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Two-dimensional Abelian gauge theories with nonstandard fermion content are analyzed.

One model contains N fermions with different electric charges and the other has a left-

right-asymmetric fermion content. The operator solutions are explicitly constructed in a co-

variant gauge and a noncovariant gauge. In both models the gauge and the chiral sym-

metries are broken spontaneously. The direction of this breakdown is dictated by the axial

anomaly. The spectrum of the minimal theory consists of one massive boson and one mass-

less boson for both types of theories. It is argued that the left-right-asymmetric model is

inappropriate to test the most-attractive-channel hypothesis.

I. INTRODUCTION

The conventional method of generat ng spontane-
ous symmetry breaking in quantum field theories is
to introduce the requisite number of elementary
scalar fields which develop nonvanishing vacuum
expectation values. This is, however, possible only
at the price of having many additional parameters in
the resulting theory. Furthermore it was stressed re-
cently that this mechanism, though it works well, is
unnatural'; it must involve a very accurate fine
tuning of the parameters in the context of grand un-
ified theories.

One way to overcome this unnaturalness is to uti-
lize the dynamical symmetry breaking. ' In quan-
tum chromodynamics (QCD} embedded into grand
unified theories we naturally expect that the mass
scale characterizing the chiral-symmetry breaking
can be vastly smaller (-10 ' } than the grand-
unifying mass scale. It is therefore of great interest
to study the dynamical breaking of gauge symmetry
in the context of grand unified theories. A very in-

teresting scenario called tumbling was proposed by
Raby, Dimopoulos, and Susskind in which a hierar-
chy of mass scales can arise because of the sequen-
tial breaking of gauge symmetry.

Another aspect of the dynamical gauge-symmetry
breaking concerns its possible relevance to the light-
cornposite-fermion problem. There exists rather
strong feeling that in unbroken gauge theory like
QCD the chiral symmetry is realized in the
Nambu-Goldstone mode. If this is true and if we
want massless fermions it might be necessary to
break gauge symmetry to achieve the symmetric
realization of chiral symmetry.

In this paper we examine some two-dimensional
Abelian gauge theories as models of gauge-

symmetry breaking. They are the variants of the
Schwinger model with more complex fermion con-
tent; the multifermion model with fermions belong-

ing to different U(1} representations, and the left-
right-asymmetric model with nonreal fermion con-
tent.

The two-dimensional Abelian gauge theory is a
natural place to investigate dynamical gauge-
symmetry breaking. Lowenstein and Swieca ob-
served in their thorough analysis of the Schwinger
model that the gauge symmetry is broken in the
"physical" gauge although it may be masked by
spurious gauge excitations in other gauges. It is one
of the purposes of our work to examine the stability
of this phenomenon under the variation of the fer-
mion content of the theory.

Another purpose of our work is to find regularity
(if any} in the dynamical gauge-symmetry breaking.
It will be best if our study in two dimensions pro-
vides any hint to understand the breaking pattern of
the gauge-symmetry breaking in four dimensions.
Of course our theories, being superrenormalizable,
cannot be directly used to test the tumbling scenario.
Nevertheless we believe that any solid information
can be important for our understanding of gauge-
symmetry breaking at the present stage of the sub-

ject. Moreover, in view of the difficulty in formu-
lating chiral fermions on the lattice, the two-
dimensional gauge theory seems to be the unique
place to study the nonperturbative aspects of gauge
theory with nonreal fermion content.

We emply a method similar to that of Ref. 8 corn-
bined with that of Belvedere, Swieca, Rothe, and
Schroer' to investigate our model. We first con-
struct the operator solution in a covariant gauge.
Transforming into a noncovariant gauge called a
"physical" gauge we can obtain a physical interpre-
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tation of the theory. In this gauge all the Heisen-
berg operators can be expressed solely in terms of
the asymptotic fields. Thanks to this feature of the
physical gauge, we will be able to have a clear
understanding of the structure of the physical vacu-
um.

In Sec. II we discuss the multifermion model fol-
lowing the procedure described above. In Sec. III
we introduce the left-right-asymmetric model.
After reviewing the general property of the theory
resulting from the axial anomaly we construct the
operator solution. We discuss in Sec. IV the proper-
ties of the physical vacuum of both models. Our
main concern is the broken-symmetry aspect of the
models. The last section is devoted to conclusions
and dlscusslons.

Throughout this paper the y-matrix convention

II. MULTIFERMION MODEL

The multifermion Schwinger model is massless
quantum electrodynamics in two dimensions with an
arbitrary number of fermions belonging to different
U(1) representations, i.e., with different electric
charges. " The Lagrangian density of the N-fermion
model is given by

N

F F~ + g f ly (a~+kg, ~~)q,

The equations of motion are

iyqa~Q;(x)=g;yqA"(x)g;(x) (i =1,2, . . .,E),

N

a,F"~(x)= g g, q, (x)y~y, (x) .

0 1

1 0

—1 0
0 1y5=yy =

0

0 1

—1 0
In this paper we investigate the two-fermion model
in greater detail because all the qualitative features
of the multifermion model already exist in it. The
generalization to the E-fermion model will be briefly
discussed in Sec. I C.

A. Operator solution of the two-fermion model

is adopted. An extensive use is made of the identity
y"y5 ——e" y„where e =e01 ——1.pv 10

We propose the following form of the operator
solution':

g~(x) =exp[ ivny5—a [/'(x. ) P(x)] ]X~—(x),
$2(x) =exp[ iVm (g2/g—~ )y5a[$(x) —P(x)] IX2(x), (4b)

where P (P ) denotes a free boson field quantized with definite (indefinite) metric and g; (i =1,2) denote free
fermion fields. The negative-metric field P is taken to be massless since it will eventually be used to cancel out
the free-fermion singularity of I s. The combination P-P guarantees that in short distances f; develops a free-
fermion singularity, which is required by the superrenormalizability of the theory. The parameter a will be
determined later.

Strictly speaking we define our free "fermion" operator 7; in terms of free boson operators as'
1/2

X;(x)= 2' e '
gX&exp iu vr yzy;(x)+ J dgjv;(g) u (i =1,2),

where Xz implies to take normal ordering with
imN)

respect to mass p, and g=e with the number
operator X1 of X1 denoting the Klein transformation
operator which ensures the anticommutativity of X1
and X2. q&;(i=1,2) stand for free massless boson
fields and u is a constant spinor ( I). The operator X;
defined by (5) is essentially the free fermion opera-
tor. By taking proper care of renormal ordering, '

one can show that the right-hand side of Eq. (5) does
carry the charge and the chirality of the original
"fermions. "

It should be noticed, however, that our fermions

themselves do not have the constant operators found
in Ref. 8 which lead to the 0 vacuums irrespective
of the presence of a gauge field. In our case their
existence would lead to the 0 vacuum involving four
0 parameters. Without these constant operators we
can successfully construct the operator solution as
will be seen later. ' Notice, however, that this does
not mean that our theory has no t9 vacuum. Its
emergence is due to the presence of the indefinite
metric as will be shown later.

From (2) the electromagnetic field A„ takes the
form
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A"(x)= e""B„a[/(x}—P(x)] .

Using Schwinger s definition of the gauge- invariant current

1 Z+E'

jg'„(x)= lim —
QL x(x +e)y"gl ii(x)exp ig— dg&A "(g)

g —+0

Z

+ PL ii(x e)—y"&I. ii(x)exp ig J dg„A&(g}

Thus we encounter the same situations as the origi-
nal Schwinger model in which the Maxwell equa-
tions are not satisfied as operator equations.

We set up the physical-state condition

e&'B„ggjyj(x)
J

+ (gi'+gz')'~'P(x)
~

phys) =o, (9)

where [ ]+ indicates to take the positive-frequency
part of the operator in the square brackets. The
parameter a is determined as

(g 2+g 2)1/2 (10)

so that the Maxwell equations are valid in the physi-
cal subspace. Then the equation turns out to be

we obtain the expression of the electromagnetic
current in a similar way as in Ref. 8:

J"(x)= e""r)„a[/(x) P(x)—]
1 8i +f2
1T gi

which indicates that p(x) describes the massive free
boson as in the original Schwinger model.

We thus obtain the operator solution in the
Lorentz gauge [with g;=g;/(gi +g2 )'~ ]

f;(x)=expI iV —m y5g; [P(x) P(x—)]X;(x) . (12)

All the n-point functions can be calculated straight-
forwardly by using this operator solution. For in-
stance we reproduce the form of scalar density
correlation function given by Segre and Weis-
berger. "

B. Physical gauge

The operator solution (12) does not mean the goal
of our investigation. We still have important un-
solved questions like the complete spectrum of the
theory and the precise properties of the physical
vacuum including the possibility of broken sym-
metries. The clearest way to answer these questions
is to express the operator solution solely in terms of
the asymptotic fields. In our theory one has to
choose a suitable gauge to accomplish this.

One of the most transparent ways to carry out
this program is to follow the method of Belvedere,
Swieca, Rothe, and Schroer. ' We note the Bose
form of the free fermion operators (5). To obtain
the physical interpretation of the theory we make a
gauge transformation so that the fermion fields take
the following form:

g;(x) =
2m'

' 1/2

e '
ge

' ' ~Ã„exp iV m y, 4;(x)+ I dg@;(g) u . (13)

It is easy to realize that such a gauge transformation
is unique and 4's are given by

[p(x),q'(y)]„,=„,= [p(x),q'(y)]„,=»,

4;(x)=y;(x)+g;P(x) (i =1,2) . (14) =0, (15c)

The remaining task is to find the operators 4 and
4 which have the properties

[%(x),%(y)] „,= i5(x —y), — (15a)

[V(x),%(y)]„, », =0,

and to express 4's in terms of them. Obviously 4'
describes the physical excitation and (15b) and (15c)
enable us to set up the subsidiary condition
[e""B„q']+

~
phys) =0. It is not difficult to recog-

nize that the only possible representation consists of
one 4 and one V. The 4's in (14) can be expressed
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in terms of them as

4, (x)= —g2%'(x)+Ci%'(x),

42(x) =g i %(x)+C2@ (x),

(16a)

(16b)

where C's are undetermined constants. The
physical-state conditions (9) now take the form
[e""B„V]+

I phys) =0.
We have obtained the operator solution in the

physical gauge,

l( i(x) =
27T

' 1/2

e '
ge

' ' Nzexp iv—m g2 ys%'(x)+ f dg'p(g)

Xexp i~mCi ys'F(x)+ f +'p(g) (17a)

$2(x) =
2m

' 1/2 T

e
' "'

ge
' ' ' "N&exp iVmg, y50(x)+ f +g(g)

Xexp 'i~~C2 y, %(x)+ f dg ip(g) u . (17b)

The spectrum of this theory contains a free massive boson p (with mass [(gi +g2 ) lir ]'~ ) and a free massless
boson %. The last exponentials in (17a) and (17b) are constant operators which allow immediate interpretation
to form the 8 vacuum as in Ref. 10.

The last factor in (17) can be expressed as (o )'0"" in terms of g defined by

~=exp i~~. ~, XS,V, (x)+0(x) + f 4 gg, ~,(g)+j(g), =
J J

''
Ou2

The operator oa (a=1,2) commutes with all the
observables of the theory. Therefore it is a constant
operator in the physical subspace which merely car-
ries the bare charge and the chiral selection rule:

[lira]=iTa ~ (19a)

[es & ]=—(ys)

where

(19b)

Inin2& (~1) (~2) 'I o& (20)

and the violation of clustering. We have to form the
8 vacuum

18i 82& Q ~ ' 'e ' 'Ini n2&~ n nn&, n2

(21)

f dx 8 ggj. lpj.

J

and q5 is the normalized axial charge

q5 ——(gi +g2 )
' Q5. We are taking the axial

charge Q5 associated with the conserved and gauge-
invariant axial-vector current. It is well known that
the existence of such operators implies the infinitely
degenerate vacuums

in order to recover the cluster property. Then

~. I8, ,8, &=e-' I8, ,8, &. (22)

One may feel the emergence of the 8 vacuum
strange since we did not introduce the constant
operators of Lowenstein-Swieca type. Our 8 vacu-
um arises for different reasons; it arises because of
the presence of an indefinite metric associated with
the gauge field. Our 0 vacuum, having only two (9

parameters independent of the complexity of fer-
mion content, may allow the physical interpretation
as the background electric field. '6

C. N-fermion model

It is straightforward to extend our analysis to the
case with an arbitrary number of fermions. We only
describe our main results. The spectrum of the N-
fermion model includes one free massive boson with
mass (X;g; l~)' and N —1 free massless bosons.
This fact can also easily be seen by using the boson
representation in the Coulomb gauge as done in Ref.
17. We have the 0 vacuum with only two 8 parame-
ters in complete parallelism with the two-fermion
model.
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III. LEFT-RIGHT-ASYMMETRIC
SCH%'INGER MODEL

+ g 6 il'„(&+ig A")4a .
i =1,2

(23)

For brevity we shall refer to A& as the "electromag-
netic" field and use the term "photon" instead of
"weak boson. " The equations of motion are

For simplicity and clarity, we consider the
Schwinger model with one left- and two right-
handed fermions each of which belongs to a dif-
ferent U(1) representation. The Lagrangian of the
system has the form

,F„„—F""+giy„(dl'+igA")P

handed fermions. To see this we notice that the
theory possesses the two-dimensional Adler-Be11-
Jackiw anomaly

(27a)

(27b)

8 =81 +822 2 2 (28)

which will be seen later. [Take the divergence of
Eq. (33).] The anomaly equations (27) are consistent
with the Maxwell equations (26) if and only if the
condition

&'1'I d"SL, =gal A "PL, (24)

i)'„3 p„; =g;Y„A"gz; (i =1,2),
r) F""=gg y"0 + g g 0 r"0

i =1,2

(25)

(26)

As we will soon see, this model is the minimal one
among a variety of the possible left-right-
asymmetric models. In this paper we concentrate
our attention on this minimal model although the
extension to more complicated cases can be done
straightforwardly.

This model was first discussed by Banks, Frish-
man, and Yankielowicz' using a Feynman diagram
approach. Since we are interested in the broken-
symmetry aspect of the model it may be too
dangerous to rely on perturbation theory. Therefore
we shall employ the operator method. Our method
not only reproduces the results in Ref. 18, but also
enables us to discuss clearly the dynamical breaking
of gauge and chiral symmetries.

is met. '9 Because of this condition our model (and
its left-right inverted one) turns out to be the
minimal version of ' the possible left-right-
asymmetric Schwinger models.

Next we take a derivative e&&&' in the Maxwell
equation (26). Noticing that ez„jl'„——+jl ~z and
the anomaly free condition (28), we obtain

F=O,R2
(29)

B. Operator solution in covariant gauge

where F is defined by F&„e&„F. The——refore the
photon becomes massive because of the axial anoma-

ly in the same way as in the original Sehwinger
model.

A. Axial anomaly constraint

First one has to realize that a nontrivial constraint
exists among gauge couplings of the left- and right-

Now we proceed to the construction of the opera-
tor solution, going through the same steps as in the
analysis of the mu1tifermion model. %e propose the
operator solution'

gl (x)=exp I iV n [aP(x) cP~ (x)]]XL(—x),
1(x;(x)=expI i~@(g;/g)[—ap(x) biz(x)]]X~;—(x) (i, =1,2),

A "(x)=

(30a)

(30b)

(30c)

where XL (Xz ) stands for the left- (right-) handed free massless spinor and the negative-metric fields Pl and Pq
are introduced to cancel out separately the fermionic singularities of XL and XR;, respectively. This cancella-
tion is quite plausible also in our model since it is a mathematical expression of the total screening of the elec-

tric charge, originally due to Schwinger. Notice that the screening in fact occurs in our model in view of the
generation of the photon mass as demonstrated in (29).

As in the previous section we employ the Bose form of the free "fermion" operators,
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XL, (x)= 2' e ' gN&exp. iVm y&y(x)+ f dg tp(g) uL, (31a)

Xx;(x)= 2' e
' '

g;N&exp iV m y&y;(x)+ f dg jr;(g) uii, (31b)

where uL,
——(0) and uii ——(i). The Klein transforma-

tion operators Ps, whose explicit forms will be given
in the Appendix, are responsible for the anticommu-
tativity of X's. These boson representations play a
key role in the physical interpretation of our theory
as in the multifermion model.

By noticing the identities

iy&B"P(x) XL x(x) = y&(d—&+a&"d„)P(x) XL „(x),
(32)

y„(e""d„+8")P.XL, x (x)=0,
one can easily verify that the operator solution can-
didate (30) satisfies the equations of motion (24) and
(25). From (30c) it is clear that we are working with
the Lorentz gauge.

The expressions of the gauge-invariant currents
are as follows:

jg=:XL,y"XL, .— (&" &""&—)
2m-

(e""d„d"}(—aP y —bP—L ),
2 rr

(33a)

jg;=:X„y&X„,:— '
(W&+e& W„)2'

(e 8, +8 ) aP ——p; —cP„
gi pv

2

(33b)

a2 b2 c2 (34)

This requirement is again possible because of the su-
perrenormalizability of the theory

From (30c) and (33} the Maxwell equations take
the form

where g; =g;/g. In this procedure the fermion fields
should have the property that they develop free-
fermion singularities at short distances. This gives
the important constraints to possible values of the
parameters,

ae&'"d„QQ(x) = ae""d„P(x) (e""8—„d")(p+b—P )

(~~"a„+a~) gg, ~, +cy„.
2 7T

(35)

Notice that ili'p terms in (33) cancel out in the
right-hand side of (35} because of the anomaly-free
condition (28).

We set up the subsidiary conditions

I(e&"i}„—8 )[y(x)+Pz (x)]j+ ~

phys) =0, (36a)

. (e"'8„+&") g gjqj(x)+Px(x) .
~
phys) =0,

1

(36b)

where I j+ implies to take the positive-frequency

part of the operator in the curly brackets. Under the
choice of the parameters

b =c=1
which is consistent with the second equality in (34),
the Maxwell equations are satisfied in the physical
subspace. The parameter a is determined as

a=1 (38)

from (34).
Now the Maxwell equations are transcribed into

the form

g
2

C]+ (( =0
'IT

(39)

in the physical subspace. This is in complete agree-
ment with (29) obtained from the axial anomaly
equations.

Thus we have verified that the operator solution
(30) with the parameters (37) and (38) satisfies the
equations of motion of fermions as operator equa-
tions and the Maxwell equations in the physical sub-

space. Everything seems to be all right. However,
we are sti11 missing one important point; our opera-
tor solution does not transform correctly under the
gauge transformation. In fact, using the charge
operator
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Q = f dx . &'P(x) ——,(i)' —a')[~(x)+y, (x)]——,
' (i)'+a') gg, y, (x)+P, (x)

J
(40)

it is easy to see that QL, (x)~e+' ~QL (x)e ' ~=e' s~ pl. (x) (charge g/2).
The origin of this trouble is clear. We have assumed that all the free boson operators are independent de-

grees of freedom. That is, however, wrong because there is the relation (28) among the charges of the fermions.
The required relation takes a very simple form,

y(x) = ggj.q&J(x), (41a)

and correspondingly,

PL(x)=gz(x)=P(x) . (41b)

Now it is a simple exercise to check that the gauge transformation property is repaired. The relations (41) im-

ply a very nontrivial feature of our theory; the electromagnetic current becomes pure vector. We will return to
this point in Sec. V. We thus obtained the operator solution of the left-right-asymmetric model.

C. Physical gauge

In order to have the physical interpretation of the theory we take the gauge
' 1/2

1(L,(x)=
27K

1/2

(e' ~'"' Ne pxi+ n y5@L(x)+ f dg4z(g) uL, (42a)

A (»= 2' e
' ' g;e

' ' 'N„exp ivy y, 4;(x)+ f de@;(g) uz,

where

4L (x)=qr(x)+P(x),

4;(x)=y;(x)+g;P(x) (i =1,2) .

(43a)

(43b)

As in Sec. II it is easy to show that 4's can be uniquely expressed in terms of one qi and one 4 obeying (15) as

@L,——CV,

4, = —g,%+C,%,
C, =g, % +C,%,

(44a)

(44b)

(44c)

where C's are undetermined constants. The physical state conditions (36) now take the form
[ei'"B„k]+

~
phys ) =0.

Thus we have obtained the operator solution in the physical gauge,
' 1/2

QL(x)= 2'

4a(»=
277

e ' ge' ~~'"'N„exp iV n C yq'Ii(x)+ f dg%'(g) ur, ,

1/2
—im&5/4 —W n'f;Q(, &) . ]J'

00

e '
g;e

' N„exp iv n e"gj y5+—(x)+ dg 'p(g)

(45a)

Xexp iv n C; y5%(x)+ f dg e(g) u„(i =1,2), (45b)
~ J

where we use the notation e ' = —e ' = 1.
The spectrum of the theory consists of the massive free boson P with mass g/v m and the massless free bo-

son 'Ii. qi is the constant operator by which we are to form the 8 vacuum as in the multifermion model.
The left- (right-) handed fermion operator in (45) exactly imitates the one of the original (two-fermion)
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model. This implies that the left- and the right-handed sectors essentially do not communicate with each oth-
er,"due to the two-dimensionality of our model.

IV. PROPERTIES OF THE PHYSICAL VACUUM

We first investigate the question of which combinations of the fermion operators are Lorentz scalar and
have the chance to condense. It is a highly nontrivial problem in two dimensions because the Lorentz transfor-
mation properties of fermion operators are determined quite dynamically rather than kinematically.

According to Klaiber's prescription the fermion operator

1(t(x)= g exp iv'm y, a;p;(x)+b; f dg j;(g) F(x)u (46)

transforms as (41L,R ) ( P2R, L) (48)

U(A) 'P(x)U(A)=exp —, ga;b;Xy& P(A 'x),

(47)

under the Lorentz transformation x~hx and I
stands for the Lorentz angle. Here y; denotes the
free massless scalar field, F includes all the massive
degrees of freedom, and u =(1). Therefore gR's in

our theory do transform under the Lorentz transfor-
mation in contrast to the case of the original
Schwinger model.

Next we investigate whether the selected Lorentz
scalar operators condense. This is in general a high-

ly dynamical question but in two dimensions we
have a simple criterion to decide it. It is now well
known that Coleman's theorem ' can be transcribed
into the following statement: The vacuum expecta-
tion value of the exponential of the massless boson
field vanishes, for short, (e' ) =0, meaning that
there is no order parameter in two dimensions. Ir-
respective of the validity of Coleman's proof in the
indefinite-metric theory, it is entirely reasonable to
expect that (e' ) =0 in the physical gauge. Here

( ) should be understood to take the expectation
value in terms of the physical vacuum. In fact the
renormal-ordering procedure with respect to the
physical mass of %' guarantees that (e' ) =0, as
mentioned in Sec. IIA. We emphasize that taking
the physical gauge is quite essential in deciding
whether the operators condense. In other gauges the
broken-symmetry aspect of the theory may be
masked because of the spurious gauge excitations. '

A. Multifermion model

Following the above prescription it is easy to
show that the Lorentz scalar operator in the two-
fermion model is of the following type

(4lL, R ) (42L, R ) ~ (41L,R ) (02R, L )

where gL (tpR ) implies the upper (lower) component
of the spinor not the left- (right-) handed spinor it
self.

Now we turn to the question whether these opera-
tors condense. The answer is obviously yes (no) for
the first (second and third) operators in (48) accord-
ing to the aforementioned criterion.

The global symmetry present in the Lagrangian
(X =2 case) is chiral [U(1)XU(1)] . The nonvan-

ishing vacuum expectation value of

(1(t,L R) '(l(2L R)
' implies the breakdown of the glo-

bal gauge invariance and the chiral U(l) invariance
g;a@5

under the transformation g; ~e ' P;. The sym-

metries left unbroken are the invariances under the
lg2CX —ig&aU(1)' transformation $1~e g1, $2~e

and the chiral U(1)' transformation $1~e
$2~e ' 'g2 The break. down of the former two
invariances does not accompany the Nambu-

Goldstone bosons. Their absence results from the
occurrence of the Higgs phenomenon in the case of
the electric charge conservation and from the axial
anomaly for the chiral U(1) invariance. The latter
two invariances are kept exact because of the in-

frared behavior of the massless 4' field.
In the E-fermion model one can show that the

only operator which develops the vacuum expecta-
tion value is

(49)

We thus end up with the broken gauge and the
chiral invariances and the unbroken chiral
[U(1)' XU(1)']"-'.

B. Left-right-asymmetric model

In a similar way we can count all the Lorentz
scalar operators in the left-right-asymmetric model
with the result

and 0L and (A1) '(A2) '. (50)
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It should be noticed that all the operators in (50)
develop nonvanishing vacuum expectation values. It
is quite exceptional that all the Lorentz scalar opera-
tors have nonvanishing vacuum expectation values.
This happens because of the nonreal nature of the
fermion content.

The global symmetry of the Lagrangian (23) is
[U(1)] . We choose the first and the second U(1) to
be the gauge and the chiral U(1) generated by Q and

Q&, respectively. We call the third U(1) the "orthog-
onal" U(1) invariance. This is the invariance

lQg2
under the transformation gz &

~e gz &
and

—iag
&

gz 2~e f~ 2. The nonvanishing vacuum expec-
tation value of the operators (50) implies the break-
down of the gauge and the chiral symmetries
whereas the orthogonal U(1) invariance remains un-
broken. The Goldstone bosons are absent for the
same reasons as in the multifermion model.

V. CONCLUSION AND DISCUSSION

In this paper we have analyzed the variant of the
Schwinger model, the models with different charge
fermions, and with left-right-asymmetric fermion
content. We have succeeded in solving these models
by explicitly constructing the operator solutions.

We have focused our attention on the broken-
symmetry aspect of the models. The Lorentz scalar
products of the fermion operators in the physical
gauge have been used to decide what kind of charges
condense in the physical vacuum. We have found
that in both models the global gauge and the chiral
symmetries are spontaneously broken whereas the
remaining U(1) invariances are kept exact. We have
also observed that the broken gauge invariance re-
sults in the Higgs phenomenon. We emphasize the
stability of these results over the Abelian gauge
theories with various fermion content.

What can we learn from the study of these two-
dimensional models besides the stability? In the
author's opinion the most interesting feature of
these models is that the gauge-symmetry breaking is
governed by the axial anomaly. It is not only "trig-
gered" by the anomaly, but also the direction of the
breakdown is dictated by the anomaly. Namely, the
anomaly-free U(1) subgroups which are orthogonal
to the anomalous one remain unbroken.

We believe that the idea that the gauge-symmetry
breaking is triggered by the anomaly can generalize
to four dimensions. In fact, Veneziano observed
that this really occurs in his effective-Lagrangian
approach to gauge-symmetry breaking.

What about the second point? Is the direction of
the breakdown dictated by the axial anomaly in four
dimensions? We can only say that if it is the case it
provides us with some interesting consequences. In

quantum chromodynamics it requires the absence of
diquark condensation. According to Srednicki and
Susskind this implies the Nambu-Goldstone reali-
zation of chiral symmetry, the desired answer in an
as yet unsettled problem.

Furthermore this principle, when applied to a
wider class of theories, implies the formation of a
multifermion condensate rather than a bilinear con-
densate. For instance, in SU(5) theory with 5 and 10
fermions, the condensate (if it forms) involves at
least four fermion operators. The multibody con-
densate may be the key ingredient in constructing
the composite model of leptons and quarks with
realistic mass spectrum.

One would expect that the left-right-asymmetric
model can be used to test the most-attractive-
channel (MAC) hypothesis of Raby, Dimopoulos,
and Susskind. Unfortunately this is not the case as
we will see below. The MAC hypothesis assumes
that if the coupling is large enough the most attrac-
tive left- and right-handed fermion pair condense.
In our case the MAC is between QI and P~ &

provid-
ed that g»g2. Therefore

(/zan(z&)&0

according
to the MAC criterion, which is of course wrong as
we have seen in Sec. III. Thus one may conclude'
that the MAC hypothesis fails in our model.

On the contrary, one can argue that (PqP~ ~ ) =0
only because of the untamable infrared behavior of a
massless boson which is peculiar to two-dimensional
space-time. Then we have a chance to get nonzero

(l(&gal&) in four dimensions as if l(tilt really con-
denses in quantum chromodynamics.

Both arguments, however, are subject to criticism.
The operator Pz fz &

does not condense in our model
because it is not a Lorentz scalar. Therefore it has
no four-dimensional analog unlike the case of gl(.
Unfortunately, our model is not the appropriate
place to test the MAC hypothesis.

Finally we make a brief comment on the peculiar
property of the electromagnetic current in the left-
right-asymmetric model. One naturally expects that
the left-right asymmetry in the fermion content re-
sults in parity-violating effects. This, however,
turns out to be illusory. Even if we introduce a
weak external field which couples to our electromag-
netic current, the effect of parity violation is unob-
servable. This stems from the pure vector nature of
the electromagnetic current and from the absence of
the charged-fermion spectrum. The former is ulti-
mately due to the charge relation (28) arising from
the axial-anomaly constraint and the latter due to
the total screening of the electric charge.
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obvious in our case because all the boson fields y's
are not independent as shown in Sec. III.

We introduce the number operators N; of the
right-handed fermions obeying the commutation re-
lations

APPENDIX

The free "fermion" operators defined by (31)
without g factors satisfy the canonical equal-time
anticommutation relations

[N;,XRJ(x)]= 5tJ—XRJ(x) (ij =1,2) .

Natural candidates for such operators are

f dx 8'p;(x) .

(A3)

(A4)

[X;(x),X+(y) J„,=„=5(x —y)

(i =L, R 1, and R2), (Al)

Using (A4) one can see that the left-handed fermion
has fractional fermion numbers, i.e.,

[X;(x),X;(y)I„, ~, =O. [N;,XL, (x)]=—g;XL(x) . (A5)

XL, (x)XR;(y)=e 'X„;(y)XL (x) (t =1,2),

XL, (x)XR+;(y) =e 'XR+ (y)XL, (x),

[XR1(x) XR2(y)] [XR1(x) XR2(y)]

(A2)

We show here that the appropriate Klein transfor-
mation exists guaranteeing the canonical anticom-
mutation relations among g's. Its existence is not so

They, however, do not satisfy the anticommutation
relations between different fields. Instead they obey,
at xo ——yo,

Now it is easy to verify that the following Klein
transformation operators

)=1, g~ ——exp in. N~
gi (A6)

g2 ——exp inN&+. gl g2
N2

J

do guarantee the canonical anticommutation rela-
tions among different fields as well as (Al). Notice,
however, that the form of the Klein transformation
(A6) is by no means unique.
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