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Heavy quark potential in SU(2) lattice gauge theory

John D. Stack
Department ofPhysics, University of Illinois at Urbana Ch-ampaign,

11108'est Green Street, Urbana, Illinois 61801
(Received 7 September 1982)

Using Monte Carlo methods and the icosahedral approximation to SU(2), the heavy quark
potential has been determined for SU(2) lattice gauge theory. The range of distances
covered is 0.05 fm to 1 fm for a string tension of 400 MeV. The results are compared to
perturbation theory, string theory, and the phenomenological potential of Martin. A simple
Coulomb plus linear form gives a good overall representation of the potential.

I. INTRODUCTION

The chromodynamic potential between a heavy
quark and antiquark arises from a fundamental
force and as such certainly ranks in importance with
the Coulomb potential between electric charges and
Newton's gravitational potential between bodies
with mass. Yet io contrast to its two more famous
predecessors, the quark potential does not admit a
simple theoretical treatment. Even with infinitely
heavy sources, the calculation of the potential is
highly nontrivial, due to the nonlinear dynamics of
gauge fields. Computer simulations of lattice gauge
theories are currently playing an important role in
understanding this dynamics. This paper reports on
our Monte Carlo calculations of the heavy quark po-
tential for SU(2) lattice gauge theory without fer-
mions. This theory is believed to have a heavy
quark potential which is similar in all its features to
that for lattice QCD, but is obviously simpler to
treat computationally. Actually, in order to work
on relatively large lattices, we simplified further and
replaced SU(2) by its 120-element icosahedral sub-

group I. However, the physics remains that of
SU(2), since in the region of interest to us here,
Petcher and %eingarten, ' and Bhanot and Rebbi
have previously shown that the 120-element sub-

group produces results indistinguishable from full
SU(2).

Our results, which build on previous calculations
of the string tension E, determine the continuum
heavy quark potential up to a single overall constant
for SU(2) pure gauge theory, over the range
0.1&x &2.0, where x =R/g, 8 is the interquark
separation, and f is the correlation length which is
essentially I/~E. The precise definition of g is
given in (1) and (2) below. In the units of hadron
physics, this range of separations is equivalent to
0.05 fm&R &1 fm, if VK is given the realistic
value of 400 MeV. This is the important range of

distances for tb and Y spectroscopy and is also a
range where analytic methods are ineffective at
present, giving a strong motivation for extending the
results obtained here to QCD itself.

The x values we probed in this calculation were
determined by our computer resources. In any cal-
culation on a finite lattice, there are three charac-
teristic lengths on which a physical quantity can de-
pend in principle; the lattice spacing a, the correla-
tion length g, and the lattice size L. For the contin-
uum limit, we want the system to have "forgotten"
a and L, leaving g as the only relevant length. For-
mally, this requires g/a~Do and L/g~ao. How-
ever, as first shown by Creutz, Monte Carlo calcu-
lations on a finite lattice in d =4 show continuum
renormalization-group behavior for g/a )2, so the
system loses its dependence on a extremely rapidly.
As g grows, finite-lattice-size effects will eventually
cause distortions in any physical quantity when g
becomes comparable to the lattice size I.. The two
requirements g/a )2 and g /L & 1 determine a
range of couplings for which continuum informa-
tion can be obtained in a given calculation. The
present work was done on lattices 16a)&L in size,
at various L from L =ga to 16a. To determine the
corresponding P values, we need a measure of g.
The string tension E sets the physical length scale in
considerations of the quark potential and it is natur-
al to define g to be proportional to I/v K, with a
coefficient of —1. To be specific, we define

g =0.012/AL,

where AL, is the usual two-loop expression for the A
parameter on a Euclidean lattice,

AI ——(I/a)(6m P/11) '~' 'exp( —3' P/11) .

(2)

We chose the coefficient of I/AL in (1) to be close
to previous Monte Carlo estimates of AL /V E.'

412 1983 The American Physical Society



27 HEAVY QUARK POTENTIAL IN SU(2) LATTICE GAUGE. . . 413

20-

(-g =160

IO-

I 1 1 1 I.

2.2 2.6 3.0
FIG. l. g vs P, using (1) and (2).

Figure 1 shows the plot of g vs p, using (1). As can
be seen from a glance at this figure, if we require
that 2& )/a &16, the present calculation can make
contact with the continuum limit for the approxi-
mate interval 2.3 & p & 3.1.

Allowing g/L to range up to —1 may be overly
generous. However, by studying various values of
L/a from 8 to 16, we have found that distortions
due to finite lattice size are less severe in SU(2) lat-
tice gauge theory than in a typical Abelian gauge
theory, where the more stringent requirement
g/L & —, is reasonable. Even allowing g -L, Fig. 1

shows that it will be difficult with present-day com-
puters to study the continuum limit for p signifi-
cantly larger than 3.0, due to the exponential growth
of g with P.

We deduced the quark potential from Monte Car-
lo data for rectangular Wilson loops, W(T, R). As
described in more detail in Sec. II, runs were made
at a number of different p values in the interval
2.2 & p & 3.1. (The values p =2.2 and 2.25 violate
somewhat our criterion that g be at Ieast two lattice
spacings. They were included to try to gain more
information on the large-R potential. ) In this inter-
val, the quark potential V(R), which has had the
quark self-energy removed, hopefully has negligible
dependence on the lattice size and lattice spacing, so
we can regard g V as a scaling function, i.e., a func-
tion solely of x =R/g. We calculated Wilson loops
only for R/a =1,2,3,4 so each value of P gives the
potential at just four values of x. However, by vary-
ing p, we can vary x continuously, even though R /a
is discrete. The number of different x values at

which we can calculate the potential and the spacing
between them is then limited only by the available
computer time. The largest x values (x,„-2)come
from the smallest p values, while the smallest
(x;„-0.1) come from the largest p values. In this
way, we can map out g V as a function of x, in prin-
ciple as accurately as desired, over the interval
x;„&x&x,„. The assumption that the results do
not depend on L can be tested by working on lattices
of different size, and the assumption that the results
are independent of the lattice spacing a can be tested
by seeing how well scaling works.

Even in the scaling region, the potential deduced
directly from Wilson loops is not the continuum po-
tential V(R), but rather a quantity we call the lattice
potential and denote by Vi(R). For T sufficiently
large compared to R we have

W(T,R)-exp[ —TVi(R)] . (3)

The relation between the continuum and lattice po-
tentials is

Vi(R) = V(R)+ Vp, (4)

where Vo is lattice-spacing dependent and R in-
dependent, i.e., Vp

——g (p)/a, for some function
g(p). Physically, Vp represents the self-energy of
the infinitely heavy quarks which sit on the perime-
ter of the Wilson loop. It contributes a term propor-
tional to the perimeter of the loop in the exponent of
W( T,R) and means that W( T,R) is not a scaling
function, but has dependence on R/a and T/a in
addition to R/( and T/g. If we were using only
one value of P, Vp would be a harmless constant.
But in order to merge results at different p values
together and use scaling, it is essential to eliminate
Vp. Our procedure for doing this is described in de-
tail in Sec. III. In essence, it is very simple. Since
Vp is independent of R, it does not appear in the
force between two quarks. The force at a set of
discrete points in x can be gotten by forming the
differences [ Vi(R +a)—V((R)]/a. (In practice, we
use only R =a. See Sec. III for further discussion. )

Putting a smooth curve through these points and in-
tegrating numerically, we get a determination of the
continuum potential up to a constant of integration.
After this arbitrary constant is chosen, a value of Vp
can be determined at each p by applying (4) at, for
example, R =a. We can then test the self-
consistency of the whole procedure. Removing
Vp(p) from the lattice potentials VI(R), multiplying
by g, and plotting versus x should map all the
Monte Carlo data onto a smooth curve which
represents the continuum potential. This works
quite well and is a nontrivial test, since only half the
Monte Carlo data are used in the numerical integra-
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tion.
In Sec. IV, we discuss various fits to the potential

in both large- and small-distance regions, and using
a phenomenological potential applied very success-

fully to heavy quark spectroscopy by Martin. We
find that a good overall description of the potential
can be obtained with a simple linear plus Coulomb
fit.

II. MONTE CARLO METHOD AND WILSON LOOPS

We used the Wilson action, namely,

A. Monte Carlo parameters

S =—g tr[1 —Uk(x)U~(x+ ka) Uk(x+ 1 a)U~ (x)] .
2 k]x

(5)

The link variable Uk(x) is an element of the group
I, in the representation which is the restriction to I
of the fundamental representation of SU(2). [If we
refer to the SU(2) quantum number as isospin, then
the first five irreducible representations of SU(2)

1 3 5
with isospin —,, 1, —,, 2, and —, are also irreducible
when restricted to I.]

Given the action, the goal of the Monte Carlo
process is to generate a sequence of configurations
[sets of Uk ( x )] with weight proportional to
exp( —g. The basic step is the "link update, "which
begins by generating a trial link Uk (x), by multiply-
ing the present link with a group element randomly
chosen from the 12 nearest neighbors of the group
identity. The decision to accept the trial link Uk(x)
or retain Uk(x) is then made by applying the stand-
ard Metropolis algorithm. In our calculations, the
rate at which trial links were accepted varied from
-40% near P =2.3 to -25% near P =3.1.

The restriction of the gauge group to I has a num-
ber of computational advantages. From the
viewpoint of memory requirements, a link variable
in I can be represented by a 7-bit integer and 8 links
can then be stored in one 60-bit computer word. In
addition, the use of Boltzmann factor tables, group
character and multiplication tables, plus standard
Boolean operations (shift, mask, etc.), are useful in
reducing execution time. By applying these tech-
niques, plus tinkering with innermost loops, the
method of indexing links, etc., we arrived at a final
program in which a link update took approximately
50 @sec on a CDC Cyber 175.

A typical run consisted of —10 link updates.
The number of sweeps through the lattice varied, de-
pending on lattice size. For example, at P=2.3,
where g-2a, we ran 350 sweeps through a 16X8
lattice, updating each link 10 times. On the other
hand, at P =3.1, g —16a and it was important to run
on a large lattice. Here we ran 80 sweeps through a
16 -lattice, updating each link five times. All of our
runs began with a completely ordered configuration
which had the group identity on every link of the

I

lattice. Periodic boundary conditions were used for
three directions (those corresponding to L ), while
helical boundary conditions were used for the
remaining direction which always had side 16a.
Data were taken at P values from P =2.2 to 2.9 in
steps of 0.05, as well as at the isolated values

P =2.325, 3.0, 3.1.
Wilson loops W( T,R) with T/a =2—8 and

8/a =1—4 were measured every sweep through the
lattice. The time spent measuring Wilson loops
varied from 10 to 20%%uo of the total execution time.
The loops measured were those oriented the "long"
way on our 16a )(L lattices, where L =8a and 10a
was used for P & 2.6 (with the exception of
P =2.325, where L =6a was used), and L =16a for
P&2.6. For P&2.6, some runs were made with
L =10a and 13a to check for finite-lattice-size ef-
fects, which were found to be small in all cases. In
early runs, we recorded the characters of the loops,
and then averaged these over all eight nontrivial ir-
reducible representations of I. However, the result-
ing numbers were ridiculously small for all but the
first few representations, so in later runs we record-

1 3
ed only the loops averaged over isospins —,, 1, —,,
and 2. Here, we concentrate on the fundamental
representation, which determines the potential be-
tween two heavy quarks with isospin —,. Where
comparison is possible, our results for fundamental
representation loops are in excellent agreement with
the high-statistics results obtained for full SU(2) by
Berg and Stehr.

B. The lattice potential

There is no hard and fast rule for judging when
the lattice is in equilibrium and configurations
weighted with exp( —S) are actually being generated.
The trial link acceptance rate and the geometrically
small Wilson loops stabilize after only a few sweeps
of the lattice. However, the larger loops, which
have numerically smaller values, can take somewhat
longer. We generally took a conservative approach
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1 1

and omitted the first —, to.—, of the run to ensure

equilibrium, and computed the average of the loops
over the rest of the run. For our runs of —10 link
updates„hW(T, R) &0.007, where hW(T, R) is the
uncertainty in the loop mean value. The mean value
of all measured loops is several times larger than
hW(T, R) for P&2.45, but as P decreases below
2.45, the mean value of loops with R/a &3 and
T/a & 6 becomes increasingly comparable to
hW(T, R).

The lattice potential Vi(R) measures the ground-
state energy of the system of heavy quark, heavy an-
tiquark, and gauge field. On a lattice infinite in the
Euclidean-time direction, Vi(R) is precisely defined
by

V~(R)= —lim ln[W(R, T)]/T .
T~ 00

(6)

This formal limit is clearly not possible on a finite
lattice. Instead we kept T&R, and tested for ex-
ponential behavior in T. Fortunately, in all cases,
there is strong evidence for exponential behavior of
W(T,R) as soon as T& R. We got the value of the
lattice potential by fitting lnW(T, R) to a straight
line in T for T &R, the slope giving Vi(R). The fit
was standard least squares, with the points weighted
with their inverse statistical errors. In Fig. 2, we
show ln[W(T, R)] vs T for P=2.55. The plots for
other values of P look very similiar, except that the
statistical errors become steadily more visible as p
decreases. For 2.2 and 2.25 we were only able to
determine the potential for R/a =1 and 2, due to
the very small values of W(T,R) for R/a =3 and 4.

III. THE FORCE AND CONTINUUM POTENTIAL

As mentioned in the Introduction, the lattice po-
tential does not scale, since it contains the self-

energy Vo(P). This is illustrated in Fig. 3, where we

plot the dimensionless lattice potential (Vi vs x.
Our goal is to get a relative determination of Vo(P),
so that removing it from V~(R) will move the sets of
points which lie on different curves in Fig. 3 onto a
single curve which then will determine the continu-
um potential.

Since Vo(P) is independent of R, it does not affect
the force between two quarks,

av av,
BR BR

(7)

6,0-

The approach we took was to eliminate Vo(P) by in-

tegrating the force between two quarks with respect
to x. Our values for V~(R) at R/a = 1,2 are statisti-

cally very accurate for all measured values of P, so
these values of R/a were used to determine F. The
two values R/a =1,2 define x values xz ——2a/g,
xi ——a/g, and their difference doc =xq —xi at each

P. In terms of these quantities, we may write the di-

mensionless force g F as

g'F(x; )=g [V(x2) V(xi)]/»— ,

where x; lies between x i and x2 and will be specified
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FIG. 2. 1nW(T, II) vs T, at P=2.55.
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FIG. 3. The dimensionless lattice potential gVi(x) vs x.
The same symbol represents a given p value in all
succeeding plots. The solid lines connect points with the
same p.
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shortly. Before doing that, it is important to discuss
one feature of definition (8), namely, that it tacitly
assumes that the continuum limit applies at the
small distances R/a =1,2. This cannot literally be
true; for the system to "forget" the lattice spacing, it
is necessary to be in the regime R/a » 1, R/g arbi-
trary. However, it is part of the lore of spin systems
that once g is in the scaling region, spin-spin corre-
lation functions assume their scaling forms quite ac-
curately for small values of R/a, even R/a =1,2. '9

(Here R refers to the distance between spins. ) Since
Wilson loops are the analog for lattice gauge
theories of spin-spin correlation functions for spin
systems, it is very natural to apply a similar assump-
tion here, with the expectation that it will introduce
some small errors (-5%).

Although R/a »1 is clearly inaccessible in our
calculations, it might be objected that using
R/a =2,3 or R/a =3,4 to determine the force
would at least be a step in the right direction. We
have checked that it makes a quantitatively negligi-
ble difference to use R /a =2,3 rather than
R /a = 1,2 to determine g F. On the other hand, us-

ing R/a =3,4 suffers from the difficulty that the
statistical accuracy of VI(R) at R/a =4 decreases

rapidly as P falls below 2.45. Thus using R/a =1,2
seems to us to be the best procedure.

Now, let us turn to the assignment of the inter-

mediate distance x;. Since V0 has dropped out of
(8), the right-hand side of this equation is the differ-
ence of the dimensionless continuum potential

(V(x) at the points x& and xz, divided by their
separation dec. (There is a small penalty to be paid
for violating the condition R/a »1, as discussed
above. ) From (7), g F(x;) is g(BV/Bx)(x;). If we

were really able to take the limit Ax~0, then x;
could be any point in the interval [x~,xq]. Howev-

er, bx is finite, ranging from 0.06 near P=3 to 0.5
near P =2.2. Nevertheless, the mean-value theorem
of elementary calculus still states that for some x; in

the interval [x~,x2], the right side of (8) gives the
exact value of g F. To get a definite result for x;,
we make the assumption that the potential can local-

ly be represented as a linear term plus a Coulomb
term, i.e., g V(x) =Ax —8/x, where A and 8 are ei-

ther constants or functions which vary slowly com-
pared to x and 1/x. As discussed further in the next
section, this general sort of form for the potential
represents the leading behavior in both large- and
small-distance regions. In between, analytic
methods say nothing, but is is reasonable to apply it
there also, since we expect the potential to be a
smooth, simple function despite the difficulty of cal-
culating it.

Under the assumption that A and 8 are either
constants or slowly varying compared to x and 1/x,

Fo
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FIG. 4. The dimensionless force g F vs x.

the right-hand side of (8) becomes g++/2(x, )'.
lout this is the same as the derivative gBV/Qx (again
ignoring the variation of A and 8 over the interval
M), evaluated at x;=v 2x, . This then fixes x;. In
Fig. 4, we show j F as determined by (8) vs x.

The next step is to numerically integrate g F to
get gV. This was done by putting a smooth curve
through the points in Fig. 4, using a cubic spline in-

terpolation. Cubic splines are widely used in inter-
polation and have the desirable properties of intro-
ducing minimal extraneous curvature and converg-
ing to the interpolated function as the separation be-

tween points goes to zero. ' From our point of
view, using interpolation here rather than
some form of least-squares fit allows us to deter-
mine Vo locally in P and does not require a com-
mitment on the overall shape of the potential. The
interval over which the interpolation is carried
out ranges from x =V2a/g(3. 1)=0.092 to
x =~2a/g(2. 2) =0.895.

Once the spline interpolation to g F is made, we

numerically integrate, fixing the constant of integra-
tion by assigning gV the arbitrary value —2.0, at
x =W2a/g(3. 1). We can then determine the (rela-

tive) self-energy at each P by computing the differ-
ence between (VI and gV as found by numerical in-

tegration. This difference is computed at the x
value which corresponds to R/a =1 for all P values

for which this point falls in the spline interpolation
interval, R/a =2 otherwise. Having in this way
determined a VD for each P, we can now move the
lattice potentials of Fig. 3 relative to each other to
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get values which represent the continuum potential.
If our procedure is self-consistent, the R/a =3,4
points which have not been used so far, should fall
on the same curve as the R /a = 1,2 points. The re-
sult is shown in Fig. S. Although there are some
minor violations, the overall quality of the scaling
appears to be excellent.

We close this section by briefly discussing the as-
sumptions underlying our results so far. To restate
them, we have made the following assumptions. (i)
The correlation length is given by (1) and (2). (ii) In
the scaling region, there is only a small error intro-
duced by working at R /a = 1,2 rather than
R/a » l. (iii) The intermediate distance x; is given

by x; =~2x ~, or equivalently, the potential is locally
linear plus Coulomb. Note that no free, adjustable
parameters have been introduced. With regard to
assumption (i), it is the functional form of Eq. (2)
which is important, the value for the coefficient of
I /AL, in (1) has been chosen merely for convenience.
We have done some rough tests of this functional
form by varying the exponent in (2) away from
3m /11. The results do not scale as well as those in
Fig. 4, although it would be hard to show convinc-
ingly that 3m /11 was the correct value with our
data alone. The same holds true for the (P) '~' '

term multiplying exp( —3m P/11). The form of g is
definitely a hypothesis here from which we hope to
learn about V. We have also checked assumption
(iii) by varying x;/x~ away from v2. Here only
minor variations wreck scaling, and although we
have not tried to do it, our data could probably be

used to show that in order for gV to scale, x;/x&
must take a value near v 2. Other than the fact that
the results scale well, we have no way to directly
check assumption (ii).

IV. FITS TO THE POTENTIAL

V(R)~KR —m /12R, (9)

where the first term is the energy of the static chro-
moelectric flux tube connecting the heavy quarks,
and the second term arises from the fluctuations of
this fiux tube or string. The 1/R term in (9) has not
yet been derived from gauge field theory, but follows
from a treatment analogous to a particle path-
integral description of a propagator in field theory. '

In the analogy, E plays the same role in the string
case that the mass does in the particle case. Since a
particle path integral does give the correct large-
distance behavior of a massive field-theory propaga-
tor, it seems quite likely that (9) is correct. The
analogy would suggest that there are further correc-
tion terms to (9), involving higher inverse powers of
R, but nothing is known about this at present.

At short distances, v KR «1, renormalized per-
turbation theory makes a precise prediction for the
leading behavior;

A. Theory

Before discussing the various fits we have made to
our Monte Carlo potential, let us review what is
known theoretically, where there is understanding
only in the extreme large- and small-distance re-
gions. For V ER »1, the potential is predicted" to
take the limiting form

—(9m /22)
1

102 1n[L (R)]
RL(R) 121 L(R) (10)
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FIG. 5. The dimensionless potential g V(x) vs x.

whe~e L (R)=2 ln(1/A'R). Correction terms to (10)
can be of two types; (i) perturbative corrections
(three loops and beyond), in which the basic struc-
ture remains a Coulomb term, modulated by loga-
rithms and (ii) nonperturbative corrections, e.g., a
term A'R, with modulating logarithms. The latter
sort of corrections would be analogous to higher
twist terms in electroproduction. It should be noted
that if as assumed by some authors, ' ' the small-R
behavior of V(R) is controlled by the vacuum ma-
trix elements of local operators, then the leading
nonperturbative correction to gV is of the form
(A'R), rather than A'R. This difference would
have a negligible effect on the values of g V at small
x which were determined in the last section. The
reason is that the Coulomb term dominates at small
x, and therefore the value x;/x, =v2 which we
used is still quite accurate.
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As has been discussed extensively in the literature,
A parameters, although renormalization-group in-
variants, are not fundamental physical quantities
like E, since they depend on the method of renor-
malization. Equation (10) is written in a scheme,
natural in discussing the potential, in which there is
no [L (R)] term on the right side of (10). The A
parameter in this scheme, denoted by A', is close in
magnitude to AMs and AMOM and is related to AL,

in SU(2) pure gauge theory by A'= 56.49AI . '5'

B. Fits to the potential

We have made a number of least-squares fits to
the data for gV determined in the last section. Most
of them are motivated by our basic picture of the
potential, that it can be represented locally by a
Coulomb term plus a linear term. All are simple,
involving at most two parameters. An attempt has
been made to explore fairly thoroughly the effects of
various cuts on the data; in x, the couplings includ-
ed, the R/a values included, etc. Our linear plus
Coulomb fits are parametrized in terms of constants
E'g and a as follows:

(V=(E'g )x —a/x,
where g is always given by (1), and we will quote ei-
ther E'g or AL/v E, along with a. (In the last
section, E'g and a were denoted as A and 8.) The
prime on E denotes the fact that unless the fit is re-
stricted to large x, the linear term only determines
an effective string tension. The prime on E will be
dropped when discussing the large-x region of the
data. Since it is extremely difficult to gather accu-
rate Monte Carlo data for appreciable values of x,
we will be very generous in deciding what consti-
tutes a "large" value of x.

We begin by approaching the data from the per-
spective of large-distance physics. The main stand-
ard of comparison here is the previous Monte Carlo
calculations of the string tension. ' All of these
calculations use the method introduced by Creutz,
in which the string tension is extracted from ratios
of nearly square Wilson loops. The basic assump-
tion of the method is that, apart from a perimeter
term, the Wilson loops obey an area law. The analo-
gous assumption for us is that the potential is purely
linear. In Fig. 6, we show the linear fit to all the
data with x &x;„=0.5. The value of Eg is 0.94,
and varies only slightly when we perform cuts such
as eliminating the points with P=2.2 and 2.25,
which lie at the edge of the scaling region. Howev-
er, fits of this type are not stable under an increase
of x;„.The value of Eg steadily decreases, reach-
ing 0.83 for a linear fit to all the data with x &0.9.
Beyond x;„=0.9, we gradually run out of accurate

2.0-

I.O-

0.0
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-2.0-

0.4 0.8 I.2 I.6 2.0

FIG. 6. Straight-line fit to gV for x &0.5.

data points, so the parameters for fits with

x;„&0.9 are not very well determined. A value of
Eg =0.83 corresponds, using (1), to AL /v E
=0.13, which is consistent with results obtained us-

ing Creutz ratios. '

The fits just described do not really constitute an
objective measure of E, since the value of Eg ob-
tained was not stable. The fact that Eg was de-
creasing with increasing x;„suggests the presence
of an attractive Coulomb term, in addition to the
linear term. We have explored the possibility of a
Coulomb term for x &0.5 in two different fits. The
first constrains a =m. /12 as in (9). The resulting fit
to all data with x &0.5 is shown in Fig. 7. The sta-
tistical quality of this fit is about the same as the
purely linear fit of Fig. 6. The value of E$2 is now
0.50, considerably smaller than for the purely linear
case. As we increase x;„,we again find that the re-
sults change, but this time E( increases, reaching
0.57 for x;„=0.90. Although the behavior of the
purely linear fit suggested the presence of a
Coulomb term, the value u=~/12 is clearly too
large, and the correct value of u apparently lies be-
tween 0 and n. /12. This is confirmed by a two-
parameter fit to the large-x region, where we get a
best value for Eg of 0.72, corresponding to
AI /v E =0.014, while a =0.11, less than half
~/12. The errors are fairly large, —15% for
AL, /~E, -20% for a. Thus we favor a string ten-
sion somewhat smaller than that determined with
Creutz ratios. This is not surprising, since as men-
tioned earlier, the Creutz ratio method implicitly as-
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FIG. 8. Two-loop perturbation theory compared to g V.

FIG. 7. Fit to gVwith a=m/12, x)0.5.

sumes a linear potential, whereas we claim that a
Coulomb term is also present. The Coulomb term
accounts for a small ( —10% at x =1), but measur-
able amount of the variation of the potential over
the range of x values we are probing. Since we are
not yet in the region v KR »1, there is no direct
conflict with the prediction (9) for a.

We now turn attention to the small-x region. The
obvious first question is whether perturbation theory
applies. In Fig. 8, we show two-loop perturbation
theory from (10), plotted versus our data. A con-
stant has been adjusted so that (10) goes through
x =0.065 which is the smallest x data point. While
there is brief contact between the data and perturba-
tion theory, the data soon rise sharply above pertur-
bation theory. As is clear from Fig. 8, perturbation
theory eventually breaks down completely, but its
quantitative validity probably disappears much
sooner. From (10), the effective Coulomb term of
two-loop perturbation theory has a=0.155 at our
smallest x value. The one-loop approximation is ap-
proximately 25% larger. There are of course no
positive powers of x in straight perturbation theory.

To gain further insight into the small-x region, we
performed local two-parameter fits to the data using
a Coulomb term plus a linear term over intervals
x;„to x;„+0.20, with x;„=0.0, 0.10, 0.20, 0.30,
and 0.40. In this way, we can determine an effective
local value of K'g and a. The results are shown in
Table I. There are several features worth noting.
The value of a generally decreases as smaller x

(V=A +Bxr . (12)

TABLE I. Effective Coulomb and linear terms at short
distance.

0.135
0.158
0.176
0.170
0.180

2.132
0.962
0.700
0.635
0.674

&min

0.0
0.1

0.2
0.3
0.4

&max

0.2
0.3
0.4
0.5
0.6

values are sampled. This is in qualitative accord
with asymptotic freedom. Quantitatively, a is
smaller than the value obtained from (10), but this is
only a 10% effect at x =0.065 and could easily be
accounted for there by higher orders in perturbation
theory. It should also be remembered that although
the Monte Carlo calculation is nonperturbative, in
the short-distance region it is also approximate in
that we are working on lattices with g-I. and using
the icosahedral approximation to SU(2) which must
eventually break down at short distances. Finally,
from Table I there is clear evidence for a linear term
at all the small-x values we can study. A large value
of K'g is found in the interval x =0.0 to x =0.2,
but after that K'g settles down to values of the
same order of magnitude that we find at large x.

We have also studied fits using a form of the po-
tential applied very successfully to f and y spectros-
copy by Martin. ' Here the potential is parametrized
by
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2.0-

a =0.164+0.008. This fit is very stable against vari-
ous cuts, and if there were a hadron spectroscopy
for SU(2) pure gauge theory, would represent the
best simple parametrization of the potential to use.

V. Conclusion

10-

00-
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FIG. 9. Linear+ Coulomb fit to all the data.

These fits do not work as well as our linear plus
Coulomb fits. Further, the value of y is very sensi-
tive to the x interval chosen. To give three exam-

ples, a fit over the interval x =0.15 to x =0.8 gives

y = —0.43, the interval x =0.3 to 1.4 gives y=0.07,
while x &0.5 gives y=0.25.

Finally, although the effective strengths of linear
and Coulomb terms both vary with x, a simple
linear plus Coulomb fit to all the data actually
works quite well as shown in Fig. 9. The parameters
of the fit are well determined; IC'g =0.71+0.02 and

Using standard Monte Carlo methods and strong
but reasonable assumptions on scaling, we have
shown that the spin-independent part of the heavy
quark potentia1 can be determined for non-Abelian
lattice gauge theory. Two extensions of the present
work are needed in order to confront directly the
rich spectroscopy of heavy quark mesons; the in-

clusion of spin-dependent terms in the potential and
the extension to SU(3) as the gauge group. Both ap-
pear to be feasible with present-day computers, al-

though it will clearly be necessary to work on small-
er lattices than those used here for the case of an
SU(3) gauge group. This may not be a difficulty,
since we found that finite-lattice-size effects were
small for SU(2), and recent work has suggested that
they become completely negligible for SU(N) as

Thus lattices considerably smaller
than 16 may suffice for SU(3). We hope to report
on the spin-dependent part of the potential and the
extension to SU(3) in future work.
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