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We investigate what kind of linear combination of baryon (B) and lepton (L) numbers

(B—aL) (a is a numerical constant) can be a generator of a grand unified group G, and

consequently a broken local symmetry.

I. INTRODUCTION

Many years have passed since Lee and Yang
raised the question whether baryon-number conser-
vation resulted from an unbroken local sym-
metry —like electric-charge conservation. ' The
answer was that if it is a local symmetry it must be
broken. On the other hand, baryon number can also
be a global symmetry, accidentally or following au-
tomatically from the structure of the theory. A
similar statement can be made about lepton number.
Are baryon (8) and lepton (L) numbers local sym-
metries or just global symmetries? We still do not
know the answer to this basic question despite the
many successes of the standard SU(3),
X SU(2)L, XU(1) group and the effort that has gone
into developing a satisfactory grand unified theory
(GUT).

The standard Lagrangian that is taken to be in-
variant under SU(3), XSU(2)L XU(1) conserves
global 8 and L separately. However, as 't Hooft has
pointed out, separate global conservation of 8 and
L is broken by the triangle anomalies. ' Interesting-
ly, the difference, (8 L), is not br—oken by the
anomalies, i.e., exact conservation of (8 L) at the-
level of the renormalizable SU(3), XSU(2)L XU(1)
theory holds to all orders of perturbation.

In grand unified groups, i.e., groups larger than
SU(3), X SU(2)L, XU(1) or SU(3), XSU(2)L,
XSU(2)R XU(1)tt L, , separate baryon- and lepton-
number conservation is usually explicitly broken.
Strangely, the dim 6 operators, which are the
lowest-dimensional operators responsible for proton
decay and are invariant under SU(3)L,
X SU(2)L, XU(1), have the property of global
(8 L) conservation, i.e., b—,(8 —L)=O.s Higher-
dimensional operators have different properties:
5(B+L)=0 for dim 7, 5(38 —L)=0 for dim 9,
h(38+L)=0 for dim 10, M =2 for dim 9, and

~J.=2 for dim 5.
In minimal SU(5) GUT (Ref. 6), b,(8 —L)=0

holds to all orders as a global symmetry, even
though (8 L) is no—t a generator of the group. For
SU(4) X SU(2)L, X SU(2)tt (Ref. 8) or SO(10) (Ref. 9),
(8 L) is a —generator of the group. ' When local
(8 L) symm—etry is broken and this is combined
with the "weak" Gell-Mann —Nishijima relation, one
can understand in a natural way the origin of neut-
ron oscillation and Majorana neutrinos. ' In
SU(8)L XSU(8)tt, " the fermion number F =38 +L
is a global symmetry whereas (8 L) is a loc—al sym-
metry. If both symmetries are not broken, the pro-
ton never decays. In SU(16),' 8, L, and F all be-
come local symmetries.

One can go on enumerating different GUT groups
and specify whether various linear combinations of
8 and L are global or local symmetries. In view of
the importance of knowing whether (8 —aL) (a is a
numerical constant) can be broken local symmetry,
we seek the grand unified groups that have (8 ctL)—
as a generator, making some general assumptions
about the color and electro weak classification
schemes for the quarks and leptons. In Sec. II, we
discuss the assumptions we make. Section III deals
with the GUPA (grand unification of particles and
antiparticles) all particles and antiparticles are
placed in the same multiplet, while Sec. IV deals
with the GUP approach where only particles are
placed in the same multiplet. The last section is de-
voted to discussions and conclusions.

II. ASSUMPTIONS

We make the following assumptions. First, we as-
sume that a grand unified group G contains SU(2)L
and (8 ctL) as local symm—etries. Second, as has
been done before, ' we assume the quantum numbers
of quarks and leptons as follows:
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a grand unified group G. What is G (BL) then?
First of all, we can eliminate the possibility of ex-

ceptional groups as G(BL) since they do not satisfy
the quartic trace identity TrX =IC(R)(TrX ) .'
The best way of distinguishing SU(n) (n &3) from
other simple groups is to look at the trace, TrX .'
We have in this case
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where 6, denotes the color group [which is not fixed
as SU(3)] and I3t denote the third component of
SU(2)L. We assume that m&1, i.e., quarks are not
singlets under G, . Note that we do not assume any
particular values for the electric charge or weak hy-
percharges. We do not fix the number of quarks
and lepton families. The (8 —aL) quantum num-
bers are not enough to fix the group 6, as we will

see.
The number no of NL must be equal to the num-

ber nt of FL, , as long as we assume 6 to be semi-
simple and a &0, This is because
0=Tr(8 aL)=a—(no nt) T—his i.s the simplest
reason why SU(5) GUT cannot have (8 —aL )

(a&0} as a broken local symmetry. Hereafter, we
assume no ——nI.

III. GUPA APPROACH
We now become more specific and consider the

case where all the particles and antiparticles in (2.1)
are in the same irreducible representation (GUPA
approach' ). We denote a minimal semisimple fac-
tor subgroup of G, which contain (8 aL) as a g—en-

erator, by G(BL}. We show in Appendix B that
6 (BL) must be a simple group. Then G (BL} must
contain SU(2) as its subgroup. The reason is that if
G DSU(2)L, 6(BL), we would have (V+A} parti-
cles, since we then have various combinations of
eigenvalues of SU(2)L and G (BL). Similarly,
6(BL) must contain G„otherwise we would have
"colored" leptons. Hence, we can regard 6(BL) as

l

Hence, if 3ant&mnq, 6 must be SU(n) tN'tit

n =4(ni+mnq ), since we must use a basic represen-
tation because of the SU(2)L and (8 —aL) quantum
numbers. It is easy to modify the argument in Ref.
17 to prove this. Thus, in particular, in order to
have, e.g., 8, 8+L, or F=38+L (all have a (0)
as a generator of the GUT group, we must use
SU(n). Of course, one single totally antisymmetric
representaion cannot make the theory anomaly free
and, thus, we are forced to introduce mirror fer-
mions. The GUT group with m =3, ni=nq ——1 is
SU(16).'

For the case where 3anI ——mnq, we calculate
TrX'.

TrI3L (8 aL) = —,—ant( —a + —, ) . (3.2)

Unless a = —, (which we will discuss later), we have
TrX &0, which leads to G as SO(10) or SU(n)
(n )3).' ' We first investigate SO(10}. Using the
trace identity TrX =D (R)TrX TrX5 for SO(10)
(Ref. 15) and the fact that a&—, and I'=8 aL, —
we have

7TrI3L F
D(R)=

2TrI3g TrI3g F

which yields
1&=1 or

21TrI31. F
10TrF TrI3 F'

(3.3)

(3.4)

In SO(10), representations with only I3L ——+ —, and 0
are spinors or a vector. ' Since a vector representa-
tion satisfies TrX =0, we use a spinor where
D(spinor) =—„,which yields

ni =nq ——1, m =3 or nt = 1, nq ——3 m = 1 for a = 1

nI ——3, nq ——1, m=1 for u=
9

Thus, since m&1 and SO(10) contains SU(3) as a
subgroup, we have found that 6 =SO(10),
G, =SU(3), (8 L) is a generator of—6, and the rep-
resentation is a spinor with ni ——nq

——1,m =3. For
SU(n), we must use the basic representation, because
of the reason given before. Hence,

(3.5)

I

n =4(nt+mnq)=4n~(3a+1}.
Now, we discuss the case where a = —, (i.e., the

possibility of having (38 L) as a generator—). In
this case, (38 L) has only two e—igenvalues, +l.
Thus, we cannot have 6 as an exceptional group. '

However, we cannot use odd-order trace identities



Y. TOSA, R. E. MARSHAK, AND S. OKUBO

1

ni ——2, mn~=2 for a= —, . (3.7)

The choice, m =2, is unacceptable, in view of the
quark line rule. ' Thus, only SU(n) (n )3) is left
for a=-, .

IV. GUP APPROACH

We next discuss the other basic option (to the
GUPA approach), namely, the case where only the
particles are in the same irreducible representation
(GUP approach' ). The particles are as follows:
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First, 6(BL) must be a simple group, if we as-

sume the absence of complicating U(1) factors. The
reason is that (8 aL) has only tw—o eigenvalues. '

Then, we have Tr(8 —aL) =0, which yields

3cxplI =77l7lq and cx )0 . (4.2)

In particular, (8 —aL) (a &0) cannot be a local
symmetry. The dimension of the multiplet is

d =2nt ——2mn~=2ni(3a+1) . (4.3)

Second, we note that 6(BL) must contain 6„
since otherwise we would have "colored" leptons.
Thus, we obtain [same notation as in Eq. (3.6)]

for I3L and (38 L—), since TrX =0 for
X=I3L +t (38 L—) where t is an arbitrary constant.
By the two-eigenvalue condition, 6 is one of the
classical groups and its corresponding representation
is fixed as follows': for SU(n), the totally antisym-
metric representation; for SO(2n+1), the spinor;
for Sp(2n), the basis; for SO(2n), the basic or the
spinor.

So far, we have used the information that SU(2)L
and (8 —aL) are contained in G. If we use the fact
that G, is also contained in 6, then we have

Tr[C2(I3L ) (8 aL )]—= —,( C2 )mne, (3.6)

~here C2 denotes the second-order Casimir invari-
ant of 6, and (C2) is its expectation value in the
quark sector. Since m&1, we have (Cz)&0, i.e.,
TrX &0, independent of a. Thus, for a = —,, only
SU(n) (n )3) and SO(10) can be used as G. Howev-
er, for SO(10), we get

Tr[C2(8 a—L)]= —,mn~(Cz) . (4.4)

Unless quarks are sin glets under G„we have
TrX &0. Hence, G(BL) must be SU(n) (n)3).
Using the method in Ref. 18, the representation
should be totally antisymmetric and n is given by

Pl7lq +71(
n =p (3a + 1)/(3a ) =p

pl re
(4.5)

V. CONCLUSIONS

We summarize our results as follows. In the
GUPA approach, if 3ant+mnq, G can only be
SU( n ) with n =4(ni+ mn~ ) and the basic represen-
tation, in order to have (8 —aL) as a generator. We
need mirror fermions to cancel anomalies. In par-
ticular, if B, L, or I =3B+L are generators, 6 is
SU(n) [e.g. , SU(16) with m =3, ni=nz ——1 (Ref.
12)]. If 3ant=mns, then 6 is either SO(10) with
(8 L), G, =SU—(3},and ni =ns ——1, or SU(n} with
(8 aL), n =4n—i(3a+1) (a arbitrary, except n

must be an integer), and the basic representation.
Thus, in the GUPA approach, only SU(n)
[n =4(ni+mne)] with the basic representation can
have (8 —aL) as a generator, except for SO(10),
which has (8 L) as a gene—rator. Note that we
must have right-handed neutrinos, in order to have
(8 aL) (a&0) a—s a broken local symmetry. In
particular, SU(5) GUT cannot have (8 aL) (a&0)—
as a local symmetry, but it does have (8 L) as a-
global symmetry. In the GUP approach, we cannot
have (8 —aL) (a &0) (e.g., 8, L, or F=38+L) as
a generator. Only the difference (8 L) can be a-
generator for SU(8)L, XSU(8)ii (Ref. 11) or
SU(4) XSU(2)L XSU(2)s. '

Since GUPPY groups usually contain GUP groups
as subgroups, the relationship between (8 aL)—
generators of GUPA and GUP groups is interesting
to examine. The GUPA group, SO(10), contains the
GUP group, SU(4)XSU(2)L XSU(2)a, as a sub-

group and both groups have (8 L) and only th—is
combination as a generator. The other permissible
GUPA group, SU(16), contains the GUP group,
SU(8)L XSU(8)R, as a subgroup; however, while

where p is a positive integer. Furthermore, if 6 (BL)
contains SU(2), the representation must be the basic
one. ' %e examine the sma11er rank groups and the
result is that 6=SU(8)t XSU(8)~ with (8 L), —
6, =SU(3) and ni ns

————1. If 6(BL) does not con-
tain SU(2)L, , then G(BL) could be SU(3) with
(38 —2L), SU(4) with (8 L), .—. .. The smallest
choice is SU(4), if we use the U(1) weak-hypercharge
information. ' The case where G(BL)=SU(3) is
also forbidden, if G, =SU(3). The GUT is then
SU(4) XSU(2)L, XSU(2)ii."'"
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SU(16} has B, L, and F =3B+L as generators,
SU(8)L, XSU(8)a has only (B L—) as a generator.

One should note that the only assumptions we
have made to prove the results above are the ex-
istence of a multiplet consisting of left-handed
SU(2)L doublets and right-handed SU(2)I singlets,

1

with baryon number —, for quarks and lepton num-

ber 1 for leptons. We did not allow (V+A) parti-
cles to mix with ( V —A) particles in the same multi-
plet. It is intriguing that we end up with SO(10)- or
SU(n)-type grand unification groups, just from the
condition that (B —aL }be a broken local symmetry,
without knowing the strong-interaction group and
the electric charges of quarks and leptons. Implica-
tions of having (B —aL} conserved for cosmology
have been investigated.

ACKNOWLEDGMENTS

One of us (Y.T.) is indebted to Professor J. Iizuka
for encouragement. This work was supported in
part by the U. S. Department of Energy under Con-
tracts Nos. DE-AS05-80ER10713 and DE-AC02-
76ER13065.

APPENDIX A

In this appendix, we summarize results in our pre-
vious papers, ' ' ' which have been used in this
paper and may be useful for other purposes.

1. Trace identities

The possible orders of independent symmetric
Casimir invariants for simple Lie algebras are only
the following '.

SU(n):2, 3, . . , n. ,

SO(2n + 1):2,4, . . . , 2n,

Sp(2n):2, 4, . . ,2n.,

SO(2n):2, 4, . . .,2(n —1), and n,
E6.2, 5,6, 8,9, 12,

E7..2, 6, 8, 10, 12, 14, 18,

E8.2, 8, 12, 14, 18,20,24, 30,
E4.-2, 6,8, 12,

62.2, 6 .

(A 1)

Odd-order trace identities

Try=0 (p:odd integer) . (A2)

For groups SU(n) (n &3), E6, SO(4n +2) (n )2),
we can classify them by nonvanishing traces:

The absence of odd-order symmetric Casimir in-
variants for groups SO(2n +1), SO(4n), Sp(2n), E7,
E8, E4, and 62 is explained by the fact that these
algebras have only self-contragredient representa-
tions (i.e., X-—X') or these groups have only real
or pseudoreal representations. Thus, for these
groups, we have

If TrX &0, then G =SU(n) (n )3),
If TrX &0, then G =SU(n) (n &3), E6, or SO(10),

If TrX &0, then 6=SU(n) (n & 3), E&, SO(10), or SO(14),

If TrX &0, then G =SU(n) (n )3), E6, SO(10), SO(14), or SO(18) .

(A3)

Futhermore, for SU(3) and SU(4), we have'

TrX =A(R)TrX TrX

A(R)=
5d(R,g, ) C2(R,g, )

2[6+d (R,q) )]d (R) C2(R )

a] 4

(A4)

35 d(R,a„) 12 C2(R,g, )
D(R) =

4[10+d(R,~, )]d(R) 5 C2(R)

We can go on as follows:

(A7)

TrX =D(R}TrX2TrX5, (A6)

(A5)

where d(R) and C2(R) denote the dimension and
the eigenvalue of the second-order Casimir invariant
for the irreducible representation R. For E6 and
SO(10), we have' '

TrX =F(R)TrX TrX for SO(14),

TrX"=G(R)TrX TrX for SO(18)

(A8)

(A9)

although we have not yet calculated explicit forms
of constants, E(R) and G(R), which depend only on
8, but not on X.
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Even-order trace identities

For even-order trace identities, we have

TrX K—(R)(TrX')'= Cg(t)D' '(R),

C2(R,d, )

C2(R)

(A10)

d(R,d;)

2[2+d (R,d, ))d (R)
(A 1 1)

where D' '(R) denotes the modified Dynkin indices
of fourth order. The numerical constant C4(t)
does not depend on R. This formula holds for any
simple Lie algebras, except D4 [=SO(8)], because

D4 has two independent fourth-order Casimir in-

variants. In particular, for SU(2), SU(3), Gz, Fq, E6,
E7, and Es, we have

then it is one of the following':

R =AJ (1 &j&n) for SU(n+1) (n & 1),
R =A,

&
or A,„ for SO(2n+1) (n &3),

R =g (1&j&n) for Sp(2n) (n &2),

„or A,„ for SO(2n) (n &4),

R =A2 for G2,

R =A,4 for F4,
R =A,

&
or A,s for Es,

R=A, , for E7,
None for Es .

(A16)

TrX —E(R)(TrX ) =0 (A12)

TrX =H(R)(TrX )

H(R) = 15

[2+d(R,d;)][4+d(R,dj)]

(A13)
2

d(R,e;)

d(R)

since these groups do not have genuine fourth-order
Casimir invariants. %e can distinguish E6, E7, and

Es by trace identities: Es differs from E7 and Es by
having TrX +0. Es satisfies

Totally antisym metric representations in SU(n j
The representation, R =A J ( 1 &j& n —1), corre-

sponds to the totally antisymmetric tensor with j in-

dices, P» . . .„. If we denote the generator ofP1P2'''P) '

SU(n) (n & 3) as

[B„",Bp ]=5pB„5,Bpr', —

'2
1 C2(Rad;) 1 C2(R,d, )

2 C2(R) 12 C2(R)

2. Representations

(A14)

g B„"=0,

then, the action of B,t' on P& . . .„ is given byP1

(A17)

From the number of eigenvalues of an irreducible
representation, we can limit the types of representa-
tions of a simple Lie algebra.

Two-eigenvalue representations

If an irreducible representation, R, has only two
eigenvalues, then it is one of the following':

R =AJ (1 &j& n) for SU(n +1) (n & 1),
R =A,„(spinor) for SO(2n + 1) (n )3),

(A18)

where v implies the replacement of p& by v. The
element of the Cartan subalgebra (diagonal genera-
tor) is given by

(A19)

R =A, t(basic) for Sp(2n) (n )2),
R =A, ~(basic), A,„~or A,„(spinor)

for SO(2n) (n &4),

(A15)
where gq are numerical constants and they satisfy

~gg=0. The action of A on/& . . .„ is then

~ =(4 +4 + +4 )&~

where AJ denotes the fundamental weight. Note
that none of the exceptional Lie algebras, E6, E7,
Es, F4, or G2, is allowed. The form of the operator
which has two eigenvalues can be specified' .

1
Representations with +

2 and 0 eigenvalues

ofSU(2) sttbaigebra

If the irreducible representation R has the eigen-
values, + —, and 0, of the SU(2) subalgebra of G,

i.e., the eigenvalues of A are given by

4, +4,+4, + 4, .

(A20)

(A21)

3. Eigenvalues for semisimple groups

The requirement of finite-dimensional unitary
representations of G leads essentially to
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G=G&eGzj8 e G&eU(1)eU(1)

e eU(1), (A22)

where Gj are simple jL,ie groups. Thus, any physical
diagonal operator is expressed as

Q=Qi+Qz+ ' ' ' +Qx+C (A23)

where QJ belongs to the Cartan subalgebra of GJ and
C denotes the contribution from U(1) factors. In or-
der to have m distinct eigenvalues for Q, we must
satisfy"

N N

N+1& g nj N+1—&m & g nj, (A24)

where nj denotes the number of eigenvalues of QJ.
If m = g. , nj —N+1, then eigenvalues of Q
are equally spaced. For example, if m =2, i.e., if Q
has only two eigenvalues, then we have N+1&2,
i.e., N= l. That is, Q must belong to only one sim-
ple group G and possible U(1}constant.

APPENDIX B

We show that G(BL) must be a simple group, if it
is semisimple. For the case where a&+ —, or 0,
then G(BL) has four distinct eigenvalues. Using Eq.
(A24) of Appendix A, G(BL) can be one of the fol-
lowing:

G(BL)=G)t3GzGz with n) nz ————n3 ——2,
G(BL)=G& Gz with n& ——3, nz ——2,
G(BL)=G&Gz with n, =nz ——2,
G(BL)=G~ with n~ ——4,

(81)

+—'
2
1+—
2

+—
2

+—'
2

+—
2

0
+—

2

0
1+—
2

0

1+—
2

1for a)—
3

1for 0&a & —,

1for ——&a &0
3

1for u& ——
3

(82)

where Gj are simple groups and we assumed the ab-
sence of U(1} factors. We note that SU(2)1 must be
contained in one of GJ, since the rank of SU(2) is 1.
We denote four distinct eigenvalues of G(BL) as a,
b, c, d where a &b &c &d. The corresponding
eigenvalues of I3L, are as follows:

is denoted by bj (k = 1,2, . . . , m ) where m is the
number of distinct eigenvalues and n~" is the number
of the eigenvalue bj .

Now we proceed with proof. For the case where

G(BL}=G&8GzGz with n
&

n——z =n3 ——2, we have

a =b', +b'+b',
b =b', +bz+b, =b', +bz+b3 b f——+bz+b3 ~ (85)

c=b&+bz+b3 bf——+bz+b3 bf+——bz+bz ~ (86)

(84)

d =b', +b,'+b,' . (87)

If G& contains SU(2)L as a subgroup, then the bI
1

sector of F& must have both + —, and 0 of SU(2)1. ,
because of Eqs. (82), (85), and (86) (b and c have

I3L ——+ —, and 0). However, this is in conflict with

the fact that a =b I +bz+b3 has either + —, or 0 of
SU(2)L, but not both. Hence, G& cannot have
SU(2)I as a subgroup. Similarly, we can show that
Gz and G3 cannot have SU(2)L as a subgroup.

For the case where G(BL)=G&gGz with n~ ——3

n2 ——2, we have

a =b', +b,',
b=b)+b2 ——b)+b2,

(BS)

(89)

b~+b2 b~+b2 (810)

d=b)+bz . (811)
We can show that Gz cannot have SU(2)I. as a sub-

group, by looking at the b 2 sector of Eqs.
(88)—(810). We can also show that G& cannot have
SU(2)1 as a subgroup, because of the bf sector in
Eqs. (89) and (810).

For the case where G(BL)=G~XGz with
n

&
——n2 ——2, we have

a=b)+b2, b=bj+b2, 812
c=bj+b2, d=b)+b2

or
a=b)+b2, b=L )+b2, (813)
c=b)+b2, d=b)+b2 .

We cannot use the same method as before. We use
the fact that one of G~ must contain the color group
6, as a subgroup, since we assume that 6, is a sim-
ple group. If we assume that G& has SU(2)L, as a
subgroup, then we have the following:

For Eq. (812), the b~ sector has IzL ——+ —, only,
while the b j sector has I31 ——0 only; i.e.,

1 1

3 &a & 0 or u & —
3 (814)

We denote the generator (B aL )as—
B—uL=Y, +Y,+ (83)

For Eq. (813), the bI sector has I3L, ——0 only,
while the b

&
sector has I31.——+ —, only; i.e.,

where Yj is a generator of Gj. The eigenvalue of Yj (815)
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For Eq. (813), the b~ sector has I31 +———, only,
while the b

&
sector has I3L ——0 only; i.e.,

10&a& —, . (816)

We show that each case leads to inconsistency. For
Eq. (814), Gt cannot have G, as a subgroup, since
we have either a for quarks and b for leptons or a
for leptons and b for quarks. The group Gq cannot
have G, either, since we have either a for quarks and
c for leptons or a for leptons and c for quarks. For
Eq. (815), G~ cannot have G„since then we have a

for antileptons and c for antiquarks. The group G2
cannot either, since then we have a for antilepton
and b for quarks. Similarly, for Eq. (816), we can
show that none of 6& and G2 can have G, as a sub-
group. For the case where G2 contains SU(2)L as a
subgroup, we can proceed exactly in the same way.

For the case where a =0, we can show the incon-
1

sistency as above. For the case where a =+—,, we
have only two eigenvalues, and thus G(BL) is a sim-
ple group.

Therefore, we have proved that G(BL) must be a
simple group, if it is semisimple.
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