
PHYSICAL REVIEW 0 VOLUME 27, NUMBER 2 15 JANUARY 1983

Casimir energy of confined massive quarks
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We calculate the zero-point energy of massive fermions confined in a spherical cavity with

MIT bag boundary conditions. The result contains new ultraviolet-divergent terms in addition
to those occurring in the massless case. We discuss the divergence structure of the Casimir en-

ergy in the framework of the field-theoretical bag model.

The Casimir effect' has recently attracted the in-
terest of particle physicists in the context of the
MIT bag model. ' The vacuum fluctuations of quark
and gluon fields are changed by the bag boundary
conditions and this affects the dynamics (and statics)
of the boundary. The effect may even be relevant
for the structure of the CQD vacuum. 6 We will con-
sider here the Casimir energy of massive fermions in
a spherical cavity. The calculation for the massless
case was first performed by Bender and Hays' who
found it to be divergent, as for gluons. The calcula-
tion was repeated recently by Milton5 who argued for
a special subtraction prescription and obtained a finite
contribution proportional to the inverse bag radius

Our result for the massive case will turn out to
contain new divergences in addition to those of the
massless case. The occurrence of such additional
divergences was found already in Ref. 3 for massive
fermions confined to an infinite slab. We have tried
to understand the origin of the divergence structure
of the Casimir energy on general grounds. We base
this discussion on a previous consideration8 by one of
us (J.B.) on the role of fermionic vacuum fluctua-
tions in the field-theoretical bag model of Creutz and
of Friedberg and Lee and on recent work by Cande-
las. ' Since our result is at variance with a previous
one, Eq. (2.24) in Ref. 3 which would not lead to ad-
ditional divergences, this served us also as an in-

dependent check.
The Casimir energy can be obtained from the (Eu-

clidean) Green's function of the confined fermion

field which satisfies

yp +i y 9 —m S/;(x, x, r) =—5(r)83(x —x )

and the boundary condition

( 1 + ix ~ y ) Se( x, x, r ) ~
~

-„~ &
=0 (2)

The Green's function S~ can be decomposed into a
free-space part SF given by

SF(x, x, r) = yp +iy '7+m G(x, x, r)
97

mKt(m[(x —x )'+r']'/')
G(x,x', r) =

47r'[(x —x )'+r']' '

(3)

and a boundary part Sq~ which is a solution of the
homogeneous version of Eq. (1). The Casimir ener-

gy is then related to S~ via

Ec ———lim d'x Tr [SF(x, x, r) yp]
p gg al

(4)

We have determined SF for the case of massive fer-
mions following the procedure described in Refs. 3
and 5. We are not going to present here the detailed
calculation, but give just our final result for the
Casimir energy,

Ec=— $ (2j+1) jt dx [x —(mR) 1' 2(e/+t/$$j //Q+e/ f/Qs/+t/g)— —
2m. R ~ 1/2

d 2 2 2mR——ln san+1/2 + sg 1/2 + sg 1/2sg+1/2
X

where 5= v/R and

&& cos [[x —( mR ) ] ' S]

1/2 ' 1/2
S'X 2xs/(x) = I/+q/q(x), e~(x) = K/+t/q(x)
2 7r

(6)
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are the Riccati-Bessel functions. This is a generalization of the massless results of Bender and Hays and of Mil-
ton. '

Using the uniform asymptotic (Debye) expansion of the Bessel functions" we obtain in the m 0 limit

1Ec(m =0) =— g (2j+1) dz z2t5coszv5
4mR J

where t = (1+z') 't2 and 2 =j. This agrees with Milton's result except that he assigns v =j+1. The evaluation
of this expression can now be done in two ways: either one first performs the z integration and then the sum
over jusing the Euler-MacLaurin formula (as was done by Milton) or one does first the summation over j
[which reduces to power series in exp(+ iz8) ] and then the integration over z. Using both ways and with
Milton's and our assignment for v we find

E c(m=o)=, —, „+0(r2) .
3~g2 144m R

Here we differ from Milton who finds —1/482rR for the second term.
For the massive case the Debye expansion leads to the result

OO POO

Ec=— X (2j+1) dx [X2—(ntR) ] v zt (t —2PnR) cos([2 —(ntR) ] 28]
4mR )

where x = vz. Performing the j summation one ob-
tains in the leading order to the v ' expansion a new
contribution proportional to the mass, so that

1

m R2 1Ec=Ec(m =0) ——
m 72 24 « dz z2t2 . (10)
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FIG. 1. (a)—(d) Divergent contributions to the Casimir
energy in a perturbative expansion with respect to an exter-
nal potential (x ———). The graphs refer to old-fashioned
perturbation theory.

The new contribution proportional to the mass con-
tains not only the 7 divergence, which is a signal of
a quadratic ultraviolet divergence, but also a loga-
rithmically divergent term independent of 7.
Milton's subtraction procedure (leaving out the r '
term) does therefore not lead to a finite result here.

The structure of these divergences can be discussed
in the framework of the field-theoretical bag model
of Creutz and Friedberg and Lee, in which a fer-
mion field interacts via a Yukawa coupling f pili/
with a self-coupled scalar field. The cancellation of
divergences occurring in this model in the vacuum
and bag sector was discussed by one of us (J.B.) in

Ref. 8. The result can be stated as follows: The en-

ergy of the fermionic vacuum fluctuations in a poten-
tial f a.(x), which is equivalent to the Casimir ener-

gy, contains in the perturbative expansion (see Fig. 1)

I

divergent terms of the form

4

X "o "(x) + —['y(7(x)], (11)
,n-0 ~'

where the constants C„and D are ultraviolet diver-
gent integrals given by

1 'n

f II 8 d P (p2 + m2) 1/2

Bm " (2n )'

(n =0, . . . , 4), '(12)

3(2n)2 " p

up to finite terms. This can be verified by explicit
calculation up to fourth-order perturbation theory for
a fermion field in an external potential. If the poten-
tial cr is the expectation value of a quantized scalar
field P, as is the case in the field-theoretical bag
model, 9 then there are counterterms of the form
C„qh "(x) and D[9$(x)] h2 iwch are necessary for
the renormalization of the self-couplings of the scalar
field and its wave function. This implies that in such
a model the divergences of the Casimir energy are
compensated. Actually it was proposed in Ref. 8 to
take the vacuum fluctuations of the fermion field
into account in the determination of the confining
potential f o (x), which is exactly equivalent to tak-
ing into account the Casimir effect.

Unfortunately, the divergence structure of the
Casimir effect found in Ref. 8 cannot be compared in
detail to that of Eqs. (8) and (10), since the regulari-
zation of the divergent integrals (e.g. , by a momentum
cutoff) was not considered at all in Ref. 8. But we

can compare the leading. divergences. The coefficient
Co is just the fermionic vacuum energy before taking
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normal ordering, and is irrelevant here. The coeffi-
cient Ct, represented in Fig. 1(a), is proportional to
the mass. Its leading divergence should be the same
as for the new contribution proportional to the mass
given in Eq. (10). In the calculation of this term an
exponential energy cutoff exp( —E

~ ~~ ) was intro-
duced. Therefore the factor ~ ' implies quadratic ul-

traviolet divergence and this agrees with the UV
divergence of C~. The coefficient C& is also quadrati-
cally divergent. It is present even in the m 0 limit,
and therefore its divergence should agree with the
one of the Casimir energy for the massless case Eq.
(10). The leading divergence of this term is indeed
also quadratic as implied by the factor 7 '. We can-
not compare lower-order logarithmic divergences cor-
responding to the contributions from C3 4 and from
the nonleading parts of C~ ~, since, as stated above,
the regularization has not been discussed in Ref. 8,
and since a regularization of the fermion propagators
would manifest itself in a different way in C~~ which
contain different numbers of propagators. In addi-
tion we find that the Debye expansion used in the
calculation of the Casimir effect is not reliable for the
nonleading divergences.

In order to give concrete evidence for this state-
ment we consider the divergent integral C~. Since
the contribution proportional to C~ comes from a

graph with only one fermion propagator, a regulariza-
tion by an exponential cutoff can be considered as
equivalent to the regularization used in the calcula-
tion of the Casimir effect. We write

Ct = lim 2 fmG(x, x, T)
v~0

(13)

where G(x, x, r) is defined in Eq. (3). When we in-

tegrate this expression over the bag volume, the
result should be strictly proportional to R'. Howev-

er, if we expand the propagator with respect to
Riccati-Bessel functions and use the Debye expansion
we obtain

4mR C 4mR m + mR "
d

1 —r (14)
3 3 7F 7 6W o Z

The UV divergence structure of this term is the same
as that of the term proportional to the mass in Eq.
(10), which it should be. But the term proportional
to R in Eq. (14) should not occur at all! It seems
therefore that the results for the Casimir energy ob-
tained by using the Debye expansion are unreliable
except for the leading divergence. (A similar suspi-
cion has been expressed by Milton. ~)

It is interesting to note that the leading divergence
in the Casimir energy Eq. (10), is proportional to R:
it should be canceled by the product of C~ with the
volume integral of o (x), which therefore must re-
ceive its main contribution from the surface region.

This is in accordance with the qualitative behavior of
o (x) in the field-theoretical bag model. 9 Similarly
the leading mass-dependent divergence for massive
fermions within an infinite slab calculated by Bender
and Hays~ is quadratic as that of C~ and is propor-
tional to the surface [compare their Eqs. (B9) and

(Bll), e is equivalent to r/l. and a factor A is the
area has been lost between Eqs. (B7) and (B8)].
Their result that no additional divergence is obtained
when introducing a mass in the case of a scalar field
in one space dimension agrees also with our reason-
ing: the graph of Fig. 1(a) is logarithmically diver-

gent for a scalar loop in one dimension, but this
divergence is already present in the absence of
mass and the logarithmic divergent part of

j dk/(k~+ m~)' ~ is independent of m. While all this
fits very nicely, we have to admit that it is less obvi-
ous to understand how the factor R in the quadratic
divergence of the massless case [Eq. (8)] arises from
an integral over o'(x) in a limiting process.

So far we have understood qualitatively the origin
of the divergences in the Casimir energy and the can-
cellation of these divergences in the framework of a
field-theoretical model. It should be clear from this
discussion that the calculation of "finite terms" can-
not be performed without carrying through the sub-
traction procedure in detail and it will require detailed
renormalization prescriptions. It will be —to say the
least —very difficult to perform. A simpler practical
cure may be abstracted from a recent paper by Cande-
las. ' He discusses the Casimir effect with applica-
tions in solid-state physics. The ultraviolet-divergent
integrals for idealized boundaries occur in a "geome-
trical expansion" as factors multiplying the surface
tension and some leading curvature tensions. Cande-
las finds agreement with known results for the sur-
face tension of metals if he introduces an UV cutoff
at the atomic scale. One might therefore be tempted
to use a similar cutoff procedure. Physically this
seems plausible, since the creation of virtual
fermion-antifermion pairs with high momentum will

certainly lead to surface fluctuations. Alternatively
one could introduce all those surface and curvature
tensions which appear with divergent factors in the
Casimir energy from the outset with finite coeffi-
cients and consider the divergent contributions as be-
ing absorbed into their renormalization. Unfor-
tunately this would lead to a proliferation of free
parameters in the bag model, since there is no special
dynamical reason why the renormalized coefficients
should be zero.
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