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Electron-electron scattering at high energies and fixed angle
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In this paper, we sum all (leading and nonleading) logarithms in electron-electron scatter-
ing at high energy and fixed angle. By Pauli statistics, the e-e scattering amplitude is equal
to the difference of two terms related to each other by interchanging the two incoming par-
ticles. Each of these terms is in the form of a product of an exponential function, the
wave-function renormalization constants, and a scaling function. While the exponent of
this exponential function is complicated, it is related to that of the vertex function. Thus,
each of these terms is in the form of a product of the two-electron vertex functions, a scal-
ing function, and an exponential function which is explicitly given. The method we use is
obtained by modifying slightly the one of Yennie and collaborators, which proves to be a
powerful tool to deal with scattering problems of large momentum transfers.

I. INTRODUCTION

We present here a study of the electron-electron
scattering amplitude in QED at high energy and
fixed angle, or s~ ao with t/s fixed. We have suc-
ceeded in summing all (leading as well as nonlead-

ing) logarithms of this amplitude. More precisely,
let p~ and pz (p~ and p2) be the incoming (outgoing)
momenta of the electrons and m the electron mass;
then the electron-electron scattering amplitude is

asymptotically equal to

—[u &I'„(t)u&][u~I "(t)u2]e '"&(8,e(t))

—the preceding term with particles

1 and 2 interchanged . (1.1)

In (1.1) I z(t) is the vertex function for the elec-
tron, u& is the spinor wave function for electron 1,
and similarly for u &, u2, and u 2. Also,

T

d~q e2(q2} 2p'& —q 2p, +q 2p2+q 2p2 —qK(t) =t~

~(2~) q A, 2p', q q 2p& q+q 2pz q+q 2p2 q —q
(1.2)

where e(t) is the running coupling constant evaluat-
ed at t and A, is the photon mass introduced for reg-
ulating infrared divergences. The function H is a
perturbation series of the running coupling constant
e(t), with the coefficient scaling functions which de-

pend on 0 but not co, its lowest-order term being
simply e (t). As usual, we have defined

s=4(co +m ),
t= —2co (1—cos8),

u = —2co (1+cos8),

where co is the magnitude of the incident momentum
and 0 is the scattering angle, both being measured in
the center-of-mass system. The second term in (1.1}
is obtained from the first term in (1.1) by making

I

the change of u
& u2, t u, and 8

terms in (1.1) together preserve the Pauli statistics.
The asymptotic form of the vertex function, with all

logarithmic factors included, has been given by a
~umber of authors. ' This asymptotic form is also
derived naturally in our calculation of the e-e

scattering amplitude.
It is appropriate to compare (1.1) with previous

works in the literature. The electron-electron
scattering amplitude in QED (Refs. 4 and 5} and the
quark-quark scattering amplitudes in QCD (Refs. 6
and 7) in the limit s —mao with 8 fixed have been

studied before. However, all of these works are re-

stricted to summing leading terms. Certain process-
es in QED have been calculated to the same degree
of accuracy as the present work. For example, we

have shown that the photon-photon scattering am-
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plitude approximately scales; i.e., it is a function of
8 and e(t) only. It has been surmised that the
electron-electron scattering amplitude has a more
complicated asymptotic form. From (1.1), we see
that the complications are entirely contained in the
form factors and the function e '". Equation (1.1)
has some resemblance to the Wu- Yang hypothesis,
which presumably holds for the scattering of color-
less bound states of quarks, not that of quarks or
electrons. We shall discuss this in a future paper.

Finally, we give one word of warning. Equation
(1.1) includes all logarithmic factors, but it does not
take into account the terms which are of the order
of s ' (logarithmic factors ignored). Although such
terms are small individually, they may add up to be
larger than the expression (1.1).

II. MULTIPHOTON EXCHANGE

(o) (u i oui�)(u 2y"u2)m"'=e' (2.1)

The amplitude corresponding to diagram 1(b) is
equal to

(u ~y„ui )(u i@"u2)
e (2.2)

Q

No approximation is made in (2.1) and (2.2). Notice
that the expression in (2.2) is obtained from M' '

by

We shall begin by studying the diagrams of multi-
photon exchange. These diagrams are of course in-
teresting in their own right. But the reason for us to
study them first is that by so doing we may illus-
trate clearly the method we are going to use. Also,
it turns out that these diagrams give the important
factor e in (1.1).

One-photon exchange. The lowest-order diagrams
are the two diagrams in Fig. 1. The amplitude cor-
responding to diagram 1(a) is equal to M'0', where

exchanging particle 1 with particle 2 and inserting a
minus sign. Notice also that both the numerators
and the denominators of these expressions are of the
order of co, as the components of a spinor is of the
order of m

' . Thus, both expressions approach lim-
its which depend on 8 but are independent of co as
co~oo with 8 fixed.

Two-photon exchange. There are four diagrams of
two-photon exchange. Two of them are illustrated
in Fig. 2. The other two can be obtained from those
in Fig. 2 by exchanging particle 1' with particle 2'.
We shall calculate all the logarithmic factors from
these diagrams in the limit co ~ oo with 0 fixed.

It is appropriate to make a brief outline here of
the method we shall use. Since the electron-electron
scattering amplitude is dimensionless, it must be a
function of the dimensionless variables 8, I /co, and
A, /co. Therefore, the limit co —+ ao with 8 fixed is the
same as m ~0 and A, —+0, with co and 8 fixed. We
shall therefore study the scattering amplitude in the
latter limit.

It is well known that if we set A, =m =0, there are
two momentum regions in which the Feynman in-
tegrals may be divergent' '": (i) The neighborhood
of q =0, where q is the momentum of a virtual pho-
ton. This happens even if m+0. For example, con-
sider diagram 2(a). In the neighborhood of qi ——0,
the propagator of photon 1 blows up like qi
while each of the electron propagators blows up like

q&
'. Thus, d qj times these propagators diverges

logarithmically, i.e., like d q i/qi . We shall refer to
such a divergence as a soft divergence. (ii) The
neighborhood of q&

——xp&, where q is the momen-
tum of any virtual line and p is any of the external
momentum. (There is a restriction on x: ~x

~
&1,

but this is not important for our present purpose. )

Consider again diagram 2(a). Let pi be in the posi-
tive z direction. Then if A, =m =0, the integrand of
the Feynman integral has the following factors in
the denominator:

P) P) Pp
P) p P) Q) P)

Pg Qp

P, P)+q) P

Pp pp P)

Pz+ qz

Pz + Pz Q~ Pp Pp+ q) Pp

FIG. 1. The two lowest-order diagrams for e-e scatter-
lllg.

FIG. 2. Two of the fourth-order diagrams for e-e
scattering.
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2= 2 2

and

(Pl+el)rpu(pi )=2(Pi+ql)pu(P1}

=2 —+1 qi&u(pi) .1
(2.3)

Equation (2.3) is obtained because p iu (p, }

=qiu(pi ) =0 as m =0. This means that the polari-
zation of photon 1 is parallel to its momentum.
Therefore, by gauge invariance, the sum of the in-

tegrands of the two diagrams in Fig. 2 vanishes at

q&
——xp&. Consequently, the sum of the Feynman in-

tegrals corresponding to the two diagrams is conver-
gent in the neighborhood of qi

——xpi. By these ar-

guments, we easily prove that this sum has no mass
divergences. More generally, we may show that the
sum of multiphoton exchange amplitudes has no
mass divergences.

It remains to handle the soft divergences. This
has been done by Yennie and collaborators. " They
rearrange each virtual-photon propagator according
to

(2.4)

(pi+qi) =2'(1+x)qi —qii

where q+ ——qo+q3. We have also defined q+ =2cox.
Because of the vanishing of the two expressions
above at q& ——q~z

——0, the Feynman integral may
diverge. Indeed, let qi O(e) ——and qiz ——O(e),
then d q is O(e ). Thus, d q divided by the product
of these expressions is logarithmically divergent.
We shall refer to such a divergence as a mass diver-
gence.

It is important to observe that the mass diver-
gences for the diagrams of multiphoton exchange
cancel one another. Consider, for example, qi ——xp i.
Then the numerator for the first electron has the
factors

M' 'k( —p',p', ),
where M' ' is given by (2.1) and

(2.9)

d'q b( P'z p'i, q)—
(2m) q —A,

(2.10)

shall explain below how to choose p; and pf for each
virtual photon. The point in rearranging the propa-
gator according to (2.4) is that the term G„,/q
gives no soft divergence at q =0, while the contribu-
tion of the term X„„/qcan be calculated in closed
form.

According to Grammer and Yennie, " one may,
since q~+q2 ——5, multiply the integrand of the
Feynman integrals for the diagrams in Fig. 2 by

(qi+qz) qi +q2 +2qi'qz
Q2 Q2

(2.8)

Let us first discuss the term qi /b, in (2.8). For
this term the Feynman integrals for both diagrams
in Fig. 2 have no infrared divergence at q~

——0.
Thus, we only need to handle the infrared diver-

gence at q2 ——0. %e break up the photon propagator
for photon 2 according to (2.4), with p; and pf de-
fined according to the positions of its vertices in re-

lation to the positions of the vertices for photon 1.
More specifically, we define p; to be pq ( —pz), if
the lower end of photon 2 is attached to the incom-
ing (outgoing) side relative to photon 1, and pf to be

pi ( —pi), if the upper end of photon 2 is attached
to the outgoing (incoming) side relative to photon 1.
Thus, for diagram 2(a), we define

I IPi= —P2~ Pf =Pl ~

and for diagram 2(b), we define

I
Pl =P2~ Pf =Pl ~

If photon 2 is a K photon [i.e., if we use the
second term in (2.4) as the propagator for photon 2],
the amplitude for diagram 2(a) is

where

Gpv=gpv —&q'pqv ~

Ep ——bqpq, ,

(2.S)

(2.6)

where we have denoted qz by q. In deriving (2.10)
we have manipulated the numerator factors of the

upper electron line by writing q2 as

q2 (pl ™)(pl q2™).
q is the photon momentum, and b is given by

4(pf-q) (p -q)
b(pt pf q)=

(2q pf —q2)(2q p, -q2}
(2.7)

(The numerator of our b function differs from that
of Grammer and Yennie. However, since the differ-
ence vanishes as q ~0, either definition will do.) We

The term (p', —m) after operating on u(pi) van-
ishes. The term (p'i —qz —m) cancels the propaga-
tor for the upper virtual electron in diagram 2(a);
similarly for the lower electron line. In the same
way, the term qi /b, for diagram 2(b), with photon
2 being a E photon, is

(2.11)
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Adding to (2.9) and (2.11) the amplitudes from the
term q2 /6 in (2.8), with photon 1 a E photon, we

get

where

k = k( —p2,p ) ) —k(p2,p] )+k(p2, —p])
(2.13)

m(0)k, (2.12) More specifically,

d q e (p2+q) (pI —q) (p2 —q) (pi —q)

(2')" q' —~' (2q p2+q')(2q pi —q') (2q'p2 —q')(2q'p'i —q')~

~

~

~

~

(p2 q) (pi+q) (p2+q) (pi+q)
(2q pz —q')(2q pi+q') (2q'p2+q )(2'q pl+q

(2.14)

The sum of the amplitudes corresponding to dia-
grams 2(a) and 2(b) is therefore equal to

k~(0)+~(1)+~(1) (2.15)

where M,'" is equal to the sum of two terms: the
amplitude corresponding to the two diagrams in Fig.
2, with the integrand multiplied by q &

/6 and with
ton 1 a g photon (i e., its p~op~g~t~~ is g~„/

and photon 2 a 6 photon (i.e., its propagator is

G&„/q ), and the amplitude obtained from it by in-

terchanging the roles of photon 1 and photon 2.
Also, M,'" is equal to the Feynman amplitude corre-
sponding to the two diagrams in Fig. 2 with the in-
tegrand multiplied by 2q &.q2/b, and with both pho-
tons g photons.

As was discussed by Grammer and Yennie, M,'"
and M,'" have no soft divergences. We shall further

show that they have no mass divergences either. To
begin, let us recall that we have argued that the sum
of two-photon exchange amplitudes has no mass
divergences. Exactly the same arguments may be

I

4 4

M, (x)= 4e
(1) d ql d q2 —i(q&+q&) ~ 2q1 q2

(2~)' (2~)' Q2

where

d xe'"' M'"(x)
C C (2.16)

used to show that Mc"' has no mass divergences.
Next we show that k has no mass divergences. For
example, if m =A, =0, the third and the fourth terms
in the brackets of (2.14) are both divergent at

q =xp, . However, it is easy to verify that these two
terms cancel each other. Thus, the integral in (2.14)
is convergent at q=p1x. Similar considerations ap-

ply if q is parallel to other external momenta. Thus,
k has no mass divergences. It then follows that
.W,' ', which, by (2.1S), can be expressed by quanti-
ties with no mass divergences, is free of mass diver-

gences as well.
Since M,"' and M,'" have neither soft divergences

nor mass divergences, they are finite at m =A, =O, or
at the limit s~ oo with 0 fixed. Thus, the logarith-
mic factor of s is contained entirely in k.

As will be seen shortly, it is convenient to write

m,("as

)& integrand from Feynman rules corresponding to the two diagrams in Fig, 2 . (2.17)

[The expression (2.16) is easily shown to be valid if
we substitute (2.17) into (2.16) and carry out the in-
tegration over x.] We note from Fig. 2 that, as far
as (2.17) is concerned, q&+q2&b, . Thus, the in-
tegrand from the Feynman rules corresponding to
the two diagrams in Fig. 2 may be defined in two
different ways, as the momenta of the virtual elec-
tron lines may be defined either in terms of q& or in
terms of q2 (see the figure). A symmetrical form for
M,'" is obtained if we express the integrand in (2.17)
as a sum of two terms, each of which corresponds to
one of the definitions mentioned above, and divide
by 2.

The two diagrams obtained from the ones in Fig.

2 by interchanging particle j.
' and particle 2' can be

treated in exactly the same way, and we shall not
elaborate on such a treatment.

Exchange of three or more photons. The above
treatment can be easily extended to the diagrams of
n-photon exchanges. Let the momenta of the pho-
tons be q1,q2, . . . , q„,respectively, and let us make
the photons distinguishable. In other words, the
same Feynman diagram with different labeling of
the photon momenta is considered to be a different
diagram. Thus, we overcount by a factor n! and the
resulting amplitude must be divided by n1

%e multiply the integrands of the Feynman in-

tegrals by
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q +q +. +q. +2q1 q2+2q q +
Q2

+2qn —1
(2.18)

For the term q( /i((, above, there is no divergence at
q1 ——0. Thus, we only need to rearrange the propa-
gators of photons 2, 3, . . . , n. We define the p1 leg
as the set of all of the upper electron lines on the in-
coming side relative to photon 1. The p1 leg is simi-
larly defined for the outgoing side relative to photon
1. The pz and p2 legs are similarly defined for the
lower electron lines. The momentum p; in (2.7) is
defined to be p2 ( —pz ) if the lower end of the pho-
ton in consideration is attached to the p2 (pz) leg,
and the momentum pf in (2.7) is defined to be —p(
(p & ) if the upper end of the photon in consideration
is attached to the p( (p ( ) leg; similarly for the terms

q2 /6, etc. For the term 2q, q2, we split it into the
sum of two terms q( q2+q( qz, and for the first
(second) term, we use photon 1 (photon 2) to
separate the p leg from the p' leg. The Feynman in-
tegral is convergent both at q1

——0 and at q2
——0, and

we need to rearrange the propagators of photons
3,4, . . . , n only.

Consider first the term q( /b, in (2.18). We keep
photon 1 as a g photon and split each of the other
(n —1) photons into a K photon plus a G photon.
Thus, each diagram is expanded into a sum of dia-
grams with each of the (n —1) photons being either
a K photon or a G photon. Each of such diagrams
occurs (n —1)!/(n«!nG!) equivalent ways which
differ from one another only in the labeling of the
momenta, where n«(nG) is the number of K (G)
photons in the diagram, with nz+nG ——n —1. As
we add up the diagrams of all different ways of in-
serting the K photons, but with the g photon and the
nG G photons in a fixed order, the contribution of
the E photons merely gives a factor k . Thus, the
sum of all diagrams with n~ E and nG 6 photons is
k «M„,where M„ is the sum of amplitudes cor-ny& G

responding to all diagrams of (nG+1)-photon ex-
change with a g photon and nG 6 photons, and with
the integrand of the Feynman integral multiplied by
q( /6, where q& is the momentum of the g photon.
Together with the combinatoric factors given above,
we get

g g k M„/(n«!nG!) =e"M, ,
ng nG

(2.20)

where

~,—= g M„/n!
n=0

We may similarly treat the crossed terms in (2.18),
which are n(n —1) in number. For the term q( q2,
we keep photons 1 and 2 as g photons and expand
each of the others into a K photon and a G photon.
Each of the diagrams in such an expansion occurs
(n —2)!/(nz!nG!) equivalent ways, where

n«+ nG (n ———2). Thus, the product of all combina-
toric factors is

(n —2)! n(n —1)
nz!nG! n! nz!nG!

'

n
(2~)4S(4' ~ gq, —

1

= f d x exp ix b, —gq;
1

(2.21)

just as before. There is only one new feature: the
integral over the momentum of a K photon cannot
be factored out. This is because the momenta of the
photons are not independent but are related by

( q; =b, . In the case of the square term q& /b, ,
this complication is avoided as q1 cancels the prop-
agator for photon 1. Therefore, q( does not occur in
the integrand explicitly. Thus, the integration over

q( simply eliminates the 5 function 5( '(b, —g"(q;),
and the integral over the momentum of a K photon
can be factored out. In the present case, we may in-
troduce the integral representation for the 5 func-
tion:

1 (n —1)! x«

n! nK!nG! G
' (2.19) Then we may integrate over q1, q2, . . . , qn without

restrictions. Thus, summing the crossed terms in
(2.18) over all n«and nG gives

The amplitude in (2.19) must be multiplied by n to
take care of the fact that there are n-squared terms
in (2.18). Thus, summing the squared terms in
(2.18) over n and n«, we get where

d4 ix h~ (X)ek(x) (2.22a)
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co
~

n+2 J g. n+2
M(x)= g —,f g exp i—x gq; z

&& ( integrand from all Feynman diagrams with two g photons

of momenta q and q' and n G photons) (2.22b)

and

k(x)= f e '"'~X [the integrand of (2. 14)] .—I'X

(2n )

We note here that

k(0)=k .

Adding (2.20) and (2.22a), we obtain the sum of
multiphoton exchange amplitudes as

eke (2.23)

where

J=M, + I d~xe'"'aM, (x)exp[k(x) —k] .

(2.24)

We note that k(x) —k(0) is finite at m =A, =O. This
is because the integral corresponding to this differ-
ence has no soft divergence at q=O or anywhere
else. Therefore, J is finite at m=A, =O, or is equal
to a function J(8) in the limit of shoo with 8
fixed. Therefore, the energy dependence of the sum
of multiphoton exchange amplitudes is entirely can-
tained in the factor e in the limit s-+ao with 8
fixed. In this limit the asymptotic form of k can be
derived in a straightforward way. This derivation is
given in Appendix A. We get

Q 2
k —lns ln —le

l +CQSO

a(8)—:—ln
a 2 —lA

1+cos8
(2.27)

The other term is equal to the negative of (2.26) with
particles 1 and 2 interchanged.

s~ao, 8 fixed. (2.25)

In summary, the multiphoton exchange amplitude
for electron-electron scattering is equal to a sum of
two terms, one of which is asymptotically equal to

s's'J(8), s —+ oo, 8 fixed, (2.26)

where

We make the following remarks.
(i} The multiphoton exchange amplitude is related

to the relativistic potential scattering amplitude.
More precisely, the former reduces to the latter if
the mass of one of the incident particles is infinite.
It is therefore interesting to compare (2.26) with the
asymptotic scattering amplitude for the Klein-
Gordon equation. ' We note that the latter is in the
form of (2.26) also. There is, however, a major
difference. The exponent of s in the case of the
Klein-Gordon equation is a purely imaginary num-

ber and is related to the infinite phase shift in
Coulomb scattering, while a(8) given by (2.27) has a
real part.

(ii} The real part of a(8) is positive. Thus, for
electron-electron scattering the sum of multiphoton
exchange amplitudes is larger than the one-photon
exchange amplitude in the limit s~ ao with 8 fixed.
However, for electron-positron scattering, the ex-

ponent of s is the negative of a (8), and the sum of
multiphoton exchange amplitudes is smaller than
the one-photon exchange amplitude in the limit
s —+ao with 8 fixed.

(iii) It is interesting to compare (2.26) with the
Regge-pole term P(t}s i", which is valid for certain
amplitudes in the limit s ~ oo with t fixed.

Photon self energy. In -this subsection we make a
slight extension of the result in the preceding subsec-
tion. We consider the multiphoton exchange dia-
grams with a photon self-energy part inserted in
each of the photon lines. The expression for this
scattering amplitude can be obtained from the
scattering amplitude of multiphoton exchange by
making the replacement

e e(q)
2 2

for each of the photon propagators, where e (q ) is
the renormalized charge with the subtraction point
taken at q . All the arguments in deriving (2.23) go
through. Thus, k is modified into K given by (1.2),
and e in the perturbation series for J is replaced by
e (q ) for the virtual photon of momentum q.
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III. ARBITRARY DIAGRAMS

Pi P[+ q P(

q E-q

P( P(+Q p( p)+q pi

pp pp q pp

b;q

pp pp- q pp pp pp-q p2

FIG. 3. Some diagrams for e-e scattering with an elec-

tron loop.

It is not difficult to extend the method given in
the preceding section to treat an arbitrary diagram.
There are three kinds of divergences' which give
rise to logarithmic factors of s: (1) mass diver-

gences, (2) soft divergences, (3) ultraviolet diver-
gences. We shall treat them in succession.

Let us first note that a virtual-photon line must
belong to one of the following four classes: (a) it
connects a point on the path of electron 1 with a
point on the path of electron 2; (b) it connects either
two points on the path of electron 1 or those of elec-
tron 2; (c) it connects a point on the path of either
electron 1 or electron 2 with a point on an electron
loop; or (d) it connects two points on the same or
different electron loops. As we have discussed in
the preceding section, photons of class (a) give in-

frared divergences, but not mass divergences. A
photon of class (b) may give both infrared diver-

gences and mass divergences. As we shall show, a
photon of class (c) or class (d) gives no divergences
whatsoever.

To see this, consider for definiteness the diagrams
in Fig. 3. We shall show that the photons in this di-

agram give no divergences as we set m =A, =O. To
prove this, let us concentrate on the possible diver-

gences caused by the virtual photon of momentum q
in the diagrams of Fig. 3. At q =0, the amplitude
corresponding to the diagrams in Fig. 4 is finite pro-
vided that the other three external momenta in Fig.
4 are all off-shell. Since the integral d qq is con-
vergent, the diagrams in Fig. 3 have no infrared
divergences at q =0. Also, if q ~ ~p&, we find that for
the same reason as in the remark following (2.3), the
polarization of the photon of momentum q is paral-
lel to q. By gauge invariance, the photon-photon
scattering amplitude of Fig. 4 vanishes. Thus, the
sum of scattering amplitudes corresponding to the
diagrams in Fig. 3 has no mass divergences. This
argument can be used to prove that a photon at-
tached to an internal loop does not cause any diver-

gence. As a consequence of this result, the ampli-
tude corresponding to the diagrams in Fig. 3 is finite

-q' -q -q'

FIG. 4. The diagrams of y-y scattering contained in

the diagrams in Fig. 3.

at m =X=0. Hence, it is equal to a function of 0 in
the limit s~m with 0 fixed. We remark that the
logarithmic factors of the foward (or near forward)
scattering amplitude come from electron loops only.
It is interesting that the logarithmic factors of the
nonforward scattering amplitude come from entirely
different sources.

Mass divergences. From the above discussions
only the photons of class (b) give mass divergences.
We shall choose for such photons a gauge in which

X„„is used in place of g&„,where

pl pqv + lgvqp
1V~„——gp„—

(n q)
(3.1)

In (3.1) n is a fixed vector of unit magnitude and q is
the momentum of the photon in question. In this
gauge the numerator has a zero at the surface of the
phase space where mass divergences may occur. To
see this, let us concentrate on photon 1 in Fig. 2.
We shall denote q& by q for short. At the surface

q =xp&, photon 1 is of the polarization qz, as was
deduced from (2.3). Now we have

(3.2)
P 7l q

as q =p~ ——0. Thus, the numerator has a zero at

q =xp& if the gauge (3.1) is used. This argument ob-

viously applies whenever the photon is attached to
an external line, and most mass divergences are
avoided this way. The only photons which will give
mass divergences in the gauge (3.1) are the ones be-

longing to a self-energy part on the external electron
line. In this case the zero from the numerator is not
enough to make the integral for the wave-function
renormalization constant to converge. Thus, the
logarithmic factors of s from mass divergences are
relegated to the wave functions. The wave-function
renormalization constant for an electron of momen-
tum p with the photons in the gauge (3.1) is a Dirac
matrix which depends on both n and p. We shall
show in Appendix 8 that in the limit of

~ p ~

—+ ao,
this matrix is a unity matrix or a scalar function.
As we shall see, we shall be able to determine the
form of this function.

Soft divergences To factor . out the logarithms
from soft divergences, one needs to split the photons
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of class (a) and class (b) into a G photon plus a E
photon. As we have mentioned, the E photon is de-
fined only if a way to separate the p leg from the p'
leg is given. This separation can be made at any
vertex on the path of the external electron provided
that the photon attached to this vertex of separation
does not give soft divergences. If a diagram has one
or more photons of class (c), then we may use any
one of them for the separation. If a diagram has no
photons of this class, then it must have photons of
class (a). The treatment of such a diagram is exactly
the same as that of the multiphoton exchange dia-
grams.

In all of these cases, the contribution of the K
photons can be calculated exactly. Just as in the
case of multiphoton exchange, these contributions
are summed into an exponential function, with the
exponent simply equal to a sum of terms in the form
of (2.10). Each of these terms corresponds to a join-
ing of two legs. For example, the four terms in

(n) (n)Epv=Gpv+Epv ~ (3.3)

where

(2.14) correspond to the joining of the p2 leg and the
p'& leg, that of the p2 leg with the p& leg, that of the

p2 leg with the p& leg, and that of the p2 leg with
the p~ leg, respectively. The sign of a term is chosen
to be plus if the two lines joined together are both
incoming or both outgoing. Otherwise the sign is
minus. For the electron-electron scattering ampli-
tude with all diagrams included, there are four more
terms in the exponent corresponding to the joining
of the following four pairs of legs: the p& leg with
the p ~ leg, the p & leg with the p & leg, the p2 leg with
the p2 leg, and the p2 leg with the p2 leg. As we
have mentioned, for such photons of class (b), we
use the gauge defined in (3.1). Consequently, the
definition of K and G corresponding to such a pho-
ton is no longer given by (2.4)—(2.7) but by

(n)Kp„——.

Nq~(2p; —q) (2p& —q)
qpq 2 2 ~ &&f

(2q p~ —q )(2q p; —q )

N (2p —q)~(2p —q)—
qq„+preceding term with q ~—q, p; =pf =p

2 P &
(2 . 2)2

(3.4)

The contribution of such E photons can be calculat-
ed easily. This calculation is exactly the same as the
one given explicitly by Yennie and collaborators"
and will not be repeated here. The result is that the
E photons connecting two points on the path of
electron 1 contribute to the exponent a term

i
y

d'q &'Np. (2pi —q)" (2S''i —q}"
2 (2m) q2 A, 2p& q —q 2p&.q q

where

dq e(q) 2p& —q

2 (2~) q A, 2p, q q2

2pi —q

2p& 'q —q

(3.6b)

X ~
—

, ~
. (3 5}

2pi'q —q 2pi 'q —q

M =M)+M2+E, (3.6a)

Substituting the explicit expression (3.1) for Nz„into
(3.5}, we find that the last two terms in the right-
hand side of (3.1) give zero. This is because either
of the two sets of brackets in (3.5) vanishes if it is
dotted with q. Thus, the contribution of the E pho-
tons to the electron-electron scattering amplitude
gives an exponent function with the exponent M
given by

A 2
——A

~
with p&~p2 and p& ~p2 . (3.6c)

In (3.6), we have included the contribution of photon
self-energy parts.

Ultraviolet divergences. The diagrams for
electron-electron scattering may have electron self-

energy insertions and vertex insertions. %hen one
or more of the external electron lines of such an in-
sertion are off the mass shell, the corresponding (un-
renormalized) propagator or vertex function has nei-

ther mass divergences nor soft divergences. Howev-

er, these functions have ultraviolet divergences. To
deal with such divergences, we must renormalize by
making subtractions. If the subtractions made at
the external electron lines of such insertions are on
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the mass shell, the subtracted functions have mass
divergences and soft divergences. Consequently, the
renormalized functions also do, and they give loga-
rithmic functions of s.

In order to avoid the appearance of such loga-
rithms, we shall make subtractions at the value t.
By the Ward identity, the contributions of the vertex
and the electron self-energy to the charge renormali-
zation cancel each other. However, this cancellation
is incomplete at the leftmost or the rightmost ver-

tices on the path of an external electron. This is be-
cause the wave-function renormalization constant
(ultraviolet divergent) for an external electron is
evaluated at m, not at t. Thus, if we use the renor-
malized charge everywhere, we must compensate by
multiplying the scattering amplitude by the product
of ratios of the wave-function renormalization con-
stant at m with that at t. (The product is over the
external electron lines. ) Let us call this ratio z2'~,
which is ultraviolet finite. Then the e-e scattering
amplitude is of the form

m= —[z, '~'(p'„n,t)z, '~'(P2, n, t)]

XM[zz'~ (p &,n, t)zz'~ (p2, n, t }]e (3.7}

X I „z,' '(p„n,t)e (3.8)

We note that M has neither soft divergences (which
are contained in e ) nor mass divergences (which
are contained in z2}. Thus, M is a function of 8 and
e (t) only. We also note that if we calculate, instead
of the e-e scattering amplitude, the vertex functions
of electron 1, say, we would get

I &(P'~,p~ ) = zq' (P i,n, t)

where I'& is a function of 8 and e (t) only. Compar-
ing (3.8) with (3.7), we obtain (1.1}.

Finally, let us give a heuristic derivation of the

asymptotic form of the vertex. A more rigorous
derivation can be found in the literature. ' ' I et us

first consider all the diagrams with vertex insertions

as well as the electron self-energy insertions but not

photon self-energy insertions. In other words, all

photons are bare photons. Let us go back to the

Feynman gauge. We shall renormalize by making
subtractions at off-shell values as before. By the

Ward identity, the charge remains the bare charge

eo as the contribution of the vertex function and the

electron self-energy function cancel each other.
However, this cancellation is complete only if each
of the external electron lines contributes a factor
Z2' (t,eo), where Z2 is the wave-function renor-
malization constant in the Feynman gauge. Since
the external electron lines are on the mass shell, each
of them contributes a factor Z2' (m, eo) instead.
Thus, the vertex function corresponding to all dia-

grams without photon self-energy insertions is fac-
torized into Z2(m, eo)/Z2(t, eo) times a function
which does not have logarithmic factors of s due to
ultraviolet divergences. To put it another way, these
logarithms of the e-e scattering amplitude are con-
tained in the overall factor Z2 '(t, eo) Next we. re-

call that the soft divergences of the vertex function

are factorized into e ', while the mass divergences
of the scattering amplitudes are factorized into the
overall renormalization constants in the gauge (3.1).
(Such a renormalization constant is, by relativistic
invariance, a function of p n, where .p is the momen-
tum of the electron. ) It follows from these con-
siderations that the vertex can be factorized into

Zz(m, eo)I„(p'„p,)= '
e 'exp[f(n p, )+f*(n p', )]e y„,Z, t, eo

(3.9)

f(n p& ) =2a ln(n p& )+b, (3.10)

where a and b are constants. The proof is given in
Appendix C. Thus, we get, ignoring photon self-

energy parts,

where G is a function of 8 and n only, independent
of t0, and k, is equal to Xi, defined in (3.6b) with

e (q ) replaced by eo. Since I
&

is independent of n,
we conclude that

f(n p~ }+f'(n p'~ )+G

is independent of n. A little mathematics shows
that fmust have the form

Z2(m, eo }
I „(p&,p, ) = e 's'+' Hy&,

Zp t, ep
(3.1 1)

where H is a function of 8 only in the limit shoo
with 8 fixed.

The constant (a +a*) can be determined as a per-
turbation series. For example, to obtain the lowest-
order term in this perturbation series, we may calcu-
late the ln s terms and lns terms in the lowest-order
radiative corrections of the vertex function and com-
pare them with (3.11). A somewhat easier way is to
observe that if we use the definition (2.7) for b, it
turns out that in the lowest-order the 6 photon does
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not give mass divergences. Thus, if we modify M1
by replacing q in the numerators in (3.6b) with 2q,
then the lowest-order term in a+a* is taken into
account. We shall not write this out explicitly. In-

stead, let us discuss briefly what happens if we take
into account the photon self-energy parts. In that
case, we replace eo by the renormalized charge.
Thus, we have

Zz(m, e)
I'„(p~,p~ )=y„H(8,e(r))" Zz r, e)

'2
dq e(q ) pi —q pI —q

Xexp 2i — +O e
(2n) q —A, 2p) q —q 2p~ q —q

(3.12)
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APPENDIX A

Consider the integral

d q 1 (p —q) (p' —q)

(2~) qz —A,
z [(p —q) —m ][(p'—q) —m ]

1

(p —q) —m2 2 (Al)

The second term in the integrand above serves to eliminate the ultraviolet divergence.
By introducing Feynman parameters and in the limit r &&m, where r:—(p ——p'), we get

I= — d3a5(1 —ga) z + z 1nr+O(1) .
32m (az+a3) m +a, A+aza, 3r 16m

(A2)

After some algebra one obtains from (A2)

0

I=— ln +O(1) .
64m A,

(A3)

0 I
y5= i I 0 y5 = 1

It follows from this chiral invariance that

To obtain (2.25) we identify in the first integral of
(2.14)p ) as p' and —pz as p. Then r is identified as
—s. We interpret —s as e ' (s+iE) so that the ar-
gument of the logarithm is positive when s is nega-
tive. Thus, we have

and

r5X(p»)rs =X(p)

y I;(p' p»)rs =I;(p' p)

(B1)

(B2)

e
ln2

e ' s

Sm A,

r

—ln +O(1)
Az

(A4)

where X(p) is the mass operator for the electron.
In the gauge (3.1), X(p) is a function of p and g,

where N& con& —(N& is. so defined that it has the
same dimension as p&.) As a consequence of (Bl),
we have

which leads readily to (2.25).
X(p) =c]p+czg . (83)

APPENDIX B

In this appendix, we prove two results valid at
m =0: (a) in the gauge (3.1), the self-energy dia-
grams for an external electron give a factor propor-
tional to the identity matrix in the Dirac spinor
space; (b) the vertex function I z is proportional to

14
fp 0

If m =0, then the Lagrangian for QED is invari-
ant under g +y5$ and g~Pys, w—here

Terms such as Xp or pX, for example, do not satis-
fy (Bl). The coefficients c~ and cz are functions of
p, n, and (n p). However, cz must vanish if p is
on the mass shell. This is because X(p) is gauge in-
variant at such a point and is hence independent of
N. Therefore, at the mass-shell point, X(p) is pro-
portional to p. Hence, result (a) is true.

Next, we have

I'„(p',p) =I')y„++z(ky„—y„k),
where I'1 and I'z are scalar functions. As a conse-
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quence of (B2), we have F2 ——0. Thus, result (b) is
true.

co sin8f'( —co cos8) =Gs(8, 8), (C2)

n.p& ———co cos0,

n.p', = —co cos(8 —P),
(Cl)

where 8 is the angle between the vectors n and p~.
Then

f ( —co cosP ) +f'( —co cos( 8 P)—)+G(8,P )

APPENDIX C

Let n be a unit vector with no time components.
Let us also choose the vector n to lie in the scatter-
ing plane. Then we have

where Gq denotes the partial derivative of 6 with
respect to 8. From (C2) we get

Gs(8, 8)cot8f'( —co cos8) =
co cosO

Since the left-hand side of (C2) is a function of
co cos6 only, we conclude that

—Gs(8, 8)cot8 =2a, a constant .

Thus,

f'( —co cos8) = 2a
—co cosO

is independent of P. Differentiating this expression
with respect to P and setting 8 =P, we get

or

f( —co cos8)=2a ln( —co cos8)+b . (C4)
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