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Physics of weak nonleptonic decays: K ~me.
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We evaluate long-distance effects in E~mw decays using a calculational scheme based on

partial conservation of axial-vector current, current algebra, and suppression of exotic

Regge meson trajectories. We find that the AI =—rule emerges naturally from these prop-

erties of hadronic physics. Moreover the calculated long-distance contributions are seen to

play the dominant role, as opposed to short-distance effects.

INTRODUCTION

Weak nonleptonic decays of hadrons have since
their discovery been one of the most complicated
puzzles in elementary particle physics, due to the
surprising difference observed between the M = —,

and the dd = —, amplitudes (typically a factor of 20).
After many attempts carried out in the 1960's,

based mainly on PCAC (partial conservation of
axial-vector current} and current-algebra, dynamical
calculations by a few authors' suggested that the
puzzle could be solved, at least for S-wave baryon
decays, in terms of a peculiar cancellation mecha-
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nism holding for M = —, but not for dd = —, ampli-
tudes. Such calculations showed that long-distance
effects (=1 fm) play a crucial role in determining
both the suppression of M = —, amplitudes and the

1

absolute magnitude of M = —, decays.
This fact may appear somewhat surprising since

the nonleptonic Hamiltonian explores regions of
very small distances, typically of the order of the W
Compton wavelength 1/m~. The essential feature
responsible for the above fact is the absence of the
leading singularity (=1/x ) in the product of two
currents at short distances, which can be proved to
hold in a theory where quarks are either free or
asymptotically free at short distances (as in QCD}.

Starting from Wilson's suggestion that, due to
possible anomalous dimensions, one could get some

1

enhancement of the b, = —, amplitude from short

( —1/ms) distances, the problem received in the
mid-1970's extra impetus. It was shown that in
asymptotically free QCD Wilson's suggestion was
indeed correct and several attempts were made to
obtain quantitative predictions for weak nonleptonic
decays. However, even though this type of analysis
in QCD has been pushed up to the two-loop approxi-
mation, with the currently accepted values of A~co

the conclusion is unavoidable that short-distance
enhancement cannot alone explain the difference be-
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tween EI= —, and —, amplitudes. Thus, even ac-
cepting the QCD implementation of Wilson's sug-
gestion, long-distance enhancement and/or suppres-
sion mechanisms must play a major role.

The latter conclusion, which is not in disagree-
ment with analyses based on "penguin diagrams, "
is now accepted by many authors, who have at-
tempted to corroborate this scenario by considering
different mechanisms.

The aim of this paper is to develop ideas about
long-distance dominance of the dynamics of E—+~a.
weak nonleptonic amplitudes, based on some well-
established facts of hadronic physics, i.e., PCAC,
current algebra, dispersion relations, and asymptotic
Regge behavior. We shall see that a crucial role in
determining the correct description of AI = —, and
—, amplitudes is played by the suppression of "exot-
ic" LU = —, meson Regge trajectories with respect to
4I = —, exchanges. A similar circumstance is seen

to occur in the old calculation of the m+-a elec-
tromagnetic mass difference which, being dominated
by an exotic (AI =2) exchange, turns out to be cal-
culable in terms of a few low-lying states only. '

Some of the ideas and results reported in this pa-
per have already been published in a Letter. " In
this paper we shall describe the details of our calcu-
lational scheme, as well as refine our analysis by
considering also the contribution from vector-meson
intermediate states in dispersion relations. We shall
also make a more detailed analysis of the separation
between short- and lang-distance physics by employ-
ing a smoother cutoff procedure, suggested by
precocious light-cone behavior.

The plan of the paper is as follows. In Sec. II we
calculate disconnected diagrams and describe the
calculational scheme; in Sec. III general properties
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FIG. 1. The diagrammatic picture of the matrix ele-

ment &m+n'
I
HN

distance effects in Sec. V. Some concluding remarks
are made in Sec. VI, while the relevant matrix ele-
ments used in the paper are collected in the Appen-
d1x.

II. THE CALCULATIONAL SCHEME:
DISCONNECTED AND CONNECTED GRAPHS

Let us consider the amplitude for the weak non-

leptonic, strangeness-changing decay

of connected amplitudes are described, while Sec. IV
is devoted to the calculation of pole and continuum
contributions to the amplitudes. We present our re-
sults and a discussion of long-distance versus short-

I

a(K ~m. +rr )=(n. +m IHNL IK )
~ 2

sin8 cos8 d"x bF'(x, mrs )
2 8

which can be only mediated, in the standard model,
by the intermediate 8'boson. ' ' According to Fig.
1, we write (HNL is the weak nonleptonic Hamil-
tonian)

)&(vr+mIT[J. q+' (x)J„" ' (0)+Jq+' (x)J,' ' (0)+H c ]IK .).

where

l g sin8 cos8
d q T(q)

2 8 (2'Ir ) m gr —q —lF
(2.1)

T(q)= i J d x—exp(iq x)(g"" q"q"/ms —)

&&(m+n.
I
T[J~+' (x)J„' (0)+J~+' (x}J„'(0)+H. .] I

K ), (2.2)

g2/gma, ~—G/v 2, and bl'"(x, ma ) is the W-boson propagator, which, as is well-known, dies off exponentially
for large values of

I
x

I
. This feature is the starting point for the short-distance expansion of the two-currents

product JJ in (2.1) and (2.2). However, before considering operator-product expansions, we must stress a re-
markable difference between two classes of diagrams contributing to the amplitude T(q). We may in fact write

(2.3)

where Td;„(q) is the contribution of the disconnected graph of Fig. 2(a) and T„„„(q)the contribution of the
connected graph of Fig. 2(b}. Only the fully connected Green's function T«„„(q) must be considered in the
renormalization-group equations giving the logarithmic deviations from the canonical quark-parton-model ex-
pectations through the anomalous dimensions of @CD; on the other hand the disconnected amplitude Td;„(q)
gets no renormalization from gluon exchanges and it must be treated separately.

The contribution from the diagram of Fig. 2(a) is calculable by using our knowledge of semileptonic physics.
3 1

Considering the LU = —, and LU = —, amplitudes separately we have

az;„(K ~~+sr )=— cos8sin8(m+
I
J„'+' (0) IO)(rr

I

J"" ' (0) IK ),
3 2

(2.4)

The relevant matrix elements are

(0
I
A J„(0)

I
H(P) ) =i PI'51k,Jk ~

vj„(o)
I
K (P)) =tfjk[f+(q')(P'+P'~„+f (q')(P P'),]-—

where f =132 MeV, q =(P' P), and the explic—it form of f+(q ) is given in the Appendix.

(2.5)

(2.6)
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From Eqs. (2.4}—(2.6) we get

iad;„(K ~rr+rr ) = cose sinef 3 f+(m )(mx —m ) =1.88X10 GeV, (2.7)

iad;„(K ~rr+rr ) =3 76.X10 GeV . (2.8)

From Eqs. (2.7) and (2.8) we see that the discon-
nected graphs, as already recognized by Feynman, '

are of the same order of magnitude and show no
1

AI = —, enhancement. Comparing them with the ex-
perimental numbers'

product of the two currents in (2.2), is that due to
the strong damping in x of the W-boson propaga-
tor, the x integral takes relevant contributions only
from the region

~

x
~

—I/mn, in this region we per-
form an operator-product expansion,

Ia3/2«' ~'~ )
I

=o 86X10 'GeV,

~a~~, (K'~rr+rr }
~

=2.71X10 ' GeV

(2.9a)

(2.9b)

T[J(x}J(0)]—g C„(x )O„(0),
x2~0

where

C„(x )=(—x )
" f„(x ),

a„=6—d„,

(2.10)

(2.11)

3 1

we see that the contributions to hI = —, and EI= —,

amplitudes from the disconnected diagrams are a
factor of about 2 larger and a factor of about 7
lower than the experimental numbers (2.9a) and
(2.9b), respectively. So our conclusion is that other
contributions, different from those of Fig. 2(a) are
necessary, and we are led to consider the connected
amplitude T„„„(q).

We now come back to Eqs. (2.1) and (2.2).
%ilson's argument, as applied to the time-ordered

I

d„ is the dimension of the local operator 0„,and the
f„are dimensionless functions. It is well known'3

that, both in the free-quark model and in QCD, the
leading operators in (2.10) are those with a„=0 and
d„=6, i.e., operators which are quartic in quark
fields. In particular the 1/x singularity can be ro-
tated away for the present case. '

The local operators, quartic in quark fields, can be
written as Wick products of currents, and in QCD
the short-distance expansion tells us that

(n+rr
~

T[J.„'+' (x)J ' "(0)]~K ) ~ (rr+rr
~
[C (1/ma )0 (0)+C+(1/ma )0+(0)]~K ),

—x —1/m ~2 2

(2.12)

where

O+(o)=-:IJ'+""(0)J„'"(0)+[J„'(0)+(-)'"J'(0)+(-)'"J'(0)]J'-""(0)] . (2.13)

4+i, 5 4+I 5 1+l2 4+ i, 5

K
CONN

(a)

FIG. 2. The two classes of diagrams contributing to the amphtude T(q) of Eq. (2.2): (a) the disconnected graph, (b) the
connected graph.
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bg, '(p)
C ( I/mw) = 1 — ln(p/mw)

24m

0.48

(2.14a)

bg, '(p )
C+(1/mw) = 1 — in(p/mw)

24m

—0.24

(2.14b)

with

and C+(1/mw) are Wilson coefficients which are
equal to 1 in the free-quark field theory, where di-
mensions remain canonical.

In QCD, on the other hand, one obtains
(b =33—2nF, nF is the number of fiavors)

1 30+ contains a mixture of I= —, and I=—, opera-
tors, while 0 is a pure I= —, operator. Thus the
conclusion can be'drawn" that, since C (1/mw) ) 1

3
and C+(1/mw)(1, the connected bI = —, ampli-
tude can only be depressed by short-distance phys-
ics, whereas the AI= —, amplitude is likely to be
enhanced.

However, even if one considers two-loop correc-
tions, no quantitative conclusion can be drawn
from this analysis. In order to do this we must in
fact be able to calculate the matrix elements of the
operators 0+. As it stands up to this point the
short-distance effect alone is too small to be able to
explain the observed EI= —, enhancement in E~mm
decays. The next section shall be devoted to the
study of these matrix elements and their dependence
on the mass scale p.

g, (p)=4m. /[1+(b/6rr)ln(p/A)] . (2.15)

C+ are normalized in such a way that C+ ——1 for

p =mw and p is a mass scale (typically of order —1

GeV) which represents the onset of the scaling.
Notice that the decomposition (2.13) is such that

III. GENERAL PROPERTIES
OF CONNECTED DIAGRAMS

If we insert the short-distance expansion (2.12) in
the connected part of the amplitude (2.1) we get

a, „„(E~~rr+rr )=(G/v 2)sin8cos8(rr+m
~
[C (1/mw)O (0)+C+(1/mw)O+(0)+H. c.] ~

E )

(3.1)

and our aim is to calculate matrix elements of the type

(3.2)

Now the PCAC hypothesis enables us to reduce (3.2) to matrix elements between single-particle states as fol-
lows:

acomia(E ~m'+m' ) = sin8cos8[(rr+ [[Qs C—(I/mw)O (0)+C+(1/m—w)O+(0)] [E )+H c
spL 2f 2

~
[Qg, C (1/mw)O (0)+C+(1/mw)O+(0)]

i
K )+H.c.],

(3.3)

where

(3 4)

are the axial-vector charges, and SPL denotes the soft-pion limit.
Some remarks are now in order.
(1) In the SU2 limit the two-pion final state in the decay K ~rr+rr is symmetric under the interchange

P ++-+P so that, in applying the SPL we have treated the pions symmetrically. '

(2) In the SPL P~O, we can drop terms proportional to P because there are no poles in the integral which
one obtains from (3.1) after the reduction formula has been employed and integration by parts has been per-
formed. In baryon nonleptonic decays' the situation is different.

(3) The expressions (3.1) and (3.3) do not contain any explicit dependence of the mesons' momenta. '

This is equivalent, up to the factor (1—m /mx) which is very close to 1, to the continuation connecting the
SPL with the physical amplitude used in Ref. 20, provided that the two pions are treated symmetrically.

Going back to Eq. (3.3) we see that commutators can be evaluated by current-algebra commutation relations;
1 3

by separating the hI = —, and AI = —, amplitudes we get
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a „„(K~~+n )= i—a+ C+(1/mg ), (3.5)

a,',„„(K~@+~. )= i—[a+ C+(1/m~)+a' C (1/m~)],
where

(3.6)

a+ —— sin8 cos8[(n. + ~:J&+' (0)J ' "(0):
~

K )

+—, (n. ~:2J„'(0)J' ""(0)—J„' "(0)J' ""(0):~K )], (3.7)

a+'= sin8cos8(m ~:—,J„'(0)J ""(0)+—,J„' "(0)J' ""(0)
17

+ J'(0)J' ""(0)+ J'(0)J' ""(0):~K'),s (3.8)

a = sin8cos8(n: ,.Jz(0)J—'&(0)+—,Jz ' (0)J ' &(0)
2 2

J (0)J ' "(0)— J (0)J ' "(0):
~

K ),2~3 " (3.9)

and J„J"=V„V"+A„AI'.
From Eqs. (3.5)—(3.9) we see that our problem consists in evaluating matrix elements of the type

(~
~

J„(0)J~"(0):~K) . (3.10)

We shall do that by saturating the product of the currents by a complete set of intermediate states. But before
performing this calculation, let us make the following remark. Owing to the precocity of short-distance
behavior we expect that the light-cone expansion (2.12) will be valid approximately (within 10%) for

~

x
~

& 1/p, where p, describing the onset of scaling, is of the order of 1 GeV. Thus we can write the matrix
elements (3.10) as follows [xo——(0, n/p) and

~

n
~

=1]:

f d n 5(
~

n
~

—1)(n.
~
T[J„(xo/2)J~"(—xo/2)+(a~P)]

~

K)'
(m. i:J„(0)J~"(0):iK )= fdu 5(

i
n

i

—1)

fd n 5(
~

n
~

—1)f &
exp( iqxo)T ~(—q)(2~)'

fdn5(
~

n
~

—1)

where

d4q sin(
~ q ~

/p) T &

(2~)' (
~ q ~/p)

(3.11)

T ~(q) = , f d x exp(iq x)—(n
~

T[J&(x/2)J~"( —x/2)+(a~P)]
~

K ) . (3.12)

Note that the function

f,(
I q I )= (3.13)

cuts off the integral (3.1 1) for large values of
~ q ~,

in such a way that the integration is over a finite
range.

This feature is especially useful for practical pur-
poses, because it allows us to use expressions for

I

form factors, suggested by dispersion relations,
which are only valid over finite ranges of the
momentum transfer q . As discussed above we can
demonstrate the absence of singularities in light-
cone expansion and hence the convergence of the in-
tegral (2.1) only in the case that energy is conserved
between the initial (K ) and the final (~+n. ) states.
This feature is lost in the soft-pion limit, and there
can appear terms which behave for instance as
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(Pf P—;) Ix . In any case the function (3.13),
which cuts, off very small distances, ensures the con-
vergence of integrals like (3.11), in such a way that
possible spurious singularities, introduced by the
PCAC approximation, are seen to play no role in fi-
nal results.

In order to calculate (3.11) and (3.12) we follow a
strategy similar to the one employed by Cotting-
ham in its attempts to calculate the proton-neutron
mass difference. By inserting a complete set of in-
termediate states between the two currents in (3.12),
one sees immediately that T ~(qp, q) is, for fixed q,
an analytic function of qp except for poles and cuts
just below the positive real axis and just above the
negative real axis as shown in Fig. 3. In order to
show how the Wick rotation of the contour works,
let us introduce some kinematical definitions:

q =(k(+k2)/2, P( Pk, P2 P——„, and ——P)+k)
=P2+k2 (momentum conservation). We work in
the reference frame in which

r r rr r rs ~ 0
~ ~

Re q

FIG. 3. The qo plane with the singularities {poles arid
cuts) of T ~ and the%'ick-rotated contour.

P = (Pi +Pp)/2 =(E,O),

q =(ki+k2)/2=(qp
I q I

»n«os'
I q I

»nt)»nd'
I q I

cos())

Note that, since P
& m~, Pz ————m, and t = (P

&

—P2 ) =m are fixed, we have

E =(2m' +m )'i /2 .

The positions of poles of Fig. 3 are

qp —— E+(q +m„)'— iE, —qp='E (q +m——„)' +i@,

(3.14)

(3.15)

(3.16)

where m„ is the mass of the single-meson intermediate state. From (3.16) we see that, except for the special
case in which m„=m and

I q I
((2mx —m )' /2=0. 33 GeV (we shall return to this point later) the con-

tour can be rotated as shown in Fig. 3, so that the qp integration is transferred to the imaginary axis '; by
changing variables in the manner of Cottingham in Q = —q and kp ———iqp, we get the following formula:

4
{n(P~) I:Jt,(0)J& (0):l~(Pt))- f q f~( I q I

)T &(q)
(2m. )

+(g2)1/2
q f dQ f . . .dkp(Q kp )' f—dz f d@T i'( Q, ikp, z =c—ose, @)f„{(Q2 k 2)&~2)

(3.17)

where T ~ is given by (3.12) and f&( I q I
) by (3.13).

Equation (3.17) is the starting point in calculations
of the relevant matrix elements; in order to see how
(3.17) is calculable, we introduce invariant ampli-
tudes in a way similar to the one used in nonforward
Compton scattering. We write T ~(q) of Eq. (3.12)
as follows (see Fig. 4):

where

(3.18)

FIG. 4. The amplitude Tqq „„with the relevant
kinematics. JJ can be vector-vector currents (VV) or
axial-vector —axial-vector currents (AA). a and P are
SU(3) indices.
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Tap d4 +iq
VV, veau,

r

X (1r(P2)
I
T V„—Vq~

Tap = d4x e+
AA, vp,

X I&(P1)),
(3.19)

X (~(P2)
I
T A „—A~P ——

X I&(P1)) .

As is well known the quantities given in Eqs.
(3.19) are not tensor, but they can be made Lorentz
invariant by adding the Schwinger terms S& which
are polynomials inyo (Ref. 10); in this way we
obtain two tensors Tvv,„and T~ „„which can be
written in terms of invariant amplitudes as fol-
lows

ap p ap
k2TVV vp O ~ k1TVV pv (3.21)

where we have not introduced the matrix element of
the currents commutator whic cancels when the
symmetrization a~P in Eq. (3.18) is performed;
moreover the usual hypothesis of cancellation be-
tween Schwinger and contact terms in the Ward
identity has been used in order to write (3.21). By
using (3.18)—(3.21) one finally gets the following ex-
pression:

TJJ,vp =~JJ g'vp+B JJ PvP& +C 1JJPvk 2@
ap ap ap ap

+C2JJk1vP& +DJJ k1vk2& +E1JJPvk 1&

+E2JJk 2vPp +Fgg k 2vk 1p +GJJ k 1v k 1p

+a,,Pk,.k,„, (3.20)

where P =(P1+P2)/2 and JJ = VV or AA. Let us
assume, conventionally, that the currents J have
b, Y=O so that Ward identities give [as a conse-
quence of CVC (conserved vector current)]

T (q) =— E — (Bvv+Bvv) 3(k2 P)C—1vv 3(k, P)C—2yy —3(k1.k2)(Dvv+Dvv)
(k, )(k, P) ap pa ap pa

2 (k1.k2)

k1 (k2 P) p ~ (k, P)
+ (k1 P) (E—1vy+E1yy)+ (k2 P) —k2 (E2yv+E2vv)

1 2 1 2

k k
+ ( 1 k2) ( VV+ VV) kl GVV k2 HVV

1 2 aP Pa 2 Pa 2 aP

(k1 k2)

+4(AAA +AAA )+E (BAA + AA )+(k2 )( 1AA +C1AA )

+(k1 P)(C2AA+C2AA)+(k1 k2)(DA„+D„„)+(k1P)(E1AA+E1AA)+(k2 P)(E2„A+E2AA)

+(k1 k2)(FAA +FAA )+k1 (GAA+ GA~A )+k2 (HAA +~A~A ) (3.22)

This is the expression we must insert in Eq. (3.17). The values of the various invariant amplitudes will be
discussed in what follows. Before closing this section we briefly discuss the contribution coming from the pion
in the Wick rotation of the contour. This term can be easily evaluated to be given by the following expression:

T-'=4'f, d
I q I I q I'~(2~)' "

n

X f dzjf+(k, ')F (k, ')[(P+q)'+2P (P+q)+mx'12lIq = E+E„—(3.23)
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where g
~ is a Clebsch-Gordan coefficient,

q=(2mx —3m )'~ l2, and E„=(q +~ 2)'~2.

The expression (3.23) is almost independent on p
(for p, ranging between 1 and 2 GeV) and it amounts
to about 10% of the total pseudoscalar pole contri-
bution to (3.22).

TABLE I. The contributions of different poles (0 and
1 octets) to the AI= — amplitude a+' and to the

AI = —, amplitudes a+' defined in Eqs. (3.5)—(3.9). Re-

sults are given for different values of the parameter p
which represents the onset of scaling. Units are 10 '
GeV.

IV. POLE AND CONTINUUM CONTRIBUTIONS
TO (m

i
JJ

i
K ) MATRIX ELEMENTS 0

Total

The various invariant amplitudes in (3.22) obey
(fixed-mass) dispersion relations in the s and u chan-
nels similar to the ones encountered in the calcula-
tion of a+ —m mass difference. ' In general,
dispersion relations for the amplitudes will consist
of (1) Born contributions (n, k poles), (2) resonances
contributions, (3) absorptive integrals over the cuts
shown in Fig. 3, and (4) subtraction constants. Let
us isolate the first two contributions, Born and reso-
nances terms, and write

(4.1)

where Tz~, which hereafter we will refer to as "con-
tinuum" contributions, is comprehensive of subtrac-
tion constants and absorptive integrals, and the ~ole
part of the matrix element (m

~

JJ ~K ) (T„,~,)is
shown schematically in Fig. 5. We have included in
Tz~~, the Born terms (m. ,E poles) and the nearest
vector-meson resonances (p, co,E*). The calculation
of pole contributions to the different amplitudes in
Eq. (3.22) is a straightforward exercise once the
relevant current —single-meson states (which we list
in the Appendix) are used. Born terms contribute
only to the VV-type amplitudes, while vector mesons
contribute to both VV and AA-type amplitudes. The
results of the calculations are given in Table I,
which shows the contributions of the Born term (0
octet) and of the resonances belonging to the 1 oc-
tet.

Vector resonances have been treated in the zero-
width approximation. We present the results for the
different amplitudes a+ and a+ defined in Eqs.
(3.5)—(3.9) for different values of the mass parame-

FIG. 5. Pole contributions to the invariant amplitudes
of Eq. (3.22). P can be a pseudoscalar 0 meson (m, E) or
a vector I meson (p, co,K~).

3/2
+

1/2

1/2
+

0.7
1.0
1.3
1.5
0.7
1.0
1.3
1.5
0.7
1.0
1.3
1.5

—2.6
—3.8
—4.9
—5.4

6.2
8.8

11.3
12.5
0.89
1.0
1.5
1.8

—0.46
—0.55
—0.61
—0.62
—0.11
—0.12
—0.13
—0.13
—0.23
—0.28
—0.30
—0.31

2.3
3.5
4.4
4.9

—5.4
—7.9

—10.0
—11.0
—0.58
—0.67
—1.1
—1.2

—0.73
—0.85
—1.1
—1.1

0.69
0.78
1.2
1.4
0.08
0.05
0.1

0.3

ter p, which represents as we have already stressed
in Sec. III, the onset of scaling. In the 0 column
we have included the small contribution coming
from Eq. (3.23).

Theoretical uncertainties in the results of Table I
come essentially from the imperfect knowledge of
meson form factors, (see Appendix for more details).
We estimate, perhaps somewhat optimistically, that
the theoretical errors in the last column of Table I
will be of the order of 20%%uo. A glance at the entries
of Table I shows immediately the following facts:

(i) The pole contribution to the a+ amplitude has
for reasonable values of p (p=l GeV) the correct
sign and, roughly speaking, the right absolute value
in order that, when summed to the contribution
coming from the disconnected graph [Eq. (2.7)], it
will be able to reproduce the experimental number
(2.9a)

(ii) The pole contributions to the AI= —, ampli-
tudes are unable to reproduce satisfactorily the ex-
perimental quantity (2.9b) even in the presence of
the short-distance enhancement of Eq. (2.14a).

We must now stress a remarkable difference be-
3 1

tween Al = —, and EI=—, amplitudes, which can
overcome the latter difficulty. By assuming that the
amplitudes (4.1) are Regge behaved for large values
of v=Eqo, one sees immediately that whereas the
LD = =, amplitudes will be dominated in the Regge
region by E** exchange [with axes(0)-0.25], the

3hI = —, amplitudes will behave, for large v*s, as v
where nz &0. The latter behavior is due to the fact
that Regge meson trajectories with EI = —, are "ex-
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otic." s This striking difference, which is a typical
consequence of the dynamics of hadronic interac-
tions, results in the fact that the "continuum" con-
tribution defined in (4.1), which is present (and, as
we will show soon, also calculable) in the M=—

3
case, is on the other hand absent in the AI = —, am-

plitude. It is for this reason that one can assume
for it unsubtracted dispersion relations and approxi-
mate the value of the amplitude with low-lying

I

meson states only. A similar situation occurs also in
the successful calculation of n + —m. electromagnet-
ic mass difference, ' where the M=2 invariant
amplitudes tl, t2 are calculated by keeping only the
nearest poles contributions (~,co ), due to the
suppression of LU =2 exotic Regge meson trajec-
tories.

Concerning the calculation of the continuum con-
tribution to a '

1 6 . i 1
ac+ —— sino cos8—

(g2)l/2
X f dg f .. .dkopsin((g —ko )' /p) f, dz f d&Tcg( —Q', qo iko, ——z=cose, P),

(4.2)

we make the following remarks:
(1) Tc+ (q) has cuts on the real axis of the qo plane as shown in Fig. 3.
(2) Tc+ (q} is even for change qo~ —qo.

(3) Tc+ (q) is assumed to be Regge behaved in the limit of large
~

v
~

=E
~ qo ~

.
According to point (3}above, we can write, by employing an ansatz suggested by the high-energy limit of a

Veneziano amplitude,

iTc+(q, v) —+ 2(+PM[P (q )+P""(q )]I (l, —a(0))/2[(a' s) ' '+( —1)'(—a's) ' '](a')
large~ v

~

(4.3)

pVV( 2) P
(1—q /mz )(1—q /mxe )

2)
13""(0)

(1—q /mA )(1—q /mg )

(4.5)

Moreover, from the Weinberg sum rule, ' we derive

where a(0) is the intercept of the leading Regge
meson trajectory K~" [a(0)=ax..(0)—0.1=0.25
(Ref. 27)], P~ is the residue of the K~~ Em vertex, —
s, =2, l, = I, a'=0.9, and v =Eqo. Moreover

P (q ) [P""(q )] is the residue of the vertex
&**—VV [K**—AA], and we have made the ap-
proximation t=p As for .the Clebsch-Gordan coef-
ficients g+, they are simply given by

1
(4.4)+ 2

The Regge residues can be calculated as follows.

By assuming the vector-meson-dominance model we
have

p VV(p) pAA(p) pJJ(p} (4.6)

aT(n» aT(rn}—
One gets in this way

P~=3.3 v'mb

pJJ=0. 12 v'mb .

(4.&)

Now we assume a very simple extrapolation for
the amplitude TCJ+ (q, v), which satisfies require-
ments (1)—(3) and reduces to (4.3) in the Regge lim-

it; that is, we write

Finally the values of P~ and P (0) can be derived
in a straightforward way, by making the usual hy-
pothesis of factorization, SU(3) symmetry and ex-
change degeneracy for the residues, from the
knowledge of the high-energy antiparticle-particle-
reaction differences and from the difference 9

iTC+(q, v)=2$+pM[p (q )+p""(q )](a') ' 'I (l, —a(0)}—,

X[(m —s) ~ ~+( —1) '(m —u) ~ ~](a'} (4.9)
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where s =2v+q +E, u = —2v+q +E, mo is an effective threshold whose reasonable range is between 0.5
and 1 GeV (Ref. 31) and the other symbols are as in Eq. (4.3). The amplitude defined by (4.9) appears to be a
good approximation of the continuum contribution for the following reasons. First, it meets the requirements
(1)—(3). Second, if one calculates (4.2) by using the cutoff function f&( ~ q ~) replaced by a sharp cutoff
8(Qo —Q ), as in Ref. 11, one obtains results very close to the ones found by calculating the continuum contri-
bution by superconvergence relations and finite-energy sum rules. "

%ith these in mind we calculate a~+ as follows:

P~(a )""I.(-', )
ac+ = sin8cos8

2~ v'2 4m

X J dg2(Q2) 1/2[P vv( Q2) +PAA( Q2)]p
0

(~2)1/2
&& J dx sin (1—x )'/ cos[a(0)P][A, (Q )+4E Q x ] ' '/

0 p
(4.10)

where

g(Q2) ~ 2+g2 E2

tang=2Ex(Q )'/ A,(Q ) .
(4.11)

The results of the calculation are reported in
Table II; let us comment on them briefly.

First, we observe that our evaluation of the con-
tinuum contribution leads to a large effect in M = —,

enhancement as a consequence mainly of long-
distance physics (we shall return to this point in the
next section). Second, Table II shows a strong
dependence on p; this unpleasant feature is a conse-
quence of the approximation in using PCAC: we

can adopt the philosophy of choosing p, in such a
way that the dd= —, amplitude is fitted [this fixes

p =1 GeV (Ref. 32)] and then calculating the
EI = —, amplitude. Finally we remark that the main
sources of theoretical uncertainties in the calculation
of the numbers in Table II are due to the approxi-
mation in the Regge formulas [SU(3) symmetry, fac-
torization, . . .]. Thus we expect the results of Table
II to be valid within 30%.

V. RESULTS

By collecting the numbers given in Tables I and II
we get numerical estimates for the connected ampli-
tudes a3+/2 and a 1+/2. These results, together with the
short-distance effects expressed by Eqs. (2.14), (3.5),
and (3.6) have been summed to disconnected ampli-
tudes (2.7) and (2.8) to give the entries of Table III,
where we compare our predictions for
~t2'/(E ~n+n)~ .and. ~a /(K ~m+m ) ~,

calculated for p = 1 GeV and for different values of
the @CD parameter AQCD From e+e and deep-
inelastic-scattering physics AQCD is known to be of
the order of a few hundred MeV.

Our results, although affected by the theoretical
uncertainties we discussed in Sec. IV, strongly sug-
gest that QCD short-distance effects play a minor
role in determining the experimental
enhancement, whereas long-distance effects (=1
fm), which can be understood in terms of well-

known properties of hadronic matter, are dominant.
In particular we stress, once again, the role played

TABLE II. Continuum contributions to LD= —ampli-

tudes for different values of the parameter p. Units are
10 GeV.

TABLE III. Calculated values of
~

a'/2(Eo~n +sr )
~

and
~

a / (E ~m+m )
~

for tu = 1 G.eV and for different
values of the QCD parameter A&cn. The value A=0
corresponds to "canonical" short-distance behavior.
Units are 10 ' GeV.

A@en (GeV) (a' (E mr+a )
) ~

a (E ~rr+rr )
~

~ (GeV)

0.7
1.0
1.3
1.5

1/2 1/2
Qg+ ——Qg

5.6
12.0
19.0
24.0

0.4
0.2
0.1

0
Expt.

36.2
34.3
33.1
28.6
27.1

1.26
1.22
1.19
1.03
0.86
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by the suppression of exotic Regge trajectories
versus nonexotic ones, which is, in the present calcu-
lation„ the main source of dd = —, enhancement.

Although our conclusions rely on a definite
mechanism, different from those employed by other
authors, it is not useless to remark that the domi-
nance of long-distance effects have been already
recognized; in principle this dominance could be ex-
plored in different ways and calculated by using oth-
er hypotheses. We believe that the reliability of our
calculation is higher because it rests on some simple
assumptions deriving from hadronic physics and its
well known properties.

VI. CONCLUSIONS

Our conclusions are based on Table III, which
shows that the weak nonleptonic decay K~mm and

1

the puzzle of the M = —, rule can be not only under-

stoood in term of properties of hadronic physics, but
also calculated. Moreover our calculation shows a
dominance of long-range effects over short-distance
enhancement and/or suppression.

In order to confirm our conclusions, further study
on this subject is needed. In particular we expect
mechanisms similar to the ones explored in this pa-
per to be at work on related processes such as
baryon nonleptonic decays, charm-particle nonlep-
tonic decays, and weak radiative decays. We shall
consider this very interesting physics in future publi-
cations.

APPENDIX:
MATRIX ELEMENTS (M

I J~ I
M )

In this appendix we list the relevant matrix ele-
ments

~~2 0 47 QeV2 (A3)

fx.(q') =f+(q') =
1 —q /m+

(A4)

with m+ ——0.65 GeV, whereas little is known ex-
perimentally about fx~(q )=f (q ). As a matter
of fact the ratio g(0)=f (0)/f+(0) ranges experi-
mentally in the interval (0,—0.5); we choose g(0) =0
for simplicity, although final results, as given in Sec.
V, are not sensitive to variations of g(0) in the
aforementioned interval.

2. M =pseudoscalar meson (0 ),
M'=vector meson (1 ),

J"=vector current

The matrix elements are given by

(M'"(P')
~

V~p(0) M'(P))

=dye gy(q )Eqy~pP P e~(P, A, ), (A5)

where q =(P P') and e~—(P', A,) is the polarization
vector of the meson M'.

The value of the matrix element at q =0 can be
obtained from the knowledge of decay co ~my, giv-.
ing the information

In the case where M and M' are E's, we have,
again, flax 0,——and it can be assumed that

f (q ) =Fx(q ) = 1/(1 —q /mz ),
where mz is given by (A3).

Finally we have to consider the case
M =E, M'=m. The corresponding matrix element
is known from EI3 decay experiments, fx (q ) is
given by

&M'
I J,(O)

~

M)

where M and M' are single-meson states.

(A 1)
g~(0) =2.59 GeV (A6)

As for gq(q )/gq(0), following Zucker, we have
assumed for simplicity

1. M,M'= pseudoscalar mesons (0 ),
J"=vector current

gvq y( p)
( ')

gy(0)
(A7)

We write the matrix elements in general as

(M (p')
i Vq(0) i

M'(p) )

=~f;,k [fMM'(q')(p +p')„+f~M'(q')(p —p')„]

where q =(p —p') .
In the case where M and M' are n's, f vanishes

due to CVC and we have

f (q~)=F (q )=1/(1 —q /mz ), (A2)

where the pion form-factor mass mz is given experi-
mentally by

V 2 1
F2 (q )=

[1—q /m~ ] 1 —q /4m

where my ——0.71 GeV and m =0.88 GeV .

(AS)

3. M =pseudoscalar meson (0 ),
M'=vector meson (1 ),
J"=axial-vector current

Following Segre and Walecka we consider only
two form factors:

where F2 (q ) is the magnetic nucleon form factor
which is given by
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(M "(P'}~AJ~(0}
i
M'(P))

ft(mp )= fp 1.8 G——eV,2 2
P f (A10)

whereas its q dependence is obtained, by assuming

=ifjk[ft(q')~„(P', &)—f3(q )e"(P',A)q„q„],

(A9}

where q„=(P' P)—„a.nd e"(P', A)is ,the polarization
vector of the vector meson M'.
f~ (mz ) can be obtained, through soft-pion

theorems, from the electromagnetic coupling of the

p meson:

1

1 —q /m&
2 2

where m~ ——mq, (m~, ) for b, Y=0 (b, Y= 1)

currents.
As for f3(q ), one obtains, from dispersion rela-

tions,

(A12)

where mp ——m (mz ) if one is dealing with a
b, Y =0 ( 6Y = 1) current.

a simple pole-dominated dispersion relation, by the
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