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Nonlinear static model
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The Abelian nonlinear Bose field interacting with a static source is treated by using the
Tomonaga separation of the field into internal, corresponding to the classical field, and

external parts. Two possible choices of the internal mode function are discussed. Quantum
effects arise from quantization of the coordinate of the internal mode function; the relation

to the result of the path-integral technique is shown. The simplest case, which occurs when

the single-meson kinetic-energy term in the Hamiltonian is neglected, is used to show how

the separation works.

I. INTRODUCTION

Consider the interaction of a scalar meson field 4
with a static source p(x); the Hamiltonian density
for the system is taken to be

H = —,[II'+(V4)'+ m'4']
2

—yarn@ + 4 —gpss
CK 4

= —,[II'+(VC }']+U(4) —gpss,

Abelian color nonlinear static model (CNSM) has
the Hamiltonian density

I= -,
' [ll'+(Ve)'+m'e']

CK—rlam g dob~4o4b4~+ 4 —gPX'4
abc

where

42==g 4,4„etc. ,

N1 CZU(4)= 4 —yarn@ +
2 4

It is no restriction to require that g &0 and a &0.
For u & 0 this system will be called the Abelian non-
linear static model (ANSM). When a =0 the Abeli-
an linear static model (ALSM) is obtained; the solu-
tion of the ALSM is well known. '

One reason for considering systems described by
the Hamiltonian density of Eq. (1) is that the covari-
ant quantum field theory of a Dirac field interacting
with a scalar field produces 4 and 4 counter-
terms as part of the perturbative renormalization
procedure; the study of the system described by Eq.
(1) may give information about interesting effects
arising from the counterterms.

In this paper, the aim is rather to study the effects
of the nonlinear term in systems related to the popu-
lar heuristic pictures that are used to describe how

quantum chromodynamics may work. In partic-
ular, the idea that there are two distinct states of
some octet Bose field qi, is attractive. One of the
states is stable in the vicinity of (color-singlet) sys-
tems of quarks, the other is stable away from quarks
and corresponds to the ordinary vacuum. One of
the states corresponds to 4, =0 and the other to
@,+0 in some sense. The corresponding non-

the color-changing octet A,, acts on the source color
variable or variables, and d,b, is the symmetric
structure tensor of color SU3. The corresponding
non-Abelian linear static model (NALSM) has been
extensively treated. The present study of the
ANSM of Eq. (1) is a preliminary to the study of
the CNSM of Eq. (2). Clearly, the ANSM lacks the
interesting group properties of the CNSM, particu-
larly features that distinguish color singlets. On the
other hand, it may provide some understanding of
the hypothesis of two states of the Bose field. In
particular, the heuristic picture relates the two states
to the two minima of the quartic function
U(4) —gpss, where the parameters a and il are
chosen so that for p less than some critical density

p, the stable minimum occurs at 4=0, while for p
exceeding the critical density p, the stable minimum
occurs at large values of 4. This type of behavior
was originally suggested by Lee and Wick as a
means of generating abnormal nuclear matter.

In previous studies related to the present work,
the density p in Eq. (1) has been due to fermion
fields interacting with the scalar field; there the
combined fermion-boson system has been solved
self-consistently. The present work treats p as exter-
nal and fixed with the aim of studying effects due
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specifically to particular features of the nonlinear
Bose field 4.

Section II gives a discussion of the case of con-
stant uniform density merely as a simple introduc-
tion to the nonlinear field. In Sec. III various spe-
cial cases of the ANSM Hamiltonian are listed. Sec-
tion IV is concerned with the simplest of these, the
case in which the single-meson kinetic energy can be
neglected and the meson energy is co(k) =m. Up to
this point, only classical field effects have been
treated.

In Sec. V quantum field effects are calculated.
Here the basic tool is the separation of the quantum
field into internal and external parts; in the NALSM
this separation was suggested by Tomonaga. The
internal mode function describes the part of the field
that is like the classical field. The criterion for
choosing the internal mode function and quantum
effects arising from quantization of the coordinate

Q of the internal mode function in the resolution of
the field operator are discussed in Sec V. An in-
teresting point is that the internal mode function
can be chosen either to minimize the ground-state
energy functional of the system, or so as to eliminate
purely mesonic corrections to the ground state. In
the ALSM the two choices are equivalent; the latter
choice has been shown to be appropriate in the
NALSM (Ref. 6) and both there and in the ANSM
it leads to a simpler practical procedure for solving
for the internal mode function. The effective
Schrodinger equation for the quantized coordinate Q
of the internal mode function is an improvement on
the quadratic approximation used in path-integral
calculations of quantum corrections. Section VI de-
scribes how these methods work in the simplest case.

The idea behind resolving the field operator is
that the strong-coupling phenomena should all be
associated with the internal mode, while the external
modes can be treated perturbatively. Section VII de-
scribes the one-external-meson sector of the ANSM;
this sector can be meaningful if the aim of the
internal-external resolution is ever shown to be real-
ized. Section VIII summarizes this work.

II. CONSTANT UNIFORM DENSITY

conditions are most simply expressed by noting that
U —gpss can be written in the form

m'
U(4) —gpss =

2 V~(X),

V (X)=—,(X—ri) ——,(3g —1)(X—g)

+(o, —o)(X—ri)+ri( —,ri ——,r) —o),1 3

aX=—4,
Nl

a0= gp,
m

(4)

o, =g(1—2g ) .

Only for g & —, can there be two minima of V~(X),
and when o =0 the two minima are equal when o.,
is also zero, that is, ri = —,; for ri & —, the second
minimum is lower than the first one when cr=0.
Thus the limits on g are

(5)

X (cr)=

V (o)=.

Xi(o), o &o;,
Xp(o), cr&o, ,

V (Xi(cr)}, o & o, ,

V~(X2(o)}, o &cr, .

(6)

The condition that there actually be two minima of
V (X) is that o lie between the values
o, —2(ri' ——, )' and o, +2(ri' ——, )'i'; let the cor-
responding values of X be X~(cr) and X2(o) with
Xi(o) &X2(o'). For cr &o, it is clear that
V (Xi(o)) & V (X2(o)) and vice versa, so that o, is
the critical value of o; then p, =cr,m 3/ag is the cor-
responding critical value of p. For 0. less than
o, —2(ri ——, )

r there is a single minimum of
V (X) at Xi (o'), and for o greater than
o, +2(ri ——, )

~ there is a single minimum of
Vo(X) at X2(o ). For fixed o let the lower of the two
minima be called V (o) and the value of X for
which it occurs be X (o ); then clearly

As a first orientation for the ANSM, consider the
case of constant uniform density p. Then the field
that minimizes the Hamiltonian is the constant uni-
form field that miniinizes U(4) —gpss. In order to
have distinct stable Bose field states, the parameters
a and g must be chosen so that there is a p, such
that for p&p, the stable uniform field is at the
minimum of U —gpss that lies closest to 4=0,
while for p&p, the minimum of U —gpss that is
farthest from 4=0 becomes the lower one. These

Note that q = —, is the "symmetric" case, in that
then the two minima of V 0(X) are at the same
value of V~ 0(X). In this sense, it is possible to re-
gard the deviation of g from the value —, to be a
measure of symmetry breaking in the system.

III. HAMILTONIANS

With the notation of Eq. (4), the Hamiltonian
density of Eq. (1) is
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H=m~ H',
mH'= V (X)+ (VX)'+ II»',

2m 2m

m '=m4/az.

(7)

and is the solution of Eq. (9) that minimizes H,'~. In
general, Eq. (9) is a rather complicated nonlinear

partial differential or (in the case of radial depen-

dence only) nonlinear ordinary differential equation

to be solved for the classical static field X(x). A

simpler case occurs when the single-meson kinetic

energy is neglected. In this "massive-meson"

ANSM the Hamiltonian density is

mH' =V (X)+ II»
2m~

=m 4[ —,(II +m 4 }+U(4)—gpss],

(10)

with the corresponding classical Hamiltonian densi-

ty given by

H', ) V(X) . ——
Now the classical static field is the solution of the
algebraic equation for minimizing V (X), rather
than the differential equation of Eq. (9).

In this form the function of the various parameters
is clearly separated. The parameter g determines
the shape of V (X), which is independent of m and
m . The mass m of the meson enters H' in the
single-meson kinetic-energy term proportional to
(VX) . The meson field kinetic-energy term involves
both m and m, and m is also involved in the ener-

gy scale that relates H and H'. The length scale is
determined by the length scale of p or, equivalently,
a. From Eqs. (7) it is clear that a~0 is a difficult
limit.

In all static models o- is taken to be constant. In a
classical static model, X is zero and therefore II» is
zero, so the classical static-model Hamiltonian den-

sity is

H,') V(X)+——(VX)
(8)

2m

The II» term in H' is responsible for quantum
corrections to the ground state of H,'~ of Eq. (8);
these are discussed in Sec. V. The static field Xd
that minimizes the classical Hamiltonian

H,'~ —— H,'~ x satis ies

a V.(X)
, V'X+ =0,

IV. SIMPLEST NONLINEAR STATIC MODEL

(14)

Figures 1—4 show the functions V~(o)/o and

X~(o ) for various values of g.
If the source has an internal energy proportional

to R z or R ', as is the case if the internal energy
is fermion kinetic energy, for example, then it is evi-
dent that the sum of source and 'field energies will in
most cases have a minimum near o =cr„ that is, for
R near R„where

3aG
4n.m' r}(1—2r} )

t 1/3

The case of nonuniform monotonic density is easy
to visualize. Of course it is assumed that the density

goes to zero as
~

x
~

goes to oo. Then, if the density
at the origin is less than p„ the field X(x) is just
X&(o(x}) everywhere. If the density at the origin is
greater than p„ the field X(x ) is equal to Xz(o ( x ) )
until x reaches a value at which 0(x)=o„there the

The Hamiltonian density H' ~ of Eq. (10) de-
scribes what is undoubtedly the simplest nonlinear
static model. Its classical counterpart K',

&
is re-

latively easily solved; quantum corrections are dis-
cussed in Secs. VI and VII.

Since H ~~,~
is just V~(. ), it follows that for any

x the field X(x) is just that value that minimizes
V ~-„~(X); that is, X(x) is determined by the density

p(x) at x, and the "local-density approximation" is
exact in this case. In the terminology of Sec. II, the
Hamiltonian is minimized when X(x) is equal to
X~(cr(x)};the energy density at x is V~(o(x)).

In this simplest model, consider uniform spherical
densities p( x ):

po,

0, /xi)R,
3G (12)

gPo=
4 R3

where G is the integrated coupling of the source.
The corresponding o(x } is

oo, /xi (R,
o'(x) =

,0,

3aG
4n(mR ).

Classically the total energy of the source and field is

Hmm, cl Hmm, c1

4mR', m V (oo)
~a'~m «o) =—G

3 Q
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FIG. 1. V~(0)/0 fpr g =0.35. FIG 3 Vm(0)/o for g =0.48.

field X jumps down from X2(o, ) to X~ (o, ) and fol-
lows X~(a(x)) as x moves away from the origin.
The total energy of source and field is just
m~ f V~ (o(x ) )d x.

V. QUANTUM FIELD EFFECTS

In order to write the quantum field 4 as the sum
of two parts, an internal part that corresponds to the
classical field and an external part that is the
orthogonal complement of the internal part of the

quantum field, it is first necessary to go to the repre-
sentation of the quantum field in which orthogonali-

ty is meaningful, namely, the representation in terms
of creation and annihilation operators a (k) and

a(k):
tk ~ x

4(x)= f 3,&
[a(k)+at( —k)]dk,

[16m co(k)]'~

II(x)= i f — e'"'"[a(k)—a ( —k)]dk,
16m

I,O

X (o)

.OI—

.Ol—
I

.5
I

(cr /cr) 5
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FIG. 2. X (0 ) for g '=0.35. FIG. 4. X (o) for g =0.48.
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with the associated commutation relation

[a(k),a (k')]=5(k —k') . (17)

The expansion of the operator a(k) in terms of a
finite orthonormal set P;( k ) is easy:

a(k)= gA;P;(k)+a&(k),
i=1

4(x)=Q—P(x)+@i(x),a
A +A~

t

&k x

4g(x)=
[16m co(k)]'

(22)

[A;,AJ ]—5;1,
[3;,a I( k)]=0,
[aj (k),aq(k ')]=5(k —k ')

N

(18)

&& [aj (k)+a~( —k)]d k,
and similarly for II(x),

f P;"(k)az(k)dk=0, i =1,2, . . . , N .

In the present case, a single mode P ( k ) will
represent the internal quantum field that is the
quantum analog of the classical field, so that the ex-
pression is

a(k) =A/(k)+a&(k),

P(k)=P'( —k), (19)

f P(k)
l

'dk= 1 .

1/2

1/2
(-+) ~ f N (k)

16m.

X [a,(k) —a, ( —k)]d k,

where P and Q satisfy the commutation relation

(23)

ik ~ x

p(x) =—f 3»2 p(k)d k,
m [8~ co(k)]'~

so that

(20)

P*(x)=P(x),

2

f y2(
m co(k)

(21)

a
( i)

m

Then the resolution of the field operator 4(x) cor-
responding to Eq. (19) is

The relation between P(x) and P(k) is taken to be
the usual boson Fourier transform with an addition-
al factor aim:

(24)

From the above equations, it is seen that P(x) is the
special mode of the field, normalized in a somewhat
unusual way; the quantum coordinate of the special
mode is Q. The form of the internal mode function
P(x) will be chosen later; it should resemble the
classical field of the previous sections multiplied by
a normalization factor. The field C&j (x) is the exter-
nal part of the quantum field 4(x ).

The quantum Hamiltonian density is

H=:I —,[II +(V4) ]+U(4) —gp@I: (25)

where U(4) is given in Eq. (1), and the normal or-
dering indicated by the colons is defined in terms of
the creation and annihilation operators a ( k ) and
a(k); note that definition of the normal ordering is
not changed by the separation of the special mode.
Now substitution of the forms for 4 and II into the
Hamiltonian H gives

2
H= f H=: f co(k)at(k)a(k)dk+ f rjam@ (x—)+ @ (x)—gp@(x) dx .:

4

m4 m'
Hg+ f (Hi+Hi)dx+ f H2dx,

a CX

(26)

where the Hamiltonian Hz is independent of az and az, the Hamiltonian density H1 is linear in az, and the
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Hamiltonian density H2 has terms of degree greater than 1 in a j and a&.

H„=: —(P +Q ) —Q f o& —pg' f P'+ f P4

2 2 p2
w =, f co(k) IP(k) I'dk=, (pi)= f P(x) 1—,P(x)dx;

r—ik ~ x

Hi ——f ai(k)dk J(x), J=(Q+iP) 1 — P —0+:(Q P —3rig P ):;
[16m co(k)]' m

H2=:I —,[Iii +(%@i) ]+U(@i)+m ( —,Q P —3rigp)@i +amyl&i ): .

(27)

5Kg s&J„(x)=
&(QP(x))

(28)

so that the classical field QP that minimizes Hz „
also makes the source J„for I meson fields vanish.

Quantum effects are now simply computed by
taking into account that P and Q in H„satisfy the
commutation relation of Eq. (24). In the quantum
case, the normal ordering is important. Without it,
there would be an uncontrolled distribution of zero-
point energy between the internal and external
modes. By using the forms of Q and P in terms of A
and A given in Eqs. (22) and (23), it is easy to see
that

In the classical case where all commutators of P
and Q are zero and normal ordering has no effect,
and for static classical fields where P=O, it is evi-
dent that

p2
J=(g+iP) 1 — P o+—, q.P'—,QP-'—

Pl

—3ng'0'+Q'0'. (32)

Once a choice of P(x ) has been made, Hz is com-
pletely determined. Its eigenvalues and eigenstates
are the eigenvalues and eigenfunctions of the opera-
tor

w d
h = —— + Vg(g),

2 dg2
(33)

and can be determined as accurately as may be re-
quired by using standard numerical techniques. The
quadratic approximation to the lowest eigenvalue is

V~(gp)+ i [ipV~"(Qp)]'" (34)

~ ~2 2

P =P ——2 2
~ ~

~ ~3 3

,Q4, Q4 3Q2+

(29)

where the minimum of Vq(g) occurs at Q =Qp.
This quadratic approximation is exact in the case of
the ALSM and is the sort of formula that is derived
in path-integral treatments of similar problems. In
the present case, there is no need to use the quadrat-
ic approximation, wtuch, for many situations of in-

terest, may not be accurate.
For a particular choice of P, the ground state of

Kz is given by
so that

Hq P+ Vg(g),———
2

where

(30)
I 0 0&=fp

A+At

I

~i(k)I&)=A IQ)=0,
&fp(g) =&pfp(g)

Hg 1$,0) =ep
I
4', 0),

(35)

and

+ ~
'g — CT

(31)

where the operators Kq and h depend on the choice
of P.

Two different criteria for choosing the function P
seem worth considering. The first is variational,
based on the observation that Ep of Eq. (35) is a
functional of P or P. The normalized P that mini-
mizes eo is obtained by requiring that the functional
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derivative of eo —p f i
(t)(k)

i
d k vanish. This cri-

terion gives an integrodifferential equation for ((t

that depends on first solving for the ground state of
h as a function of its parameters. The Lagrange
multiplier p is chosen so that P is normalized ac-
cording to Eq. (19).

A simpler alternative criterion for the meson
mode function P that has been shown to work well
in the NALSM (Ref. 6) and in the meson-nucleon
shell model is to choose P so that there are no pure-

ly mesonic corrections to the ground state of Hq.
This is achieved by requiring that the expectation
value of J( x ) be proportional to (t(j ( x ):

pletely define the functions (t)(x) and fo(Q) and the
values of p„w, (Q), (Q ), and (Q ). When these
functions and values have been determined, the ex-
pectation value of Hz is given by e'0, the lowest
eigenvalue of h. For the same function P the no-
meson (really no-l-meson) subspace has an ortho-
normal basis consisting of the states fi(Q) i

0),
where the f; are the orthonormal eigenfunctions of
h.

The relative ease of solution of Hz in the ANSM
is a reflection of the extreme simplicity of the corre-
sponding ALSM for the neutral scalar field.

(36)

VI. QUANTUM CORRECTIONS
IN THE SIMPLEST CASE

where ( ) denotes expectation value in the ground
state of H~ and (P =0 since Vq(Q) is real. With
the condition (36), H& of Eq. (27) has expectation
value

' X

f H, )=)xf, , d(x)ax(k)dxdk
[16m co(k)]'i

f aj(k)P(k)dk=0,
m 2

(37)

so that the ground state of Hz cannot emit mesons
without changing to an excited state of Hz, and
there are therefore no purely mesonic corrections to
the ground state of H&.

The function P(x) is also required to be normal-
ized according to Eq. (19), where P(k) and P(x) are
related by Eq. (20). For arbitrary p, the solution
(t) &( x ) of Eq. (36}has normalization given by

n ( )ju= f i P„(k }
i

d k
2

For the case of H it follows that (co ) =m and
w =a /m, so that for the uniform spherical source
of Sec. IV, the function P(x) is

1/2
3Q

()}(x)= 4m. (mR)

0, ixi)R,
(39)

4'4mR

3

4m.R
Oo o~

3

(40)

co=—00'
u

and 1()(x) is also uniform inside R; thus, Eq. (36) is
automatically satisfied. In this case only the lowest
eigenvalue of h requires computation. Here

X p XdX
u

(38)
so that

then p must be chosen so that n(p)=1. Clearly

$&(x)~0 as p~ —00, since r() is of the order of ()I);

thus n ( —00 ) =0. Presumably, the desired value of
p is the least p for which n(p, )=1. Obviously the
properties of solutions of Eq. (36) need further in-

vestigation. In the ALSM and NALSM it can be
shown that n(0) =1, so that @=0 in that case.

This second criterion for choosing P has the ad-

vantage that only the ground-state expectation
values of powers of Q enter into the equation for P,
so that it is a criterion that is easier to apply in prac-
tice.

The equations and conditions given above com-

& (Qko }'+(—,r)00' —00)Q40

(41)

Now the canonical transformation

Q =((I+'rj )d'(I)0 P =P40

gives

(42)

4~R' (Q40)' 1 3 2I'~(Q) =
3 4

—ri(Q00)'+( ———40')
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4 R

+(o, —oo)q+ri( —,ri ——,ri —go)
1 3

(43)

l mesons by an operator (in the Tomonaga subspace)

potential, while the H~ terms produce emission and

absorption of I mesons.
The one-meson sector has no superlinear terms

and can be solved by standard techniques. Unlike

the ALSM, the ANSM does have meson scattering
in the one-meson sector.

where 0, is defined in Eq. (4).
From the form of Vz(Q) it is clear that if g is in

1 1 2 1

the range —,——,Po to —,, then Vz (Q) has two mini-

ma. If oooo.„the lowest eigenstate of h has Q
mainly near zero, while if oo& cr„ then Q is mainly
in the second minimum of Vq(Q). The transition
around oo——0, is associated with the near degenera-

cy at oo ——o., of two eigenstates of h with Q equally
distributed between the two minima but differing in
relative sign of the amplitudes in the minima. If

1
the potential V~(X) has only a single

minimum. In such a case, the presence of a source
with Po & 2( —, —g ) gives Vq ( Q) with two minima;
such a qualitative change is likely to be associated
with a singularity in some function, in this case, of

a, since Po is proportional to a .

VII. ONE-MESON SCATTERING HAMILTONIAN

Let the one-meson normal order::~ be defined to
pick out just that part of 4z or II& that has one
a j and one az in normal order. Then the Hamiltoni-
an in the one-meson sector is

0+ 0+ 0+ H, „,
where

(44)

(45)

and Q is an operator in the Tomonaga subspace gen-

crated by A . The term H2 ~~ describes scattering of

VIII. SUMMARY

The classical and quantum behavior of a non-

linear neutral scalar field interacting with a static
source has been shown to be relatively easily treated

by separating the field into internal and external

parts. The internal part is in a single mode, as pro-

posed by Tomonaga; hence, it is simple enough so

that its Hamiltonian can be solved even when the

internal field is strongly coupled. The ground-state

energy is obtained by solving a Schrodinger equa-

tion; the quadratic approximation to this

Schrodinger equation is what is obtained in the usu-

al path-integral treatments of the quantum field

problem. The internal mode function can be chosen

either to minimize the internal-mode ground-state

energy, or to eliminate purely mesonic corrections to
this ground-state energy; the latter choice appears to
be simpler to apply in practice. A simple "massive-
meson" limiting case leads to particularly trans-

parent equations. It serves as a useful guide to more

general cases.
The treatment of the Bose field also applies when

the source is due to fermion fields. Then, as is clear
from the form of the gpss term, which becomes

g%~%4 or g%%4, the internal Bose field acts as a
potential in which the fermions are confined in the

usual self-consistent way.
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