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A recently developed formalism for calculating the statistical mechanics of a one-

dimensional quark gas is applied to a gas of arbitrary SU(2j representation quarks.

I. INTRODUCTION

Recently, a formalism was developed to solve the
statistical mechanics of a one-dimensional gas of in-

teracting quarks and antiquarks with classical posi-
tions and momenta. ' The main innovation is that
the group theory is treated exactly. As reviewed

below, this formalism permits one to calculate ther-
modynamic quantities for a desired ensemble and
internal symmetry group by either analytic tech-
niques or Monte Carlo methods. Such quantities as
the mean number of quarks per hadron then give
some insight into the process of hadronization of
quarks.

In this paper the system is chosen to consist of a
fixed number n of SU(2) quarks at pressure p and
temperature T. These choices are for simplicity,
only. Certainly an SU(3) grand canonical ensemble
would be of a more direct physical relevance and is
in fact being employed by Nambu in a study of
high-energy jets. But here we choose, instead, to
take the representation of the quarks to be arbitrary
so as to investigate the representation dependence of
the hadronization process in the simplified, but
more accessible model of an SU(2) n,p, T ensemble.

In Sec. II the quark-gas formalism is reviewed
and applied to the chosen ensemble. In Sec. III the
results of analytic and Monte Carlo calculations of
thermodynamic quantities are presented. In Sec. IV
these results are interpreted and discussed.

Here 1,;/2 is the appropriate SU(.V) charge of the
ith particle, x; is its position, and k; is its momen-
tum. Without loss of generality we will work in
units where a =- l in order to simplify some formu-
las.

Let x; (xz « . - x„. If the entire system is in
the singlet representation, H can be diagonalized
with eigenvalues

E= g C r;+ g (m +k; )'~, r;=x;+,—x; .

(2)

Here C; is the eigenvalue of the quadratic Casimir
operator for the first i quarks and antiquarks.

[C;,CJ]=0, so each constructible sequence of ir-
reducible representations (IR's) and each sequence
of r; and k; gives an eigenstate of 0with eigenvalue

The statistical mechanics of the n-particle system
is now accessible. Specializing to the fixed p, T en-

semble,

z(n) —PG

II. THE FORMALISM
configurations

exp —P E+p gr;

What follows is a review of the one-dimensional
quark-gas formalism. Some generality is sacrificed
for the sake of brevity. A more comprehensive
treatment can be found in Ref. 2.

The starting point is the exact Coulomb-gauge
Hamiltonian for n quarks and antiquarks, each with
mass m, in one space dimension:

z Z( )

where 6 is the Gibbs free energy,

z = I dk exp[ —P(m +k )'~ ]=2rnK)(IP)
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and

n —1

Z'"'= g g I dr; exp[ —P(C;+p)r;]
IR i=1

II
IR i=1 i+~

(5)

from the singlet state by successive addition of
quarks and antiquarks, and which end in the singlet
state. Note that the coordinates and momenta have
been treated in a classical manner.

Further progress can be made with the help of a
branching operator t, defined by its matrix ele-
ments,

We sum over all IR sequences which can be formed
I

1 if IR2 can be formed from IR1 by addition of a

(IR2
I
t

I
IR1)= quark or antiquark,

0 otherwise .
(6)

Q=y 'ty ' where y=(C+p)'~,
z'"'=T" '(oIyQ-"y Io) .

(7)

Here
I
0) is the singlet IR. The eigenvectors of Q

are states in "IR space" and they satisfy

We now may rewrite Eq. (5) in terms of a Hermi-
tian transfer matrix Q:

Bp d=—T lnqo .
()p dp

But using Eqs. (3), (11),and (12),

(14)

I

eigenvalue. For now we continue on with the ther-
modynamics of the quark-gas system.

Equation (11) implies

Q Iqj& qj Iqj & qjy I
"j)j &

(C+p qj 't)
I
Az—) =0. (8)

T= ——x( Br;i) (r)—=—(. =
n

Thus pl =pT where

(15)

(9)

Inserting 1=gj I qj ) (qj I
into Eq. (7), we obtain

z" =T" 'yq, "1(o-I y I

p(p)= ((nqo ')=( (16)

In the thermodynamic limit (n ~ ()o ), only the larg-
est eigenvalue qp(p) will contribute (if (0

I qp)+0),
so

Z'"'~T" 'qp"p
I (OIqp) I

as n~oo,
(10)

can be interpreted as the effective number of de-
grees of freedom per quark. For example, if the
quarks paired off into tightly bound mesons, p

I
would be —,.

Another simple calculation gives

(Cr )+p(r )= —— lnz("'='11

n ()P
T=-p, = ——lnZ'"'= —Tin(zTqp) (n~(c)
n

—( Cr )=T(1—p) =pl ——1
1

P
(17)

is the Gibbs free energy per particle.
The average of any operator R over the ensemble

(in the thermodynamic limit) is given by

(R)=
( ) g Rexp —P 'E+pgr; '

p configurations i

(12)

(jar )'
Cp ———Tp&T and CI ——Cp+ T

I pp

By Eqs. (15) and (16),

(18)

Also we have the standard formulas for the heat
capacity per quark at constant pressure and at con-
stant length:

If R is a function of only the Casimir operator, it is
easy to see that

Cp —CI —— „(p/p)
d

dp
(19)

(R(C)) =(qp IR Iqp) . (13)

Later we will calculate (C), the average Casimir

In order to exploit the above we must solve Eq.
(8) for qp and

I qp) as functions of p. The general
method of solution will be applied to the problem
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of present interest —a system of SU(2) "I-quarks, "
i.e., particles which are each assigned to the color
SU(2) IR which has

dimension =2I + 1:—d

(20)

Ce&(m+ &)~ 1 d' i(m+1)8
4 d8

(21)

To obtain the action of t on z +' we recall the rule
for addition of spins:

m mIS—= ——I
2 2

Casimir eigenvalue=I(I +1)=c .

The eigenvalue equation for Q can be mapped
into an ordinary, homogeneous, linear differential
equation as follows. Let the function
z +'=e' +"s be associated with the IR of di-
mension m+1. C operating on the state z +' cor-

1 1

responds to multiplication by —,m( —,m+1), or
equivalently,

perfluous and are to be ignored in doing the ther-
modynamics.

Note that Eq. (23) may be written in the
Schrodinger-equation form

1 +V(8) ~A, )=E ~A, ),
2 d8

where

and

2 stnd8

q sin8

(24)

1E=——2p

If q is very large, we may carry out standard pertur-
bation theory in q ', using either of Eqs. (8) or (24).
The appropriate periodic solution with largest
eigenvalue qo for fixed p turns out to correspond to
p «1 with

1/2

qo-' ——~cp 1—
2 c

m mI+ I e ~ ~

2 2

1
1 ———

d
1+Sr) /4

c 2

(22)«~+~ (z »+z zt+z—+.. . -+») m+i

sind8;( + ))ge
sin8 where

+ '
p p«1 (25)

if I (m/2.
Thus it might seem that the eigenvalue equation,

Eq. (8), can be mapped into the differential equation

1 d
1

&smd8
~g) 0—

4 ~+ +p —g

with (23)

~~&= y ~..'~-+'"
m=0

However, we have cheated in writing down Eq.
(23) because we used an expression for t which is
valid only when acting on IR's m &2I. How can
we treat t properly without sacrificing the simplici-
ty of Eq. (23)? The general solution to this kind of
problem, discussed in Ref. 2, is to impose particular
boundary conditions on the differential equation.
For the I-quark problem this means we may keep
Eq. (23) provided we extend the Fourier series for

~

A, ) to all m and impose the constraint that
~

A, ) be
odd in 8. The coefficients A with m &0 are su-

1 if 2I is even,
0 if2Iisodd.

The corresponding eigenfunction
~

A,o(p) ) involves
only the IR's m & 4I to this order in p.

If q is very small we may perform a saddle-point
approximation about the minima of V(8). Near
8 =0, Eq. (24) becomes the harmonic-oscillator
equation

1 d +—'co'8'
~

A, )=E
~

A, ),
d8&

(26)

where

and

z 8cd

3g

2dE = —,—2p+

we n1ust maximize q at fixed p which corresponds
to minimizing E(q), but subject to the constraint
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that
~

A, ) be odd in 8. So,

~

A,o)-8e " ~ near 8=0

and

4d/qo ——4p +3' —1 for qo small
' 1/2

=q, -'=& 1+
2p

+ ''', P»C

(27)

The Fourier series for
~
Ao) must be odd in 8 for

any I, and also the series for integral I cannot con-
tain any half-integral IR's (odd-m coefficients) be-

cause integral isospins cannot combine into half-
integral isospins. Hence,

~
X,(8+2~))=

~

A,,(8))
=—

~

A,o( —8)) for all I,

f 8e —ms e i (—m +118d8

e: (m +1)exp —— 1&2, p »c (29)
1 (m+1)
4 (2cp/3)'"

except for the integral-I, odd-m coefficients, which
are zero.

In the next section explicit low- and high-
pressure expansions of thermodynamic quantities
will be presented. But first we shall derive one
more formula. From Eq. (13) it is clear that the re-
lative probability of the IR m is

A (C +p), C—:——+1
2 2

The average number of I quarks per hadron (QPH)
is the same as the inverse of the probability for the
singlet state m =0. Thus,

(28)

~

A,o(8+m ) ) =—
~

A,o(8) ) for I an integer .

Note that
' 1/2

gA (C +p)
QPH=

App

III. THE THERMODYNAMICS

(30)

~

A, )~0 for 8- 2

for p »c, as must be the case for an approximation
of well-separated potential wells to make sense.
The Fourier representation coefficients are easily
obtained:

It is a straightforward matter to apply the for-
malism discussed in the previous section and calcu-
late the I-quark thermodynamics. The results are
given below and interpreted in the next section.

By Eqs. (16), (25), and (27), the effective number
of degrees of freedom per quark is

p(p)= '

2Ic —1 —7l +
d c

+ ', P »C

' 1/2

1 —+
2 2 c

' 1/2
1 3c

1 ——
2 2p

, p«1

p
T (31)

From Eqs. (11), (18), and (19),

3 3T . . . T—+ +.. . ,2 4m
'

m
r ~ 2 r

2T T
ln —I —1 + . —»1,

m m

(32)
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where I is Euler's constant, and

C —C,=.
P

' 1/2
1 3'
2 8 c

' 1/2
1 3c'42p + '.'', PP+C .

2Ic 33'
d 32 c

—1 — +, p«1
(33)

, p«1

Using Eq. (17),

From Eq. (13), the average of the Casimir operator is given by
' 1/2

I++ ~ +(2I ri)~—+1

—,2 2 c C
C

( —,p/c)' + . , p&&c .

' 1/2

(Cr) 2+ 1++

1+. , p&~c .

2I —1 —2— —,p «12c 3'g pd, 4 c
(35)
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FIG. 1. Monte Carlo data for (a) p, (b) C~ Ci, {c) (C) /c, a—nd (d) QPH vs p/c are plotted for the SU{2) representa-
tions I=

~ (), & ( o ), ~ ( X ), & (6 ), 3 (0), and
~ ( + ) along with the corresponding asymptotic predictions of Sec. III.

Note that the asymptotic behavior of the first three quantities is universal in p/c.
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Finally, by Eq. (30), the average number of I quarks per hadron is

' 1/2

+ + 0 ~ ~
2Ic 3

2 1+~
2 c d 4 c

4(1+g )
(Scp/3) i + . , p»c .

, p«&
(36)

Monte Carlo computations were also carried out
1 3 9

for the IR's I= —,, 1, —,, 2, 3, and —,. Some of the
results for p, Cz —Cl, (C) /c, and QPH versus p/c
are plotted in Fig. 1 along with the corresponding
asymptotic predictions of Eqs. (31), (33), (34), and
(36). p/c was used as the independent variable in
order to point out some universal asymptotic
behavior of the different IR's. However, since the
low-pressure expansions given above are only valid
for p « 1 (rather than p «c), the larger I Monte
Carlo data diverge from the asymptotic curves at
smaller values ofp/c.

IV. INTERPRETATION AND DISCUSSION

It is time to offer a qualitative interpretation of
the quantitative behavior of the I-quark system
given in the last section. As can be seen from Eqs.
(3), (5), and (12), the temperature dependence drops
out of all quantities which are independent of the r;.
Thus we will concentrate on the pressure depen-
dence of this system at fixed finite temperature.

From (5) we see that the dominant configurations
of the system are those with small g,. (C;+p)r; and

large multiplicity or entropy. That is, 6, the Gibbs
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FIG. 1. (,Continued. )
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free energy, is minimized. At p~0 the system is
made up of tightly bound mesons with intermeson
separation —+ 00 and intrameson size ~0. The cor-
responding isospin sequence is O,I,O,I, . . . with

g, (Ci+p)r;~0 (A. hadron made up of n I quarks
is defined to be a singlet state followed by n —1

nonsinglet states followed by a singlet state. Thus a
meson has the isospin sequence O,I,O. ) Thus
(r), p —,', C, —C, —,', (C)/c
(Cr )/(C) (r )~0, and QPH~2, in agreement
with the results of Sec. III.

As the pressure is increased from zero, entropy
considerations become important and other configu-
rations begin to infiuence the thermodynamics. The
first perturbations to the all-meson configuration
come from baryon production which can occur only
if I is integral. This is why only the integral-I,
.low-p expansions have ~p terms. More alternative
configurations are available to the systems with

larger I, so they tend to deviate more from the p ~0
asymptotic behavior with increasing p. Since the
singlet state is becoming more unlikely, QPH and

(C) increase with p. This is more extreme for the
higher-I systems, since as many as 2I+1 IR's are
available to the system following a nonsinglet IR,
but only one is available following

i
0). Thus en-

tropy makes the singlet state very unlikely in the
large-I system.

As p is increased from zero so that the mesons

get closer and can interact, the quarks not only
reorient themselves into hadrons with more quarks,
but these hadrons tend to be forced into excited
states. The latter effect causes p to be greater than
the average number of hadron s per
quark=(QPH) ', since the more a hadron is excit-
ed the more degrees of freedom there will be per
quark. As we see from Fig. 1(a), p decreases more
in the higher-I systems because they have more
quarks per hadron, but eventually the hadrons be-
come so highly excited that p begins to increase

1
with p. In the I= —, system only, p never decreases.

As p~ oo, arbitrarily large IR's are employed [as
can be seen from Eq. (5)] so that (C)~oo. Also
the singlet probability (and the probability for any
particular state) goes to 0, so QPH~ oo. Thus the
system becomes essentially one big hadron. p —+1,
however, so the quarks become independent
particles Cz —Ci —+1 and (Cr ) /(C) (r )-~1.
The system has passed from a hadron-gas phase to
a quark-gas phase without a phase transition (in one
dimension).

The larger-I systems continue to have larger
QPH as p —+ 00, as explained above. Also, since the
integral-I systems have only half as many IR's
available as the half-integral systems, Eq. (30)
predicts a relative factor of —, in their QPH as was

found in Eq. (36).
Finally, an explanation for the universal behavior

at large p/c is offered. When p is very large, the
probability for the IR, m, should be a smooth func-
tion of m with a peak at some large m and little
variation over the range Am -2I. Thus, to within a
multiplicative constant we can rewrite Eq. (5) as

n —1

p» (37)
IR i=1 i c+p C

where now we allow only IR's whose isospins are
approximate integral multiples of V'c. For large
enough p, Z'"' depends only on p/c. Thus, p,
Cz —Ci, and many other thermodynamic functions
depend only on p/c as p ~ oo.

It is hoped that this study of the SU(2) I-quark-
gas system will be of some use in more physically
realistic inquiries.
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