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The structure of the effecnve potential for lattice ¢ * theory is discussed. It is shown that
the effective potential V() is undefined in an infinite lattice system for certam values of ¢
if spontaneous symmetry breaking occurs. It is also shown that d 2V/qu >0 for all ¢, thus
precluding the familiar “double-well” shape suggested by the classical potential. These
results do not depend on the spacetime dimensionality of the lattice or upon the particulars
of any loop expansion. A graphical approximation procedure for the effective potential is
formulated and compares very favorably with Monte Carlo results. Comparisons with
strong-coupling-expansion predictions are also made.

A careful analysis of the vacuum structure of a
field theory is a necessary precursor to understand-
ing its physical content. Typically this analysis
proceeds by calculating (via perturbation theory) a
quantity known as the effective potential,'~* the
minimum of which furnishes information as to the
nature of the lowest energy eigenstate of the theory.
In order to determine the effective potential accu-
rately, however, it is important that nonperturbative
effects be considered as well. One convenient way to
discuss such effects is to perform this analysis on a
discrete version of the theory.’ Lattice field theories
possess a nonperturbative regulator—the lattice
spacing—and are amenable to numerical analysis by
Monte Carlo methods. The simplicity and direct-
ness of this approach is demonstrated here by deter-
mining the effective potential of lattice ¢* theory.

Naive expectations notwithstanding, it is possible
to show that spontaneous symmetry breaking in this
theory is not accompanied by the presence of a dou-
ble well in the effective potential. In fact, the
second derivative of the effective potential V(¢)
with respect to ¢ can never be negative, thus pre-
cluding the familiar double-well shape for V( ¢)
The presence of a nontrivial vacuum in lattice ¢*
theory instead implies* the nonexistence of the effec-
tive potential for a range of ¢ Implications of this
result include interesting analogies with thermo-
dynamics and a novel graphical approximation pro-
cedure reminiscent of the Maxwell construction.
This graphical approximation agrees with a Monte
Carlo calculation and in certain instances is an im-
provement over results obtained from the strong-
coupling expansion.

The continuum limit of such lattice theories must
be considered with caution. For example, the con-
tinuum limit of lattice ¢* field theory is known to
be noninteracting (i.e., the renormalized quartic cou-
pling constant is zero) in greater than three dimen-
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sions.*~? On the other hand, ¢* theory in three
spacetime dimensions is known to have an interact-
ing continuum limit."® The graphical approxima-
tion appears to be equally valid for lattice theories in
three and four dimensions and is thus presumably
applicable to interacting continuum theories.

At this point it is useful to review the effective-
potential formalism for ¢* theory on a Euclidean
lattice of N sites. In this formalism the generating
functional W {J} is defined implicitly by

Wl = f@¢e—S{¢Jl , (1a)
where
S{¢.J}=+ 2 (¢ ¢/
<ij)
| + UG+, (1)
and l

Ulg)=Mo*—f),
[26=11 [as: .

The notation (ij ) refers to all nearest-neighbor pairs
on the lattice (summed once). The {#}] are real
fields ranging from — « t0 oo.

From Egs. (1) it follows that the expectation value
of ¢; in the presence of sources {J} is

bi=tg,=—22LIL. o)

(1c)

The effective action I'{$} is given by the Legendre
transform of W{J}, i.e.,

L@ =W — 3 (80, 3

i=1

The right-hand side of Eq. (3) is rendered an explicit
function of the {¢}] by using Eq. (2). The effective
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potential is determined from Eq. (3) by setting all
the {¢> } equal to some value ¢,

V($>=Nrf¢i=$} : @)

Equations (2) and (3) imply a useful result which is
dual to Eq. (2), namely,

gﬂ/\ﬁ}. =—J. (5)
dg;
From Eq. (5) and Ref. 3 it follows that the presence
of a nontrivial vacuum in the theory (e,
lim;_,o (¢ );540) corresponds to a minimum of the
effective potential.

Equations (1), (2), and (5) can be used to define a
simple procedure for evaluating the effective poten-
tial in lattice #* theory. First the expectation value
(¢);=4 for uniform {J}=J is calculated by nu-
merical or other means. This result is inverted to
obtain J ( ¢) Equation (5) can then be integrated to
obtain 1"(¢ ) and hence the effective potential V(¢ ).

The pivotal significance of the quantity (¢ ),
within this procedure demands that its analytic
behavior be studied closely. Several elementary
though important properties of this quantity which
crucially delimit the behavior of the effective poten-
tial are listed below.

(i) The expectation value (¢ ), is antisymmetric
inJ,ie.,

($)y=—(d)_s, _ (6)

and (#);=0 when J=0. These results follow
directly from Egs. (1). Furthermore, for any range
of parameters where the vacuum of the theory
described by Egs. (1) is nontrivial it must be true
that
(ii)
—— asJ—0T, (7)

for some §>0. Note that as A increases without
bound ¢2 approaches f.

(iii) By differentiating Eq. (2), it can be shown

that for uniform J
—d{¢),
dJ

and thus that

d*v($) _ dJ(¢

dé? dé

wherever this derivative is defined.

(iv) For large J (i.e., a large applied current) the
classical result

=3 (g —(4:)1)*)s 20, (8a)

>0, (8b)

Jclass $ )= "4)"$ $2 _f 9

should be a good approximation to J( ¢) Note
that for ¢ <f73, Jcass ¢) violates property (iii).

(v) The expectation value {¢ ), is a single-valued
function of J. This property is perhaps best seen on
a finite lattice. There the path integral of Egs. (1)
consists of a finite number of integrations of a
bounded and singularity-free integrand. This expec-
tation value of course remains single-valued in the
limit of an infinite system.

These five properties of (¢ ), imply that the
current J(¢) for an infinite system must have the
qualitative form depicted by the heavy line plotted
in Fig. 1(a) if the reflection symmetry ¢ — —¢ is
spontaneously broken by the ground state. Note
that (¢ ), as a function of J is discontinuous; i.e.,
the relation Eq. (2) cannot be inverted for all (¢ ).
Thus for an infinite system the derivative of the
functional W (J) with respect to J is discontinuous.
For a finite system, on the other hand, W (J) must
be an analytic function of J. As no phase transition
can occur in such a case, property (ii) cannot hold
for finite systems. The plot of J($) versus é for
this system is therefore of the form given by the
dashed curve in Fig. 1(a). The classical value of the
current J g, ¢) is plotted in Fig. 1(b). _

An analogy can be made between the curves
shown in Fig. 1 and the isotherms (“P-V diagram”)
of a classical thermodynamic system undergoing a
phase transition.!! The analogy is constructed by
associating the current J and the expectation value
(¢ ), of the field-theoretic system with the pressure
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FIG. 1. Qualitative plots of J and V versus $ (@) J
versus $ for an infinite system (solid line) and a finite sys-
tem (dashed line) when the conditions for spontaneous
symmetry breaking in the infinite system are met. Note
that J =0 at ¢ 0 in both cases. (b) J,ss Versus ¢ when
f >0 (solid line). Dashed line is discussed in the text. (c).
Effective potentials associated with each of the currents
shown in (a). The legend is as above. (d) Classical form
of the effective potential corresponding to the current

J dlass ¢) plotted in (b).
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P and volume V, respectively, of the thermodynamic
system. Pursuant to this analogy the exact current,
J (), is associated with the pressure as a function of
volume, P(V), calculatedAfrom a partition function
while the current J (@) is identified with P(V)
calculated from some phenomenological equation of
state (such as the van der Waals equation). Within
the framework of the grand canonical ensemble, it
can be shown that the compressibility —dP /dV can-
not be negative and that V is discontinuous at the
phase transition. These results correspond to prop-
erty (iii) and the discontinuity of ¢ about J =0 (cf.
Fig. 1), respectively.

The above analogy suggests a simple graphical
prescription for obtaining a useful approximation of
J (¢) from chass(¢) This prescrlptlon is reminis-
cent of the Maxwell construction'? of thermo-
dynamics and proceeds as follows. For f <0, when

class(qﬂ) satisfies the positivity property Egs. (8) and
does not vanish except at the origin, Jclass(qﬁ) itself
is taken as the required approximation. For f >0,
two cases are to be distinguished. In the case of an
infinite lattlce the unphysical portion of J g,
where ¢ <f, is replaced by a point at the origin.
For a finite lattice—required for Monte Carlo
calculations—the approximation must be modified
because of the aforementioned analyticity of W[J].
This modification consists of replacing the unphysi-
cal segment of J (¢ ) with a line of small negative
slope passing through the origin, as shown by the
dashed line of Fig. 1(b). The slope of this line tends
to zero in the limit of large system size; hence in
practice a horizontal line suffices.!®

The validity of this rather appealing graphical
construction can be studied by a numerical compu-
tation of (¢ );. Figures 2—5 present the results of a
Monte Carlo calculation of this quantity for a 4* lat-

10.0 LA L L L L O L |
to

]
WA ]
_\ ° n
[\ ]
'\ o i
Fo\ ° 1
~ L o et &
o j:::_:_—g_—_:g._ﬂ-:f,—::‘,__ =
S o \ —
- o \ o
- o \ -
L o\
L o\
L o\
L o\
+ l of
- U N T T T N TN S T T T N T Y W I |
104 8 0 0.8
?

FIG. 2. Monte Carlo-generated values of J ($ ) (data
points) for a finite lattice. Strong-coupling approxima-
tion of J( ($) (short dashes). Graphical approximation of

J($) discussed in the text (long dashes). In each case
A=10and f =0.375.
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FIG. 3. Monte Carlo-generated values of J(¢) (circles)
compared with strong-coupling-expansion result (short
dashes). Classical current J,s (long dashes). In each
case A=10 and f = —0.375.

tice. An important feature of this calculation is the
method used to “update” the lattice in order to bring
it into equilibrium. Each ¢; is updated by first gen-
erating a new field ¢;°" given by

BV =¢;+(2r — DA ,

where 7 is a random number uniformly distributed
between zero and unity and A is a parameter chosen
empirically (A~1—10 in the present calculation).
Acceptance of the generated value ¢ is governed
by the Metropolis algorithm.'* Undesirable correla-
tions are avoided by only measuring each {¢ ) after
ten updates of the entire lattice have been complet-
ed. Also, the entire lattice is first allowed to equili-
brate for 100 iterations before measurements are
taken.

Figures 2 and 3 display typical results of Monte
Carlo calculations of J (¢) as a function of ¢
A comparison of these plots with those of Fig. 1
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FIG. 4. Effective potentials associated with the

currents of Fig. 2 for finite lattices. The legend is as be-
fore.
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FIG. 5. Effective potentials associated with the

currents of Fig. 3. The legend is as before.

suggests the presence (absence) of a nontrivial vacu-
um for ¢* theory on an infinite lattice for f>0
(f <0). The strong-coupling-expansion results of
Ref. 7 and the results of the graphical approxima-
tion discussed above are also shown. In Figs. 4 and
5, the effective potentials corresponding, respective-
ly, to the currents of Figs. 2 (apparently broken
symmetry) and 3 (unbroken symmetry) are shown.
The effective potentials for the Monte Carlo-
generated current were obtained by fitting polynomi-
als to the data of Figs. 2 and 3 and integrating the
result analytically.

The comparison of the strong-coupling expansion
with the graphical approximation and Monte Carlo
results presented above warrants a more careful
analysis. The strong-coupling expansmns of V( ¢)
given in Ref. 7 are an expansion in powers of ¢
The expansion is thus continuous everywhere, and in
its presumed region of validity—the limit of large
A—is expected to converge only for small 45 Thus
in Fig. 3 (where spontaneous symmetry breaking
does not occur) the strong-coupling expansion is a
better approximation to the Monte Carlo results
than the graphical construction for small ¢ but it is
a poorer approximation for larger values of ¢
When spontaneous symmetry breaking does occur
the strong-coupling expansion must fail, as V( (¢)in
an infinite system only ex1sts (except for a single
point at the origin) for ¢ >¢.2

It should be emphasized at this point that all the
qualitative arguments presented here as to the nature
of lattice ¢* theory (and quantitatively confirmed
above by Monte Carlo calculation) are independent
of the dimensionality of the lattice. The Monte Car-
lo calculations presented here were also repeated for
three-dimensional systems with similar results.
Thus the known triviality of the continuum limit of
lattice ¢* theory in four dimensions (and the corre-
sponding known nontriviality of the three-
dimensional theory) discussed above play no role in

this analysis.

The conclusions presented above are valid for a ¢ *
field theory involving a single scalar field. The ap-
plicability of ideas such as the graphical approxima-
tion developed above to more complicated systems is
under study.’® One difference is that the positivity
condition on the gradient of (¢ ), property (iii), for
a field theory involving a multicomponent scalar
field ¢ does not directly imply the monotonicity of
the associated components of the current J. In par-
ticular for a two-component field theory it can be
shown that

1)y

ol >0, (10)

)

where the notation implies that the first component
J, of the current is varied while the second com-
ponent J, is held fixed. Equation (10) does not im-
ply however that

aJ;
3¢,

Certain features of the above analysis should how-
ever have universal validity."> For example, the
form of the effective potential discussed above is
essentially implied by the thermodynamics of phase
transitions and should therefore be qualitatively
valid for more complicated (e.g., multicomponent)
theories. The inadequacies of the strong-coupling
expansion alluded to above are presumably manifest-
ed by any perturbative calculation (such as a loop
expansion), for such expansions cannot faithfully
reproduce the critical behavior of the effective po-
tential.

The latter point can be illustrated by considering
the case of a complex scalar field interacting elec-
tromagnetically. If the real and imaginary parts of
the scalar field are denoted by ¢; and ¢,, then in a
given gauge it can be shown that the Jacobian

a(J,J>5)
Ff=—=—=—2>0, (12)
(¢ 1,6,)

is never negative. The current T=0 1,J2) is the
generalization of the single-component current J dis-
cussed above. The relation Eq. (12) can be con-
sidered an extension of property (iii) above.

Coleman and Weinberg give' the result of a one-
loop calculation of the effective potential of this
theory in the continuum:

V(|$)=4|¢|*|In

>0. (11)

é

1412

A2

1
2

(13)

Here A is a numerical constant and A gives the loca-
tion of the minimum of V. The Jacobian Eq. (12)
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for this case is given by

F =164 if—zﬁ 3In JJZ’—zLZ +2|In J%z]_z
_dv(é)) av(é)) (14
dié|> d|d|

For A%e~2"* < |$|?<A?, the Jacobian in Eq. (14)
violates the positivity constraint Eq. (12). Of course
(as is pointed out in Ref. 1) higher order terms in the
loop expansion involve more powers of
In( |¢ !2/A2) so it is not surprising that the loop
expansion fails for | é |2< A% See also Ref. 15.

The results of the present analysis are now sum-
marized. It has been shown above that the effective
potential ¥ (¢) for lattice ¢* theory on an infinite
lattice does not exist for a range of ¢ near the origin
if spontaneous symmetry breaking occurs. This re-
sult is independent of the spacetime dimensionality
of the system. A novel graphical procedure (remin-
iscent of the thermodynamic Maxwell construction)
was proposed and used to approximate the effective

potential. The results of this approximation pro-
cedure compare favorably with Monte Carlo results.
A strong-coupling expansion of the effective poten-
tial was also studied. This approximation does not
always satisfy certain general properties of ¢ * lattice
field theory. Nevertheless, in its expected region of
validity it is consistent with the Monte Carlo calcu-
lation when spontaneous symmetry breaking does
not occur.

Research upon the possibility of generalizing the
results of this paper to more complicated systems
(e.g., the Abelian Higgs model'®) is currently under-
way. Perhaps the most interesting result of this
paper—the nonexistence of the effective potential
for a range of |¢| when spontaneous symmetry
breaking occurs—appears to be a very general
phenomenon.'®
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