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The general self-consistent spin structures employed at the "zero-entropy" level of the to-

pological expansion in the dual topological unitarization approach to particle theory are ex-

amined in detail. Special attention is given to the problem of the phase factors to be associ-
ated with the zero-entropy terms. We consider the discontinuity equation satisfied by the
zero-entropy scalar function and find that the discontinuity has a sign that varies as ( —1)
where L is the number of quark loops. This result is shown to be a consequence of the re-

quirement that the sum of zero-entropy terms be Hermitian analytic. The effects of charge
conjugation, parity, and time reversal on the zero-entropy S-matrix elements are derived.
The two- and four-component spin formalisms are also compared. Normalization conven-

tions for amplitudes and phase space are given explicitly.

I. INTRODUCTION

Recently, a major advance has occurred in the
dual topological unitarization' (DTU) approach to
particle theory through Stapp's discovery of self-
consistent spin structures for the simplest "zero-
entropy" terms in topological expansion. Stapp's
two-component formalism has been transcribed into
a four-component formalism by Chew et al. which
is particularly useful for application to electromag-
netic problems. A remarkably accurate set of rela-
tions on strong-interaction coupling constants has
been derived using a set of self-consistent spin struc-
tures.

Our purpose is to study in detail the spin struc-
tures that have been proposed. Although for simpli-
city we consider explicitly here only meson ampli-
tudes, our results can be generalized to amplitudes
involving more complicated hadrons such as
baryons and baryonium. We are particularly in-
terested in the question of what phases should multi-

ply each self-consistent spin term. These phases
determine the sign of the discontinuity for the zero-
entropy bootstrap equations. These bootstrap equa-
tions determine the spin-independent scalar function
which multiplies the spin structure factor. If Her-
mitian analyticity is required to hold at the zero-
entropy level, we find the discontinuity acquires a
negative sign for each quark loop.

We also determine the effects of charge conjuga-
tion 4, parity H, and time reversal a on the gen-
eral self-consistent spin structures. Our approach is
to first describe the spin structure of particle states
in terms of two-component spinors. We then deter-

mine the effect of 4, H, and a on meson states
composed of two-component spinors. Once the
transformation properties of the states is known, one
can deduce the behavior of the zero-entropy ampli-
tudes under 4', H, and a.

As mentioned, a central focus of our discussion is
the determination of the multiplicative phases for
the zero-entropy terms. Although our final con-
clusions are in agreement with Stapp in every case
where the results overlap, our treatment and em-
phasis differ considerably from his. Stapp gives a
specific proposal for the zero-entropy M functions
with phases determined at the outset by a prescrip-
tion involving the permutation of quark lines based
on fermion statistics. His proposal leads to a self-
consistent zero-entropy spin structure. The phases
in his model imply a negative sign for discontinui-
ties involving individual quark loops. This, perhaps,
might be expected since his model explicitly incor-
porates the fermion character of the individual
quarks. The question arises whether the phases
given by Stapp's model are unique or whether some
other choice of phases could produce self-consistent
spin structures and perhaps lead to positive discon-
tinuities for an individual quark loop.

In our approach we begin with spin structures
which reproduce themselves in connected sums.
The phases of the individual terms at the zero-
entropy level of the topological expansion are at first
unspecified. We then begin progressively restricting
the phases based on the general requirement that at
the zero-entropy level the S matrix incorporate as
many general analytic and symmetry properties of
the full physical S matrix as possible without sacri-
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ficing the basic self-consistency of the individual
terms. We then find by appropriately selecting the
phases of the zero-entropy terms that pole factoriza-
tion, crossing symmetry, and H, 4, and u invari-
ance can all be built in at the zero-entropy level.
(Flavor symmetry holds automatically regardless of
the choice of phases. )

At this point we find that the phases still possess
enough arbitrariness to yield either a positive or neg-
ative quark loop. However, by enforcing the addi-
tional requirement that the zero-entropy amplitude
be Hermitian analytic (a well-known property of the
full physical amplitude), the phases become restrict-
ed in such a way that the discontinuity involving a
single quark loop is negative. Remarkably, the neg-
ative sign is found to follow from general require-
ments placed on the S matrix rather than from the
need to involve a detailed description of the Fermi
statistics for individual quarks.

Our motivation in picking the phases so as to
make the zero-entropy amplitude have as many
properties as possible enjoyed by the full physical
amplitude is to produce a more rapid convergence of
the topological expansion. In fact, to do otherwise
might lead to inconsistencies.

In the development that follows, we shall define
the S matrix in a basis of two-component spinors.
In our manipulations we shall work almost entirely
with the S-matrix elements in this spinor space and
with the spinors themselves. This contrasts with
Stapp's work where the focus is on the M functions,
which are scarcely even mentioned in the present
work. It may seem curious to consider analytic con-
tinuations to the crossed channel of S-matrix ele-

ments, when it is well known that the M functions
have a simple analytic structure amenable to cross-
ing whereas S-matrix elements have kinematic
singularities introduced by the spinors. Nonetheless
the S matrix can be analytically continued to the
crossed channel where certain particles must be in-
terpreted as antiparticles and certain spin states
modified. For our purposes here no detailed
knowledge of sheet structure is required, just the
fact that a particle can be crossed by analytically
continuing its four-momentum p —+ —p along some
path while holding it on the mass shell. Different
paths for the continuation p~ —p will in general
lead to the evaluation of the amplitude on different
sheets in the crossed channel, but again, as we shall
see, this fact does not interfere with the simple gen-
eral conclusions we wish to draw. One advantage of
using the S-matrix elements is that a determination
of the quantum phases for states consisting of
quark-antiquark pairs resulting from 4', 9', and a
transformations can be made in a particularly suc-
cinct manner. The argument determining these

phases is quite general and does not depend upon the
form of the zero-entropy S matrix. We explicitly re-
late our formalism to Stapp's two-component trace
formalism to the four-component formalism.

In Sec. II we give a brief review of four two-
dimensional representations of the Lorentz group as-
sociated with dotted, undotted, upper, and lower in-
dices. The use of such spaces in defining the S ma-
trix is discussed in Sec. III, along with the crossing
properties of such spaces. In Sec. IV we discuss
how the particle states defined in terms of spinor
states transform under 4, 9', and W transforma-
tions. The zero-entropy scattering amplitudes are
introduced in Sec. V and in Sec. VI the role of Her-
mitian analyticity in determining the sign of the
quark loop is studied. Properties of the zero-
entropy amplitudes under K, H, and a transfor-
mations are discussed in Sec. VII. Appendix A
treats some subtle points connected with charge con-
jugation and Appendix B relates our two-component
formalism to Stapp's trace formalism.

To establish our notation and to bring together a
collection of useful formulas and conventions need-
ed in later sections, we begin with a brief review of
relativistic spinor formalism. A general finite-
dimensional irreducible representation of the Lo-
rentz group is designated by D(F,G) where F and G

1 3
can assume the values 0, —,, 1, —,, . . . . We shall
focus mainly on the two simplest nontrivial ine-
quivalent representations D(0, —, ) and D( —, ,0). A
particular transformation in D(0, —, ) we shall desig-

natebyA(8u, A,w), where

igu cr /2e A,Q 0 /2 (2.1)

In (2.1), A is a 2X2 unimodular matrix and 0 corre-
spond to the standard Pauli matrices. Our point of
view is that of active transformations so (2.1) means
a boost along the direction & followed by a rotation
around the direction u; by convention we always
take the boost and rotation parameters A, and 0 to be
positive.

Expressed in the D( —, ,0) representation, the
transformation (2.1) will be designated B(gu, l,w)
and is given by the expression

Es =e —i8u 0 /2 —A,N 0 /2e (2.2)

Since no similarity transformation exists which will
take A into B, the representations D(0, —, ) and

D( —,,0) are inequivalent. Even though in both cases
the representations are by 2&2 unimodular matrices

II. REVIEW OF RELATIVISTIC

TYCHO-COMPONENT

SPINOR FORMALISM
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SL(2,C), the particular matrix associated with a
given physical transformation is, in general, dif-
ferent for the two cases, (We note, however, that for
the case of pure rotations X=O the representations
are identical. ) The general relation between A and B
is seen to be

(2.3)

The matrix representations we are discussing act
on two-dimensional vector spaces and our conven-
tion is to associate with the transformations A in
D(0, —, ) lower undotted indices and with the
transformations B in D( —,,0) upper dotted indices.
Thus for a. two-component spinor g we have the
transformation properties

a =AaPSp 3'a Bap~P (2.4)

where we have written the components of g with a
lower undotted index if it transforms according to
D(0, —, ) and with an upper dotted index if it

1

transforms according to D( —,,0).
It turns out to be convenient to introduce two oth-

er irreducible representations by unimodular 2X2
matrices associated with lower dotted and upper un-

dotted indices. The former is the representation by
the matrices A* and the latter by the matrices B*,
where the asterisk denotes complex conjugation.
Thus, we can write

g' =A'Pgp, g =B* pgP. (2.5)

The irreducible representations embodied in (2.5)
will be denoted D'(0, —, ) and D'( —, ,0) but they are
equivalent to the representations already introduced.
In particular a similarity transformation of the form
CXC ' will convert D*(0,—, ) into D( —, ,0) and
D*(—,,0) into D(0,—,), where C= i cr2 Co—rre-.
spondingly the transformation C on a two-
component spinor with lower indices will convert it
into a spinor with upper indices and vice versa.

A principal advantage of working with the four
irreducible representations just discussed —even
though only two are inequivalent —is that scalar
products of the form ri g. are Lorentz invariant as
can be easily seen using (2.3)—(2.5).

For use in the development of subsequent sec-
tions, we shall now introduce a set of two-
component spinors and discuss some of their proper-
ties. We start by defining a general rest-frame two-
component spinor designated P:

'a
(2.6)

We shall also have occasion to use two basis spinors
P; defined by

1 0
0+i= 0 (2.7)

The rest-frame spinors in (2.6) and (2.7) will be
used with all four spinor spaces described up to now,
i.e., those associated with both upper and lower, dot-
ted and undotted indices.

The spinors we shall work with can be simply de-
fined in terms of the rest-frame spinors of (2.6) or
(2.7). We define general spinors by applying a pure
boost (velocity transformation) to the rest-frame spi-
nors. The resulting spinor will have its components
labeled by upper, lower, dotted, or undotted indices
depending on which of the four representations is
used for the boost. The four different types of two-
component spinors are defined as follows:

g (vP)=(e "' ~'P)

(vy)=(e xu Fnp)a

(ex v 0 "/2y )

(2.8a)

(2.8b)

(2.8c)

g (vP }= (e "'
) (2.8d)

where A, is the boost parameter and v is the four-
vector defined by

v =v sinhi, , vo ——cosh', . (2 9)

gg (vP;)g, (vP, )=gg'(vP;)g (vP, )
a A

(2.10)

Other useful relations are

Qadi (uP; )gp(vP; ) =5 p,
l

Qadi (vP; )gp(vP; ) =5 p .

(2.11)

We close this section by indicating the relation-
ship between the two-component spinors and the
four-component spinors in the Weyl representation.
We define

When we associate the spinors in (2.8) with particle
states, u will be the four-momentum of the particle
divided by its mass. This explains the use of the
term "rest frame" for the states P. (Actually, we
will never associate particle states with a single spi-
nor but always with a direct product of several spi-
nors. )

For the rest-frame spin state P; in (2.7) we have
the normalization
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U(ug)= ~
V(u(t )= ~

(2.12)

U( vP ) U(ug ) =P P =1,
V(u(t )V(ug)= —P P= —1,

where

U= U~yo,

and in this representation,

(2.13)

where the notation in (2.12) means the four-
component object has as its first two components
those of the lower undotted spinor and the second
two coming from the upper dotted spinor. The nor-
malization is

transform in the same way under rotations. Under a
general Lorentz transformation of the spinor g N(vg)

[represented by the matrices 8(8u,kw) in Sec. II],
the four-vector u will be Lorentz transformed and
the state P will undergo an appropriate rotation
(often called a Wigner or Stapp rotation). The spi-
nor q~ will transform similarly with the matrices
A(8u, k,w). Having taken the space of spinors

g (uP) or g (uP) to represent the spin state of the
incoming quark states, we must take the dual spi-
nors g (uP) and g (uP) to describe the outgoing

quarks.
The relation between the two-component spinors

(which give the basis for a fimte-dimensional nonun-

itary representation of the Lorentz group) and the
Hilbert-space states jp, P& of definite momentum
which can be used to describe the particle (which
give a unitary representation of the Lorentz group)
is given by

0 op

0

—1 0
0 1 with

Ip(t &= lp&n (v4» (3.1}

o„=(op,o ), o„=(oo,—0 ),
(y~"—m ) U=(y„p"+m ) V=O,

p"=m(uo, v) .

(2.14)
&p$ ~

=rl (vP')8&p ~, p=mu,

where P is the rest-frame spin state.
We choose our normalization as follows:

The normalizations in (2.13) while evaluated in the
Weyl representation are, of course, valid in any rep-
resentation.

&p'(('~py&=(2 )'2E&'(p' —p)g ( '(t")g ( y)

=(2m. ) 2E5 (p' —p)P'tP . (3.2)

III. THE S MATRIX IN SPINOR
SPACE AND CROSSING

We wish to discuss here the use of two-component
spinors in describing the spin properties of particle
states. We shall imagine scattering amplitudes to be
written as matrix elements in the two-component
spinor space. As previously mentioned, we shall
never actually use individual spinors to describe the
spin of particle states but only to describe spin de-

grees of freedom of particle constituents which we
call quarks or antiquarks. Thus the scattering ma-
trix in spinor space will always have several spinor
indices corresponding to each incoming and outgo-
ing physical particle.

Nevertheless, as convenience, we shall now tem-
porarily think of a spinor as representing particle
spin so we can derive its transformation and cross-
ing properties.

It is natural and convenient to employ spinors of
the form g (uP) and g~(uP) to describe incoming
spin- —, quarks having the rest-frame spin state P.
The choice of spinors q and g both to represent
incoming quarks is a consistent one because they

The generalization of (3.1} and (3.2} to the case of
undotted spinors is obvious. We shall see that a ket
state describing an incoming antiquark will involve
a two-component spinor with a lower dotted (or
upper undot ted) index.

We shall now write down a matrix element for the
S operator and give its form in terms of the two-
component spinors. Displaying explicitly only the
variables and indices associated with a single incom-
ing and outgoing quark (using as an example dotted
indices) we have

&papa ~S Ip~p~ &=np(ua0a} (pap~)n ( ~4.

(3.3)

The scattering process is thus fully described by the
2&(2 momentum-dependent matrix M~ whose ele-

ments are invariant functions of the four-momenta.
The matrix M~. is just a Stapp M function (see

also Ref. 6) although the indices are of a different

type than those frequently employed.
If in (2.3) we analytically continue va~ —ua, we

must then interpret the spinor labeled with B as
characterizing the spin state of an incoming anti-
quark. The transformation properties of the anti-
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quark spinor will then follow from those of the
quark spinor. Thus to find the properties of anti-
quark spin states we must determine what happens
to g (Uzgz) when we analytically continue the
four-vector v~ into —vz. First, we must decide
upon a proper path of continuation. In the physical
processes we shall be interested in, pz ——m~vz will
represent the four-momentum of particle B with
mass mq. For definiteness we think of particle B as
outgoing and imagine the multiparticle process of
Fig. 1 as taking place. In Fig. 1(a) the process is
given in the center-of-mass frame and B is the
upper-left particle. The other two lines in Fig. 1(a)
correspond to clusters of ingoing and outgoing parti-
cles. For convenience we take the direction of pz to
be along z. Figure 1(b) gives a path of continuation
in p, which takes p~~ —p~ and gives the variables
in a physical region where particle 8 is an incoming
antiparticle, without crossing any of the other parti-
cles.

A few remarks are perhaps in order concerning
our crossing procedure for S-matrix elements. One
question that might arise is whether the two branch
points in Fig. 1(b) might coalesce, thereby pinching
the path of continuation. However, since our con-
tinuation is on the energy shell, this means that be-
fore crossing we have

(~ 2+M 2)1/2+(p 2+M 2)I/2

and afterwards we must have

M„'+(p, '+M~')'/'=(p, '+M, ') .

We see that if the former equation is satisfied, the
latter cannot be if both Mz ——M~, M~ ——Mc. Thus
either Mz or Mq or both must vary during the con-
tinuation process which crosses particle 8. The
latter equation shows that during the continuation
Mz must become larger than M~ if it is not already
so. Thus the path of continuation which threads the
two singularities in Fig. 1(b) must indeed be possible
if a physical channel exists in which only particle B
is crossed relative to the original channel.

It is, of course, the M functions such as M~ in
(3.3) which possess a simple physical singularity
structure and are normally used in discussions of
crossing. However, nothing prevents us from carry-
ing along the two-component spinors in the con-
tinuation process. If we wish to cross particle B
above and be certain to arrive at some well-specified
sheet (say, the physical sheet in the crossed channel),
this may entail a particular path in Fig. 1(b); e.g., it
may require that we use the path in the upper-half
or lower-half plane or even a combination of the two
but the end result must still be pz~ —pz and the
two-component spinor will have a definite continua-
tion along whatever the appropriate path is. The
physical conclusions we wish to draw using crossing
(in Sec. IV, e.g.) turn out to be independent of the
exact path of continuation chosen —they give the
same result for any path along which p~~ —pq.
For definiteness we shall choose the path in Fig. 1(b)
but other paths (such as one in the lower-half plane)
will produce the same physical results in Sec. IV.
From (2.9) we see that the path in Fig. 1(b) results in
a continuation of X~ corresponding to A,&~A,~+i~.
We emphasize that under this continuation the
initial-state antiparticle has the same value for its
four-momentum as the original particle, namely pz.

Thus to get the crossed two-component spinors
we simply replace A~ by A&+in in (2.8). For exam-
ple, the crossing of the spinor rl (v~Pz) is given by

FIG. 1. (a) Center-of-mass scattering process for clus-
ter A~ particle B + cluster C. (b) Path of continuation
for crossing particle B.

(3.4)

The meaning of (3.4) is that under crossing the rest-
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frame spin state Pii becomes rotated by an amount m

around the direction vii of the velocity. We can also
write (3.4) in the form

rl (v(ti) —+rl (vR"(v, n )P),
where

R(g ) e iwv—PV j2

(3.5)

(3.6)

The crossing properties of the remainder of the
two-component spinors for basis spinors are given

by

rl (vg)~rl (vR(v, n)(ti),.

rl (vg)~rI (vR(v, m)(ti)—,

rl (v(ti)~rl (vR'(v, m. )P)—.

(3.7a)

(3.7b)

(3.7c)

%e see above that under crossing the spinors with
undotted indices have their rest-frame spin states ro-
tated by ( —m ) about the direction v while the spi-
nors with dotted indices are rotated by (+n. ) around
the same direction.

From (3.4)—(3.7) we see that the effect of crossing
an outgoing quark spinor to make it an incoming
antiquark spinor is to rotate the spinor but not to
change its basic transformation properties. Thus we
have the general conclusion that an incoming anti-
quark spinor is of the same type as an outgoing par-
ticle spinor. Similar arguments show that outgoing
antiquark spinors are of the same type as incoming
quark spinors.

To summarize the specification of incoming and
outgoing spin states by two-component spinors is
the following:

incoming quarks
or outgoing antiquarks,

outgoing quarks
or incoming antiquark .

As we have seen, once q and q are chosen to
represent incoming quark spinors, the rest of the
above specification is a consequence of crossing.

IV. TRANSFORMATION OF SPINOR STATES
UNDER K, H, and W

Before discussing the S matrix which defines the
zero-entropy amplitudes in the topological expan-
sion we shall first discuss the transformation proper-
ties under Ã, H, and W of the particle states
represented by composite states of spinors intro-
duced in Secs. II and III. Having established the
transformation properties of the states, we shall be
able to determine the symmetry properties of the to-

pological expansion of zero-entropy S-matrix ele-
ments under Ã, 9', and a.

The transformation properties of the composite
spinor states under Ã, 9', and ~ are determined by
the previously discussed requirement that when an
outgoing particle state is crossed, it becomes an in-

coming antiparticle state and when an incoming par-
ticle state is crossed it becomes an outgoing antipar-
ticle state. First we consider the form of a possible
particle state in terms of its constituent two-
component spinor. In this paper we only consider
meson states which are quark-antiquark pairs. Ig-
noring the momentum ket vector discussed in Sec.
III, possible particle states can be represented by the
following spinor combinations:

=rl (vP)g (vg),

M r=r) ( (ti)rlr( f),
M r=rl (vp)r)r(vf),

=rl (vi)))rl (vg) .

(4.1a)

(4.1b)

(4.1c)

(4.1d)

In (4.1) mv is the momentum of the meson which
has mass m and if the particle is incoming, the first
spinor designates the quark and the second spinor
the antiquark. A flavor index has been suppressed
in specifying the state. If the particle is outgoing
the first spinor designates the antiquark and the
second spinor the quark in accordance with the dis-
cussion in Sec. III. The states in (4.1) can be
thought of as 2X2 matrices and it will be useful to
express them by matrix multiplication as follows:

=(+v oitif &v o. )r

m r=(V pf'+ o) r

~ r (yv. p1("+ o) r

=(&v oft &v o)

(4.2a)

(4.2b)

(4.2c)

(4.2d)

where Vv cr is short-hand for the boost of type
(2.8a) and +v o is shorthand for the boost of the
type (2.8b). In (4.2) P is written as a 2&&2 matrix
with the second column consisting of zeros.

Let us begin by considering the effect of the
charge conjugation transformation 4' on individual

quark states. Using the example of dotted indices
we have

Srl (vg)=e, rI (vP'), (4.3)

where e, is a phase factor. If rl represents an in-

coming quark state, then g represents an incoming

antiquark state. The question is what is the spin
state P'? The physical meaning of charge conjuga-
tion requires that under this transformation the spin
not change. Thus the antiquark rest-frame spin
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A0'sr
(4 4)

corresponding to a polarization in the direction s„
then the antiquark spin state P' must satisfy

(4.5)

state P' represents the same spin state that P does
for the quark. However, this does not imply P'=P.

Reference to Sec. II shows that whereas 0/2 are
the generators of rotations for the upper dotted spi-
nors, —0'/2 are the generators of rotations for the
upper undotted spinors. Thus in (4.3) if the quark
state P satisfies

and then charge conjugating it. In simple terms we
are just saying that the operations of charge conju-
gation and crossing commute. It is, in a sense, a
matter of consistent definition: to specify the mean-
ing of an amplitude with 4 acting on an incoming
antiquark, we start with the amplitude involving 4
acting on an outgoing quark and then cross. From
the above we have the cross of the right side of (4.8)
must be 4 on the incoming antiquark state gotten
from crossing g. (U, 1( ). Thus we have

Sri (vR*(u, n)g).=e,*rl (uR(u, i;)cg) .

(4.9a)

But from (4.7) we have

The most general P' satisfying this condition (up to
a phase) is

Ãrl (UR'(u, m )g)=e, rj (UcR'(v, m )g) .

(4.9b)
P'=cP,

0 —1c=—i~2
1 0

(4.6a)

The possibility of a phase has to be taken into ac-
count by the e, in (4.3). The result (4.6a) follows
from

-+
COC = —0' (4.6b)

If we apply 4 to an incoming antiquark state we
obtain in a similar fashion

Kr) (UP)=e', r) (Ucg) . (4.7)

The phases e, and e, may in principle depend upon
the quark type (or flavor) but cannot depend upon v.
We now show that consistency with crossing
demands

4r) (Ug)=e,'r) (ucP), (4.8)

Here we come the the critical part of our argument
which involves crossing. When (4.8) is used as the
outgoing state of a scattering process, the corre-
sponding S-matrix element involves an outgoing
state which is the charge conjugate of ri (U, g). If
this outgoing particle state is crossed then we must
arrive at the S-matrix element with an incoming
state which results from first crossing the state as
follows:

rI (vf)~ri (vR'(U, rr)g),

chic +1
Taking the dual of the right side of (4.3) defines the
effect of c on an outgoing quark state:

9'g (UP)=ezg (vP)

=~~g (U((), (4.10)

where u is just u with the three-vector reversed in
sign, ez is a phase factor, and the last equality fol-
lows from (2.8). The spin states in (4.10) are of

According to our general argument the right sides of
the equations in (4.9) are equal. From (4.6b) the two
spinors are identical so we obtain the result e, =e,*
or e,e, =l. Results (4.3) and (4.7) also hold with
undotted indices and again e,e, =1. This means
that states of neutral quark-antiquark pairs [such as
those given in (4.1)] can be given a physical conjuga-
tion quantum number independent of the phase e, .
If the quark and antiquark in states of (4.1) are com-
bined to produce a state of well-defined total spin ei-
ther S= 1 or S=0, then application of (4.3) and (4.7)
leads immediately to the result that these states are
eigenstates of charge conjugation with eigenvalue
C=( —1) agreeing with the usual rule (here, of
course, l=0). More explicitly if gxajx(S)gjfx
corresponds to a rest-frame quark-antiquark spin
state with S= 1,0 then it follows [taking (4.1a) as an
example] that

ga Ir(S)ri (Up )ri (Ug )
jK

=( —1) gajx(S)rl'(vega)ri (Ucg ) .
jK

(4.9c)

The result (4.9c) applies equally well to any of the
spinor combinations in (4.1).

Now we consider the effect of 9' the parity
transformation on the state (4.1b). Physically we
must have



27 SELF-CONSISTENT SPIN STRUCTURES 373

course unaffected by the parity transformation. Ap-
plying R to an incoming antiquark state gives

Hr},. (vP)=F~g (vP) . (4.11)

9'ri (ug)=ezri (vg),
(4.12)

where the complex conjugate occurs because it is an
outgoing state and H is assumed to be a unitary
transformation. As in the case of 4, we cross the
right side of (4.12) and that will define R on the in-
coming antiquark state which results from crossing
ri (u, P). Thus we obtain

As before the ez and ez may depend upon the quark
type but not on v if we are to have the correct com-
mutation relations between P and the boost genera-
tors.

As before the use of crossing will enable us to
determine the value of e~E~. To proceed with this
determination we let the state g represent an in-

coming quark. Taking the dual of the right side of
(4.10) gives 9' on outgoing quark state:

(4.17}

=eTr} (ucP')

and for incoming antiquarks

A 7J (vf )=Err/ (vcf ) .

(4.18a)

(4.18b)

Once again the phases eT and ez. can only depend on
quark type and not on v. Following our previous
procedure, W on an outgoing quark state [from the
dual of (4.18a)] is

a rl (vg) =of rj (ucg"),
(4.19)

Crossing then yields the following expression for a
on an incoming antiquark state:

~ rI~{vR'(u, rr)Q) =erg (uR'(v, m)cg'—) .

up to all-over phase which is accounted for by the
phase t.T. Thus we can ~rite for incoming quarks

~ri (vP)=err) (ucP')=ercrj '(vP)

+rl {uR'(u,~)f)=e~g (uR "(u, m)g) —. .
Using (4.18b) on the left side of (4.20) gives

(4.20)

(4.13)

Using (4.11) to evaluate the left side of (4.13) gives

e~r} (vR "(u,m )P}=e~rl (vR'(u, —m. )P) .

&Trl (ucR(u, m )P*)=ezr} {uR'(v, n)cP'} . —
(4.21)

From the identity (4.6b) we can conclude

(4.14)

Now the two rotations in (4.14) differ by a minus

sign since they are rotations on spinors so we obtain

cR(u, n )c '=R'(u, n. ),
and thus

~T GT~ ~T~T

(4.22)

(4.15)

Our results also hold if we exchange dotted with un-

dotted indices.
The effect of time reversal a on the state (4.lb)

can be determined in an analogous manner. First,
time reversal W on an incoming quark spinor gives

~rl (vg)=@Tel (uP')

(4.16)

Again, the. results derived are also valid if we ex-

change dotted and undotted indices.
We can also conclude from this section how 4',

9', and a act on four-component spinors. From
(2.12) and the results of this section we can deduce.

0 c
—1 0

U'(uP) =e,*V(vcr'),

R U(ug )=en yo U(vg ),
where P' must have the opposite spin polarization to
P. Thus if

1

2

we must have

H V(ug ) = enyo V(vg ), —

WU(ug )=eTyo U(vcr'),

WV(ug)= —eTyoV(ucg') .

(4.23)

It is easy to verify from (4.6b} that

V. THE ZERO-ENTROPY SCATTERING
AMPLITUDE

We have defined in the previous sections our
quark-antiquark states and the transformation prop-
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erties of the two-component spinors under 4, H,
and a. In this section we shall discuss the zero-
entropy' S-matrix elements for meson amplitudes
written in terms of these two-component spinors.
We want to work with scattering amplitudes with
clearly defined normalizations so that pole factoriza-
tion properties of these amplitudes will be evident.
We begin with a scattering operator S defined in
terms of a T operator as follows:

S=I+(2m ) iT . (5.1)

Let us now consider S-matrix elements between
states of the type (3.1). In general the incoming and
outgoing states will consist of direct products of
many such quark (and antiquark) states. For illus-
trative purposes, however, we shall display only one
such state explicitly, the extension to the general
case being obvious. Thus we have

&p'g
I
S

I pp & =(2~)'2E~'( p p)g—*p+(2~)~i54(p' p)g —(p'y+)A ~(p'p)pic(pp),

&p'0
I
T

I p'0 & =~'(p' p)~. (—p'0')A (p'p»n~(p0»
(5.2)

where A ii may be thought of as an M function for
the connected part and variables specifying the other
incoming and outgoing quark or antiquark states
have been suppressed. It is A

&
which possesses the

simple physical threshold cuts for the scattering
problem. Thinking of a general initial and final
state i and f but again displaying explicitly only the
spinors associated with one quark we introduce the
notation

Af;(+)=i)~(f)A ii(+)i)~(i), (5 3)

Af;(+ ) —Af;( —)

=(2m) i QAf„(+)A„;(—)5 (p„—p;), (5.4)

where the sum g„ includes for each intermediate
particle both a sum over a complete set of rest-frame
spin states as well as a momentum integration of the

d3"
Pn

(2n. )'2E

We shall assume that all the amplitudes discussed in
this paper satisfy the discontinuity formula (5.4). It
may be verified by applying the discontinuity for-
mula in (5.4) to poles (single-particle intermediate
states) occurring in the amplitude Af;, that the resi-
dues of such poles are products of A-type amplitudes
involving the intermediate and external particles but
with no other constant or kinematical factors.

It is important to realize that to assume the
discontinuity formula (5.4) is to assume less than
unitarity of the S operator, Hermitian analyticity of
the amplitude, or time-reversal invariance. Al-
though unitarity and Hermitian analyticity will both

where + refers to above and —below a physical cut
in amplitude. Under very general circumstances it
has been found that Af; satisfies a discontinuity
equation of the form

be true for the physical S-matrix elements, we shall
see that they do not hold for individual self-
consistent zero-entropy amplitudes as Stapp has em-
phasized. The individual zero-entropy amplitudes
will, however, obey self-consistently the discontinui-
ty equation (5.4).

We note here that Hermitian analyticity expressed
in terms of the amplitudes Af; implies

A i(+ ) =Af ( —) (5.5)

It may be easily checked that if both (5.4) and (5.5)
are true, then unitarity holds, although time-reversal
invariance need not hold.

Now we shall define the zero-entropy S-matrix by
giving the zero-entropy form of the amplitude Af;,
which we denote Af;. The amplitude Af; will consist
of a series of individual terms determined by an M
function of the general type (5.3) which consists of
Kronecker 6 functions in the dotted and undotted
spinor indices and which is multiplied by a scalar
function f. Thus the individual zero-entropy terms
appear in a form in which the dependence on the
spinors is a distinct factor which multiplies f The.
individual terms also introduce an order to the parti-
cle states and are characterized by a planar topology.
Each zero-entropy term must have the correct
Lorentz properties and in addition we require (1)
that it satisfy (5.4) when planar connected sums are
used on the right side (this means that each term is
self-reproducing), (2) that the rules for determining
the terms be consistent with crossing, (3) that resi-
dues of poles in the individual terms be factorized
into other zero-entropy terms as required by (5.4) as
discussed earlier, and (4) that phases be attached to
individual zero-entropy terms in such a way as to
make the sum of the terms obey as many properties
of the full physical S matrix as possible. This last
requirement is rather vaguely worded but its mean-
ing should become clearer as we proceed.

Figure 2 illustrates diagrammatically an example
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of one zero-entropy-term contribution to A~; for a
four-meson amplitude AB~CD. (There will be a
phase for the amplitude but this is not indicated in
Fig. 2.) The dashed lines within Fig. 2 represent the
Landau or momentum graph for the process. The
center orientation arrow gives a global orientation
which agrees with that of the so-called Harari-
Rosner (HR) quark arcs lying at the perimeter of the
two-dimensional graph. According to a recent pro-
posal we have also oriented the patches bounded by
the HR arcs and the lines of the momentum graph.
The convention is that spinors with dotted indices
are used if the HR arc bounds a patch whose orien-
tation agrees with the global orientation and spinors
with undotted indices are used if the orientations
disagree. The indices u, d, s, c in Fig. 2 denote fla-
vor.

Corresponding to the process of Fig. 2, there are
actually 2 individual zero-entropy terms corre-
sponding to the two possibilities for orienting each
patch. For an N-meson amplitude there will in gen-
eral be 2 zero-entropy terms if all the quark flavors
are different. However, if two or more quark fla-

6

D
n&(~DID) n ("c('c)

n„(vcr()) g ~ ~ g n (&c(c)

4 ~ & + 1 ~ S " f(PAPgPgPO)

' t"IIn) / ~
n'("c('B)

FIG. 2. Example of a zero-entropy term in meson-
meson scattering.

vors are the same, there will be even more than 2
zero-entropy terms contributing to the same process.

We designate by S;(A,B,C,D) the spin structure
factors of Fig. 2 where it denotes one of the 2 dif-
ferent patch orientation combinations. For the term
shown we have

S;(A,B,C D) =r) (D)rl (A)rlB(A)r)B(B)rlr(B)re(C)g (C)gs(D) .

This can, of course, be immediately generalized to
an arbitrary number of particles. The complete am-

plitude for Fig. 2 can then be written as

I .S';(A,B,C,»f(J5A, J5B uC,PD» (5.6)

where f is an invariant scalar function and I; is an
all-important phase factor. The scalar function f, in
the case of mesons, does not change its value under
a cyclic permutation of its variables nor if the order
of its variables is completely reversed. The index i
in (5.6) is not summed over unless specifically indi-
cated. In much of what follows we shall not refer to
the scalar function f but shall concentrate on the
factors I; and S; (A,B,C,D).

I

Ignoring for the moment the question of the
phases I';, it may be verified using (2.10) and (2.11),
that if we go to a pole in f that S; does indeed fac-
torize into two spin factors of the same form as is
required by (5.4). We shall see later that the require-
ment of factorization of pole residues restricts the
choice of the phases I;.

The rule for calculating S;(A,B,C,D) in Fig. 2 is
valid in any channel. However, the phase factor I;,
as we shall see, is generally channel dependent. The
interpretation of the spin states also depends on the
channel. If we assume A and B are incoming and C
and D are outgoing, S;(A,B,C,D) can also be written
in terms of the four-component spinors defined in
Sec. II as follows:

I;S;(A,B,C,D) =I gS;(A,B,C,D),
~i(AiB~C&D) U(uDOD)( + Y5)U(uA(t'A ) V(uA 6 )( + 3 5) U(uBPB )

X V(uBQB)(1 —y5)V(u, ((), )U(u, g,*)(1—y5)V(uD(t)D),

(5.7a)

(5.7b)

where 1; is the phase associated with the four-
component spinor form S;. We see in the four-

component form that the factors 1+y5 are associat-
ed with HR arcs whose orientations, respectively,
agree or disagree with the global orientation. We
note that VU represents an outgoing particle and UV
an incoming particle. We can also write S; in a

S; =Tr(M(A)M(B)M(C)M(D)), (5.8)

using the notation of (4.2) with appropriate indices.
Thus, for example, we have

form which is closely related to that given in Stapp's
original paper, namely,
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M(B)~r= pe op'z'gz gvz'0' (5.9)

The zero-entropy S matrix for the process in Fig.
2 as previously mentioned will consist of a sum of 2
terms. [That is, summing over i in (5.6).] All such
terms correspond to the same physical process (same
momentum and spin variables). The spin-structure
factors S; will be different for the different terms as
will the phase factors I';, i being the label which dis-
tinguishes these different terms.

We turn to the problem of determining the phase
factor I;. We discuss first the relative phases be-
tween the terms S;. For definiteness we describe
phases defined relative to an S-point zero-entropy
reference spin-structure factor Sq all of whose in-
dices are dotted and whose phase I ~ is + 1. Thus
Sz for Fig. 2 would look like (5.6) except that all in-
dices would be dotted. As outlined earlier our rule
for fixing the relative phases is such as to give the
amplitude as many properties as possible possessed
by the physical S matrix. In the case of strong-
interaction processes —to which zero-entropy ampli-
tudes apply —this means adding terms in such a way
as to ensure H, K, and a invariance, still main-
taining consistency with crossing and pole factoriza-
tion. These requirements lead to a unique choice for
the phase I; relative to the term with all dotted in-
dices:

(5.10)

where 1V„= number of quark lines with undotted in-
dices except those joining incoming and outgoing
particles. Here it is understood that the same rest-
frame spin states are used in each term. The rule
(5.10) is a direct consequence of the fact that
ezez ——cruz ———1 (from Sec IV) for .an incoming or
outgoing quark-antiquark pair. It may be readily
verified that the rule (5.10) guarantees that the total
zero-entropy sum Q, I';S; consists of sums over
pairs of terms, each pair being invariant under P
and a. A given pair consists of the two terms
whose patch orientations with respect to the global
orientation are reversed; e.g., the second term to be
paired with Fig. 2 is one in which all the patch
orientations are reversed, giving an amplitude in
which the spin states of the u and c quarks are
represented by undotted spinors and the d and s

I

quarks by dotted spinors. 4 invariance is also built
into the sum of zero-entropy terms. We shall dis-
cuss more explicitly in Sec. VII how to construct the
amplitudes related by ~, 4', and H transforma-
tions.

We re-emphasize that the rule for the phases I;
given by (5.10) for the individual zero-entropy terms
in the topological expansion is consistent with pole
factorization. Remarkably, if the sum g;I;S; is

analytically continued to the crossed channel using
the results (3.5)—(3.7), the end result is the same as
if we had applied the rule (5.10) directly in the
crossed channel. This is perhaps not so surprising
since the arguments leading to the phase (5.10) were
based on the relations uzi& ——ez e~ ———1 which were
deduced using crossing.

The corresponding determination of the phase I;
for the four-component spinor formulation is just

(5.11)

Ny number ——of final state mesons or V (not V) spi-
nors in S;.

We now note that the phases (5.10) or (5.11) imply
that a sum over intermediate spin states in a con-
nected sum of two amplitudes such as that given in
the left part of Fig. 3 produces an amplitude on the
right with a correct spin factor Sz with the correct
phase I'x. (Although illustrated here for a single-
particle intermediate state, the self-reproducing
property of the phases I and the spin factors S
holds also for connected sums involving many-
meson intermediate states. ) The patch orientations
in Fig. 3 are immaterial except that those which in-
volve the quarks in particle A must match in the
two amplitudes in order that the connected sum give
a zero-entropy amplitude. The outgoing A particle
in the amplitude in the lower half of Fig. 3 in a basis
spin state is characterized by the state
r) (vlf;)r)r(vzgj) and the incoming A Particle in
the upper amplitude by the corresponding dual state
7) ( vg P; )g ( vq PJ.). (No complex conjugation of the
states is needed because the basis states are real. )
The connected sum over i and j according to (2.11)
becomes just 5s 5~&. The phase factor I x for the
new process is seen to be the product of the two
phase factors for the amplitude in the left part of
Fig. 3. Thus

Q I,.S,(K,H, G,F,A)I ~S.(A. ,E,D, C,B)=I S (K,H, G,F,E,D, C,B), I,.l .=I
A

(5.12)

where g„designates the complete sum over spin
states for particle A. This illustrates the all-
important pole-factorization property for zero-

entropy amplitudes and shows it to be consistent
with our choice of phases I; which were selected in
such a way to ensure W, 4, and 9' invariance.
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'K

Here we wish to examine the residual freedom left
in selecting the phases I;. Since relative phases
have been fixed by the arguments in the previous
section, the only possible freedom remaining is an
all-over phase multiplying each of the I;. Such a
change of phases can in no way affect either W, Ã,
or H invariance or crossing which depend only on
relative phases. Such a phase change, however, can
affect consistent pole factorization since this is a bi-
linear relation in the phases [see (5.12)].

It can be shown that the most general multiplica-
tive phase I o consistent with the requirements of
pole factorization is'

i8(N —2)
o
——e (6.1)

where 0 is real and N is the total number of mesons
in the amplitude. Thus the residue of a pole in an
amplitude involving N mesons factorizes into ampli-
tudes involving N

&
and N2 mesons with

N~+N2 ——N+2. The phase I 0 is thus consistent
with factorization since

i8(N )
—2) i8(N2 2) i g(N —2)e e el (6.2)

FIG. 3. Connected sum for single-particle intermediate
state of a zero-entropy term.

VI. PHASES, HERMITIAN ANALYTICITY,
AND THE SIGN OF THE QUARK LOOP

In the last section we derived a set of phases I;
relative to the reference amplitude of all dotted spi-
nor indices whose phase is taken to be I z ——1. The
phases I; of individual zero-entropy terms were
shown to be consistent with crossing and factoriza-
tion of pole residues, and the sum of zero-entropy
terms was invariant under a, 4, and P transfor-
mations.

We now wish to address the question of whether
there is any motivation for picking the phase I 0 to
be other than unity or 8 =0. It will be useful to be-

gin by examining the consequences of assuming that
the individual zero-entropy terms satisfy the discon-
tinuity equation (5.4) with planar connections in the
intermediate state. As discussed in Sec. V this is a
weaker assumption than one of unitarity. If we ap-
ply (5.4) to the situation of intermediate poles
(single-particle intermediate states), the previously
described factorization properties of the spin struc-
ture functions S; (5.12) then implies that the residue
of the pole in scalar function f factorizes into two
other f-type scalar functions. Thus, near the pole
corresponding to the A particle in Fig. 3 we have

f(K II G FE D cB) f(K,H, G,FA)f (A, E,C,B)
2

s~m& mg —s
(6.3)

where s is the usual invariant four-momentum squared and the letters stand for four-momenta. The absence of
any numerical factors in (6.3) is a consequence of the normalization of the original Af; amplitude discussed ear-
lier. We recall that the scalar function f is invariant under a cyclic permutation of its variables.

Because of (6.2) the equation (6.3) is unchanged if each individual zero-entropy term is multiplied by the
phase I'0 in (6.1). We now proceed by examining the requirement that the individual zero-entropy amplitudes
satisfy (5.4) with planar connections for arbitrary intermediate states. First we consider the two-meson inter-
mediate state characterized by a single quark loop and illustrated in Fig. 4. In Fig. 4 patch orientations have
been omitted but the patch orientations of particles A and B must match in both amplitudes or we will not
achieve self-consistency. The connected sum for the spin structure factors for Fig. 4 is of the form

g r,.s, (K,H, Gg, A,B)r,s, (B,A, ED,c)=4x~r s (K,e,G,E;E,a, c), r, r,.=r
A, B,Nf

(6.4)
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where the summation in (6.4) is over a complete set of spin states, the two possible patch orientations and the
total number of fiavors Ny for the quark in the loop. [Thus the number four in (6.4) comes from two possible
spin states and two possible patch orientations. j The phases I' in (6.4) are those given in Sec. V and do not in-

clude multiplication by the all-over phase I p.

The discontinuity equation for the quark loop in terms of the scalar functions becomes

f (K,H, G,F,E,D, C)+ f (K—,H, G,F,E,D, C)

lpga lpga

=4'�(2m ) i
3 3 f (K,H, G,F,A,B)+f(B,A, E,D, C) 5 (pg +pg —pE —pD —pc),

(2n. ) 2' (2~) 2' (6.5)

where + refers to above or below the threshold cut. The equation (6.5) plus its generalization to more compli-
cated many-body intermediate states would constitute the zero-entropy bootstrap, ' in the case that we set
I o——1, or 8 =0 in (6.1).

If we now include the multiplicative phase I 0 in (6.1) and also generalize (6.5) to include intermediate states
with Nr mesons, we obtain [using the notation of (5.4)]

fg;(+) fp( —)—=(2~) i $e ' (4&g) ' fg„(+)f„;(—)~'(p„—p;), (6.6)

F' Mw i~ ~r
j

(
&~ B(

r
~&as ~ me~

I

FIG. 4. Connected sum for a two-meson intermediate
state.

where f and i designate the initial and final momen-
tum states for the scalar functions.

It is clear from (6.6) that the choice of 8 can ma-
terially affect the form of the zero-entropy bootstrap
problem. The question is: can any general principle
relating to the S matrix be invoked to determine or
restrict 8?

To answer this, we recall that the individual
zero-entropy terms satisfy a discontinuity equation
of the form (5.4) as a consequence of the fact that
the scalar functions satisfy (6.6). However, the indi-
vidual zero terms do not satisfy planar unitary be-
cause as Stapp has emphasized these terms are not
Hermitian analytic, i.e., they do not satisfy (5.5). As
discussed earlier, our form for the zero-entropy S
matrix is dictated by the requirement that it possess
as many properties of the physical S matrix as possi-
ble. In the previous section we saw that the sum of
zero-entropy terms with proper relative phases con-
sists of sums of pairs of terms, each pair being in-
variant under 9' and u. It can easily be checked
that these same pairs will also be Hermitian analytic

if 8 in I'0 is chosen as follows:
18=(n+ —, )m, n =integer

with

f/+)=fy;( —) .

(6.7a)

(6.7b)

Thus in line with our general approach we take 8 as
given by (6.7a) in order to make the zero-entropy S
matrix Hermitian analytic, thus sharing yet another
property of the physical S matrix. It should be em-
phasized that requiring (6.7) does not make the
zero-entropy S matrix unitary since the discontinui-
ty formula is not linear. With (6.7a) we get the
phase in (6.6) to be

2i8(N~ —1) im (N~ —1)I
g I (6.8)

For Nz ——even number, there are an odd number of
quark loops and the phase (6.8) is negative. Thus
each quark loop contributes a negative sign to the
discontinuity equation.

Chew has emphasized the above result does not
imply that the net two-particle discontinuity for the
f amplitude is necessarily negative. At the zero-
entropy level, the meson-meson and baryon-
antibaryon intermediate states are degenerate and
the latter contribute with a positive sign due to the
presence of two quark loops and thus also carry a
multiplicity of (4') . Hence, the net two-particle
discontinuity off is positive.

We close by remarking that the all-over phase I p

takes a different form than (6.1) when baryons are
present. Even in this case, however, factorization
and Hermitian analyticity are adequate to determine
I p. This point will be fully discussed elsewhere.
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VII. PROPERTIES OF THE ZERO-ENTROPY
S MATRIX UNDER 4, 9', and W

Having established the transformation properties
of the quark-antiquark states under 4, 9', and W
in Sec. IV and having defined the zero-entropy S
matrix in Secs. V and VI, we can now investigate the
4', H, and a properties of the zero-entropy scatter-
ing amplitude. To give a concrete illustration we
may think of these transformations being performed
on the amplitude in Fig. 2 with AB the initial state
and DC the final state, although we shall give the
transformations in very general form. For Fig. 2 the
zero-entropy amplitude consists of a sum

24

g I.,r,S,(x,a, C,a) (7.1)

over the permutations of patch orientations and I 0
is the all-over phase derived in the previous section.

The most economical way to discuss the effect of
the 4', P, and u on meson amplitudes of the type
shown in Fig. 2 is to discuss what these transforma-
tions do to the individual quark lines in the diagram.
We obtain a complete understanding of the effect of
these transformations by considering their effect on
two types of quark lines: (a) a quark line that con-
nects an ingoing and an outgoing particle, and (b) a
quark line that connects either two ingoing or two
outgoing particles. Using the results of Sec. IV we
then have the following results for charge conjuga-
tion on the quark lines of a zero-entropy amplitude:

g~(v'ti ) ri (vP) ri (u'cP) ri (ucP),

(7.2a)

ri. (u'g) g (uP) ri (u'g) g (uP),

(7.4a)

q (v'g)

a(vy) g~(vP) .

(7.4b)

Again the equations (7.4) apply with dotted indices
replaced by undotted indices and vice versa and
quark-line directions reversed. It is clear that the ef-
fect of P is to produce an amplitude with patch
orientations reversed and that the ( —1) phase (7.4b)

gives consistency with the relative phase I;. That
is, we have verified that pairs of zero-entropy terms

corresponding to opposite patch orientations are in-

variant under H. The phase I; of (5.10) is a conse-

quence of (7.4b). We now show that the same pairs
of terms are invariant under P . Here we must re-
call that the time-reversed amplitude is defined not
only by applying W to the states but also exchang-

ing ingoing and outgoing states. Thus we obtain for
individual quark lines in the amplitude

ri (u'g) ri (.vP) ri (v'cP) ri (ucP),

terms are charge-conjugation invariant. We note
that the operation of Ã does not change patch
orientations. (Some of the subtleties of charge con-
jugation are discussed in Appendix A where the case
of self-conjugate particles is explicitly treated. )

We now consider H and find for the transforma-
tion on individual quark lines (again using the re-
sults of Sec. IV):

g '(v'c1( )

g (up) el~(ucg),
(7.2b) 9 (v'g) r)~(v'cy)

(7.5a)

g (u'g)g (uP)=ri (u'cP)ri (ucP), (7.3)

the charge-conjugated amplitude is equal to the ori-
ginal amplitude and thus the individual zero-entropy

where (7.2a) refers to a quark line connecting an in-

going and outgoing particle and (7.2b) refers to a
quark line connecting two ingoing or two outgoing
particles. The results above in (7.2) also apply when
the indices are undotted except that the direction of
the quark line must then be reversed. Applying (7.2)
to each line in the diagram of an amplitude such as
Fig. 2, we see that reverses the directions of all
quark lines and also changes the rest-frame spin
states. However, because of the identity

(7.5b)

Again, as before, (7.5) applies when dotted and un-

dotted indices are interchanged and the quark lines
are reversed in direction. The absence of a complex
conjugate on the rest-frame spin states [see (4.18a)]
in (7.5b) is due to the complex conjugation which
occurs when in states are converted into out states
and vice versa. Comparing (7.5) and (7.4) and using
identity (7.3) with undotted indices we see that the
time-reversed amplitude is numerically equal to the
parity-reversed amplitude (the amplitudes, of course,
refer to different processes in the two cases since for
W in and out states are switched). Thus the same
pairs of terms which give R invariance also give W
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rl (u't)i) g'(uP) g (u'cg) g (ucP)

rl (u'cg) r) (ucP)

g~(u'g) rl (uP),

in variance.
Finally, using (7.2)—(7.5), we indicate the results

of applying C, H, and u sequentially to the quark
lines of a zero-entropy term:

&DC
i
S'isa) =(DC

i

C-'S'C isa)
=e'~ ( CD

(
S

(
BA ), (A2)

pend on the order of the particle variables (as dis-
cussed in Sec. V). The physical S-matrix elements,
of course, do not depend upon the order of the vari-
ables. If we agree to always run the quark arrows
one way (say clockwise), then charge conjugation
changes the order of the variables for zero-entropy
amplitudes. For example, for particles A, 8, C, D,
each of definite spin Sz, Sii, Sc, SD (either zero or
one), we have

4(u ~) @ g (u'cp)

~'(uy)

g~(u'cd )

(7.6a)

ip
( 1 )sA +&s+sc+ sD

(A3)

where the antiparticles have exactly the same spin
states as the particles. The phase e'~ is de-
termined —using both (4.7) and the result (4.9c) for
states with well-defined spin —to be

g (u'P)
~(—1)X(—1

rl (uP) .
(7.6b)

Thus from (7.6a) and (7.6b) we can conclude im-
mediately that individual zero-entropy terms are in-
variant under the combined @Pa transformation.
We have, of course, assumed throughout that the
scalar function f is invariant under the separate K,
9', and ~ transformations.
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Now an important distinction arises between the
consequences of Ã invariance for the physical S
matrix and the zero-entropy S matrix. This is best
seen by considering the case of self-conjugate parti-
cles A =A, 8 =8, etc. In this situation, applying Ã
invariance to the physical S matrix in the same form
as (A2) would give immediately the result

e'&= l, (A4)

because the order of the variables in (A2) is imma-
terial for the physical S-matrix elements. In this
case, of the physical S matrix, the phase e'~ is just
the product the charge-conjugation quantum num-
bers for each of the four particles. However, in the
case of the zero-entropy S matrix one cannot require
the phase in (A3) to be equal to unity in the self-
conjugate case due to the different order of variables
in (A2).

However, the topological expansion for the case
of self-conjugate particles will include a sum over
the pair terms

APPENDIX A: MORE ON CHARGE
CONJUGATION

In Sec. VII we have seen that individual zero-
entropy amplitudes are invariant under charge con-
jugation. We can express this fact by means of the
equation

(DC iS iAB)+(CD
i

S i' ),
this sum will vanish unless

( 1) A+ B+ c+ D

(A5)

(A6)

'S O'=S (A 1)

where S designates the zero-entropy scattering
operator.

The situation seems simple enough because the
physical S operator also satisfies (Al). There is an
important difference, however, between the two
cases because the matrix elements of S give rise to
ordered amplitudes —that is, amplitudes which de-

This result is then consistent with the assignment of
the S quantum of the Ã quantum number accord-
ing to Ã =(—1),mentioned in Sec. IV.

The subtle feature illustrated here is that although
individual zero-entropy terms are invariant under
4, the conservation of the 4' quantum number can
only be understood by considering pairs of terms in
the topological expansion. (See, in this regard, a
similar earlier discussion of this phenomenon by
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Chew and Rosenzweig before spin had been incor-
porated into the topological expansion. ')

APPENDIX B. SPIN STRUCTURE FUNCTIONS
IN THE TRACE FORMALISM

It is sometimes more convenient to write the spin
structure factor S; in a form in which no reference
to the spins of the individual quarks and antiquarks
is made as is done in Stapp's original paper. To ac-
complish this with the formalism used in this paper
we take the two-component rest-frame spinors
P»(x =A, . . . , % and g, to be P; and

(i»,j„=+1) as defined in (2.7), then multiply with a
factor (s'o ); J l~2 for each particle and then sum

over i» and j„. s" is the ordinary spin vector of a
particle of spin 0 or spin 1, taken in the rest frame
of the particle. For a spin-1 particle, s satisfies
s u=0 and s = —1, while for spin-0 particle s&=v&.

We start from (5.3c) assuming all indices dotted
and we arrive at the foHowing explicit form: Using

FIG. 5. Amplitude with mixed spin indices.

Tr(V'V4 oui„y,„V'v~ OV'VII oy;,y,,V'us 0" ) .

(81)
I

(s" cr},zP;PJ s" o——

the projection on definite hadron spin states gives

N

Tr(V vg'0'Sg'0'V g U0Qvs'''0'Ss'0+vs'0' ' ' ' ) .v'2 (82)

Since V u o is the boost operator from the rest frame to the frame where p/m =u, using
V u os" crV u o =s o and V u oVV o =v'u oV u o =1 we finally obtain

. 1
Tr(sg '0'Ug cTSS'ov's'0' ' ' ' $~'cTUIv'0') .

&2 (83)

if all indices are undotted, the spin structure factor
becomes

1
Tr(sz ou, osc.ou, OSII os.o') .v'2

(85}

1 Tr(u„os„ou, os' o" ) .o'2
(84)

We treat the case of mixed indices with a simple ex-
ample shown in Fig. 5. In this case we arrive at the
spin st'ructure factor

The general rule is as follows: Going around the
amplitude against the quark directions, write a fac-
tor s o for each vertex (hadron) and a factor v 0 for
each "quark propagator" which v is the momentum
of the leading (trailing} edge if the index is dotted
(undotted). The appropriate phase, 1; in each of the
examples discussed above is the same as that in (7.1).
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