

(45)

where N and N are rates of dilepton production by
neutrinos and antineutrinos, respectively. This ratio
is given in terms of the phenomenological parame-
ters by

(1+aiba')+ (1 ag')X—8=
(1+ag ) —(1—ag )g

(46)

I
a& —11 =(b,m, /I' s)', (47)

where O,z is the parameter measuring the amount of
B Binterference in th-e notation of Pais and Trei-
man,

It has been found that the condition 5=m/2 for
maximal CP violation in the KM model is in good
accord with existing experimental data. That this
result is not at the outer edge of the range of accept-
able values of the parameters in the CKM matrix is
a direct consequence of our result that the long-
distance (low-energy) dispersive contributions to the
mass matrix of the K -K system calculated
phenomenologically as a function of p, the lower-
energy bound of the quark field perturbation treat-
ment, are large. The value @=1 GeV obtained by
fitting b,m(p) to the experimental value is eminently
reasonable.

In making this fit, we have included a rough esti-
mate of the contribution of the double penguin dia-
gram with the result that an upper limit of m, &45
GeV is placed on the top-quark mass. Although the
numerical value of this limit is specific to our model
and to our approximations, the general features of
the p dependence of the double penguin and disper-
sive contributions indicate that any complete at-
tempt to fit bm within the context of the KM
model will lead to some such limit.

Even with maximal violation, which introduces
some almost imaginary matrix elements into the
CKM matrix, the experimental CP-violating effects
we have examined (charge asymmetries in dilepton
production) are quite small. The principal difficulty
is that they depend on the occurrence of vacuum re-
generation in the B -B or T -T systems and, for
those values of the parameters leading to large CP
effects, the regeneration is essentially nonexistent.
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On this basis, the observation of a large charge
asymmetry in dilepton production through B and
8 states would be a strong indication that the KM
model is not sufficient to account for CP violation.
However, a word of caution about these calculations
is appropriate. They are based on a rough approxi-
mation to the bare box diagram for the B,B sys-
tem and therefore may be subject to substantial
corrections. On the other hand, observation of like-
charge prompt-dilepton production, or any other
evidence of interference effects in T,T production
would appear to be contrary to the KM model of
weak interactions, because these results do not de-
pend sensitively on the details of the model.

It remains to be seen whether other experiments,
including experiments on time-reversal violation,

might offer more promising opportunities to mani-
fest the existence of a large CP-violating phase in
the CKM matrix. The discovery that there is,
indeed, a phase difference of m/2 between the third
family of quarks and other families would undoubt-
edly have important fundamental implications.
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