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Local realism and measured correlations in the spin-s Einstein-Podolsky-Rosen experiment
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Two aspects of the Clauser-Horne conditions for the compatibility with local realism of
measured spin- —Einstein-Podolsky-Rosen correlations are investigated in the spin-s case.

(1) A new set of necessary conditions is given for compatibility with local realism. These
conditions are violated for a large range of geometries. The range does not diminish with

increasing s, if the observed correlations are sufficiently near to the quantum-theoretic pre-

dictions. (2} A simple counterexample is given to the spin-1 generalization of a recent con-

jecture that the conditions tested by the Clauser-Horne spin- —inequalities are sufficient as

well as necessary for compatibility of the data with local realism.

I. INTRODUCTION

In the spin-s Einstein-Podolsky-Rosen experi-
ment, ' the spin components m and m' of two
spin-s particles in a spin singlet state P are measured
along directions a and b, respectively. The data
from many runs determine the joint distribution

p b(m, m ).
Suppose we are given such distributions for

several different pairs of axes, among which there
are N different directions a and N' different b. We
shall say that such a set of distributions is compati-
ble with local realism if it is possible to represent
them in the form

p; b(m, m') = (f;(m, z)gb(m', z) ) .

Here, for each of the N axes a, the function f;(m, z)
is non-negative and viewed as the probability of a
spin measurement along a yielding the value m,

I

g f;(m, z) = g gb(m', z) = 1 .
m'

(1.2)

If a set of distributions is compatible with local
realism, then for any subsets al a„and bl. . . b„
of the N directions a and N' directions b we can de-
fine a non-negative function,

given that some set of hidden-variable parameters
has the value represented by z. Similarly, for each
of the N' axes b, the function gb(m', z) is non-
negative and viewed as the probability of the other
spin measurement along b yielding the value m',
given the same value z for the hidden-variable
parameters. The angular brackets indicate an aver-

age over the distribution of hidden-variable parame-
ters z, which is required to be independent of the
particular pair of directions a b along which the
measurements were performed. Being probabilities,
the f; and gb obey the normalization conditions

n n'I;; g~. g (ml m„,m'I m„') rf f~(m;, z)ugly=(mj', z))
i=1 j=l

with the following properties.
(a) The function F yields the given distributions as marginals:

a) a„,b
~

b„(m 1 n,~m1 mme' )=pet(mt )mj' ))~,
all m and m' gl J
except m, ,m'

(1.3)

(1.4)

(b) The sum of F over any one of its arguments does not depend on the choice made for the corresponding
axis:

gF; . . .; b . . . b (m& m„,mI m„' ) independent of a;,al . an~bi ' ' ' bn'
m;

gF; . . .; b . . . b (m& m„,mI . m„' ) independent of bj .' bn'
Im.

(1.5)
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Note that the existence of such functions follows
directly from the conditions (1.1) and (1.2) of local
realism, quite independently of whether the func-
tions F themselves have any meaning as higher-
order distributions.

It is thus possible to show that a set of distribu-
tions is not compatible with local realism, by show-
ing that the existence of any particular non-negative
function or group of functions satisfying (1.4) and
(1.5) is incompatible with the actual values of those
distributions.

The simplest such test requires two directions a,
and two directions b. If the distributions are given
for all four axis pairs a;IiJ., i,j =1,2, then in the
spin- —, case the necessary and sufficient conditions
for there to be non-negative three-axis functions
F- - t", (mim2, m ), i =1,2, satisfying conditionsa )a2, b,.

(1.4) and (1.5), are just the correlation inetlualities of
Clauser and Horne. ' When the spin- —, distribu-
tions p; t", (m, m'), ij =1,2, are given by theiri' j
quantum-theoretic forms, these conditions are found
to be violated for a substantial range of geometries.

We shall examine below two questions suggested
by this general point of view.

(1) Suppose we allow the spin to have a general
value s, and continue to examine conditions for the
existence of non-negative F;; b compatible with

the four distributions p; g, i,j =1,2. Can we ex-
i' j

tract any characteristic behavior of the sets of axis
pairs that violate local realism, as we approach the
classical (large-s) limit?

(2) Suppose one is given the distributions p; &
for

all axis pairs a;bJ, i = 1 . - N, j = 1.. . N', and sup-
pose all the non-negative functions F--

b anda;a, bk

F- t", t", exist and satisfy (1.4) and (1.5). The ex-
ak, b; bj

istence of all these F's is a necessary condition for
the compatibility of the given distributions with lo-
cal realism, but could it also be sufficient'? If so, the
Clauser-Horne inequalities would be more than just
a tool, reflecting the efficacy of a particular strategy
which was sometimes successful in ruling out local
realism; they would become, instead, the fundamen-
tal characterization of those sets of correlation ex-
periments that could (or could not) be interpreted as
compatible with local realism.

We discuss the first question in Sec. II. The issue
was first raised by Mermin and Schwarz, who out-
lined how the necessary and sufficient conditions for
the existence of three-axis functions F could be
found for any spin s, and treated in detail the case of
spin-1 inversion-symmetric distributions. The
necessary and sufficient spin-1 conditions for the ex-
istence of F- - b, i =1,2, are rather intricate, mak-a &a2, b,.

ing it difficult to assess the behavior of the

geometries incompatible with local realism even as s
1

goes from —, to 1. It would be a formidable task to
pursue the question of necessary and sufficient con-
ditions to still higher s.

In Sec. II we therefore revert to the less systemat-
ic but considerably simpler procedure of seeking
only necessary conditions for the existence of the
three-axis functions. We further only consider sets
of experiments in which the geometry of the four
axes a;,bJ. , i,j= 1,2, is subject to two restrictions.

(i) We take the four axes to be coplanar. (This is,
in fact, the case one generally has in mind, the plane
being perpendicular to the line of flight of the two
separating particles. ) Since a spin component m
along a direction n is the same as a spin component—m along —n, we can adopt whatever sign conven-
tion is convenient for the axes. We choose these
signs so that the four coplanar axes lie in a single
half-plane.

(ii) We require the a; and bz to be four distinct
axes, arranged within their half-plane so that
precisely one b lies between the two a 's, and there-
fore precisely one a lies between the two b's (Fig. 1).

For these geometries we give a very simple deriva-
tion of a new family of conditions necessary for the
compatibility of the four distributions p; b with lo-

i' j
cal realism. If the distributions agree with their
quantum-theoretic forms, we show that these condi-
tions are violated in all of the geometries considered,
and for al/ values of the spin s. Thus for at least a
third of all the possible coplanar geometries, the
quantum-theoretic predictions for the four pairs of
experiments are as peculiar for arbitrary spin s as

1

they are for spin —,.
We discuss the second question in Sec. III. The

issue was raised for spin —, by Fine, who pointed

A

0)

FIG. 1. The four coplanar axes are represented by unit
vectors ct ~, a2, b~, and b2, with signs chosen so that the
four lie in the same half-plane. The argument of Sec. II
applies in the case shown here, in which the a's are
separated by a f, and vice versa.
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out that when N =N'=2, the existence of all four
three-axis functions ensures the existence of a non-
negative four-axis function F- - " " satisfying (1.4)a)a2, b)b~

and (1.5). If there are more than four pairs of axes,
however, Fine's construction does not in general give
a four-axis function satsifying (1.5).' He has con-
jectured that this limitation can be overcome' so
that the answer to our question (2) may well be in
the affirmative.

1

When s = —, we can indeed prove for general N
and N' that if all non-negative three-axis functions

F;; &
and F; &s exist and satisfy (1.4) and (1.5)a,.a), bk k'ij

for all the distributions p; b, i =1 . N,
i~ jj=1.. . N', then it is possible to construct all non-

negative four-axis functions F;; & &
satisfying (1.4)

and (1.5), prouided the distributions p; &
do noti' j

violate inversion symmetry (Appendix A). Thus a
spin- —, counterexample to Fine's conjecture must ei-

ther use inversion-asymmetric distributions, or deal
with n-axis functions with n & 5."

For these reasons we consider here the spin-1 gen-
eralization of Fine's conjecture. This seems worth
testing, since in the case (N=N'=2) where it is
known to be valid, Fine's construction can easily be
shown to hold for arbitrary spin s. In Sec. III we
give an explicit set of nine joint distributions

p; & (m, m') corresponding to nine geometries a;bj,
it j

i,j =1,2, 3, with m and m' each taking on the values
1, 0, —1. We also give explicit non-negative forms
for all the required three-axis functions F- -

&
and

alaj bk

F; & s satisfying (1.4} and (1.5). Finally, however,ak'i j
we prove that there is no set of non-negative func-
tions F;; & & satisfying (1.4) and (1.5). The distri-

a; aj.,bk b]

butions we use in the counterexample are actually
the quantum-theoretic ones for a particular set of
spin-1 geometries (and therefore are inversion sym-
metric).

This counterexam pie demonstrates that the
answer to question (2) is in the negative. For spin 1,
necessary and sufficient conditions for the existence
of all three-axis functions do not have the funda-
mental significance that Fine suggested they might
have for spin —,: Even if all non-negative three-axis
functions exist and are compatible with (1.4) and
(1.5), there will not, in general, be non-negative
four-axis functions compatible with (1.4) and (1.5),
and therefore the distributions will not, in general,
be compatible with local realism.

II. NECESSARY SPI¹CONDITIONS
FOR LOCAL REALISM

We shall show that if the four axes a ~, a2, b &, and
b2 are coplanar and arranged as in Fig. 1, and if the

(2.2)

If non-negative three-axis functions F- -
&

and
a&c2, b&

F;; &
exist and satisfy (1.4} and (1.5), then we de-

fine

h
0)

A

5)

h
bp

h
-Q)

FIG. 2. The four unit vectors of Fig. 1 and a fifth unit
vector, —a~. It is evident from the figure that b~ is a
linear combination of a l and a2 with positive coefficients,
and b2 is a linear combination of —a ~ and a2 with posi-
tive coefficients, as asserted in Eqs. (2.1) and (2.2).

observed distributions p; & (m, m'), i,j =1,2, agreei' j
sufficiently well with the quantum-theoretic predic-
tions, then there can be no non-negative functions

F;; &
and F;; t", satisfying (1.4) and (1.5). The

general structure of the argument is this: Given that
both non-negative three-axis functions exist and
satisfy (1.4) and (1.5) for a given set of four distribu-
tions p- ",we use those three-axis functions to con-a;,b. ~

struct a quantity E(aia2, bib2) with the following

properties: (1) K can be expressed entirely in terms
of the observed distributions p; s, and vanishes if

i' j
they have the quantum-theoretic form; (2) E can be
given a lower bound in terms of the observed distri-
butions, which exceeds zero if they have the
quantum-theoretic form.

These two steps can, of course, be combined to
give a single rather clumsy inequality that the ob-
served distributions must satisfy if the three-axis
functions are to exist, and which the quantum-
theoretic distributions fail to satisfy. However we
find it clearer to present the argument in the form
just described.

The essential feature of the coplanar geometries
specified in (ii) of Sec. I, is that the axes a and b can
be numbered so that (Fig. 2)

b) ——C)a)+C2a2, C),C2 y0, (2.1)

b2 ———D~a~+D2a2, D&,D2&0.
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G(a)a2, b()=D)D2 g (C)m)+C2m2+m)
m )m2Nl

QF" b (mimp, m),

(2.3)

the nine terms is independent of at least one of the
summation variables. It follows from (1.4) that
every term in each sum can be expressed in terms of
a measured distribution p- " except for the terms ina;,b.

m&m2, which give terms containing the unknown
function

H(a&a2, b2)=C&C2 g ( —D, m, +D2m2+m)
m )Nlpm

&&F- -
b (m~m2, m),

(2.4)

&(a ]ap, b]b2) =G (a]a2, b] )+H(a]a2, bp) .

Q.5)

If the squared trinomials in (2.3) and (2.4) are ex-
plicitly multiplied out, then in either case each of

I

gF;; &(m~m2, rn), (2.6)

with i =1 in (2.3) and i =2 in (2.4). It follows from
(1.5), however, that the sum in (2.6) is independent
of i We. have taken advantage of this fact to choose
the coefficients multiplying the sums in (2.3) and
(2.4) so that the term proportional to the unknown
function in G is precisely canceled by the corre-
sponding term in H, when the two are added togeth-
er to give E.

We can therefore express E entirely in terms of
measured distributions:

&(a,a, ,b, b, )=D,D, (C, '(m')- +C, '(m') +(-m')b +2C, (mm'); - +2C, (mm')- - )

+C,C, (D, '(m'); +D, '(m'); +(m'); 2D, (mm').-—;+2D, (mm').-; ) . (2.7)

Here

(mm');b ——$ mm'p; b(m, m')
m, m'

and

(2 8)

where the sums in (2.10) must be' independent of

If the distributions p- " are taken to be thea;,b

quantum-theoretic ones for the singlet state, then'

(m'); = $m'p;(m),

(m')b = gm'pb (m) .
Q9)

and

(m')- =(m')s =s(s+1)/3
a; l

(2.11)

p; (m) = $p; „"(m, rn'),
m'

p-(m)=gp- s(m', m),
l m'

(2.10)

[The one-axis distributions in (2.9) are defined by ( mm' );s = (a; bj )s (s—+ 1)/3 .
l J

(2.12)

If these forms are substituted into (2.7) the resulting
expression can be cast in the form

E(a,a„b,b, ) = —,s(s+1)D,D, (b, —C,a, —C,a, )'+ —,s(s+1)C,C,(b, +D,a, —D,a, )' (2.13)

g& (m, m') =min (C& m +C2m 2+m')
m2

(2.14)

(since the "extra" terms in a
& az cancel identically).

But the right-hand side of (2.13) vanishes, in view of
(2.1) and (2.2). Thus K vanishes when the observed
distributions agree with the quantum-theoretic ones.

On the other hand, returning to the definitions
(2.3)—(2.5), we can construct lower bounds on E as
follows.

Define g~(m, m') to be the minimum over all m2
in integral steps from —s to s of the quantity
(C~m +C2m2+m'),

t

and similarly define

g2(m, rn') =min (C~m &+ Czm +m')
/Pl )

b
~ (m, m') = min( —D& m +D2m 2+m')

F2

h2(m, m') =min( D~m ~+D~m +rn')2 . —
Nl )

(2.15)

(2.16)

(2.17)

Since the quantities D&D2 and C~ C2 are positive [see
(2.1) and (2.2)], and since by hypothesis the three-
axis functions I' are non-negative, the quantity E
has four simple lower bounds:
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g1(s,s)=s (1+C1—C2) &0. (2.19)

Combining this with the quantum-theoretic value, '

p; s (s,s) =(2s+1) '(sin —,8; b ) ',aj,bl

we have the nonzero lower bound

IC & D1D2s (1+C1 —C2 ) (2s + 1)

X(sin —,8; b ) '&0. (2.20)

This establishes our main result.
If one wishes to know by how much the

quantum-theoretic distributions violate local realism
or, equivalently, how accurately the observed distri-

I

1 I
p~j(m, m )= —, , m =m,

E (a,a2, brb2) & D,D2 g g;(m, m ')p; t", (m, m')
m, m'

+C1C2 g h, (m, m')p; b (rn, m') .
I

m, m

(2.18)

If the distributions p; t", agree with the quantum-
g7 J

theoretic ones, then not all of these lower bounds
can vanish. For if C& )C2,

' then

butions must agree with the quantum-theoretic
forms to establish a violation, then it is important to
realize that (2.20) will generally grossly underesti-
mate the actual values of the bounds (2.18) (which
can, of course, be explicitly computed -for any speci-
fied geometry and set of measured distributions).
For most geometries, for example, g; and hj will not
vanish for any values of their arguments, owing to
the discreteness of the m's. The question of how
better to estimate these bounds is an intriguing one,
but we shall not pursue it further here.

III. A FAILURE OF LOCAL REALISM
%'HEN ALL THREE-AXIS FUNCTIONS EXIST

We give here a simple spin-1 counterexample to
the conjecture that the existence of all three-axis
functions is sufficient as well as necessary for local
realism. The counterexample is based on distribu-
tions p; b (m, m '), hereafter abbreviated to

J
pj(m, m'), associated with nine axis pairs a;bj,
i,j=1,2, 3, and with variables m and m' assuming
the values 1, 0, and —1. We take these distributions
to be given by

=0, m+m',
Ij =11,22 (3.1)

ptj(m, m')=f(m, m')= —„, m =m',
l+j or /j =33 .

m&m',

We note in passing that this counterexample is a natural one, in that the distributions defined by (3.1) and

(3.2) are precisely the quantum-theoretic spin-1 distributions for the sets of axes':

a1 ——3 'r (1,1, 1), a2 ——3 'r2( —1,—1,1), a3 ——3 'r (1,—1, —1),

b1 ——3 'r
( —1,—1, —1), b2 ——3 'r (1,1,—1), b3 ——3 '~ (1,—1,1) .

(3.3)

'sm
1

haik

(mm 1 ~ m 3 ) .

Case (ii), i &J and either k =3 or i &k&j

Fj k (m, m 2, m 3 ) =Fk;J ( m 3,m 1 m 2 )

1

(3.4)

27 ~ ml ——Pl2 ——~3
4
27m 1+m2+m 3+m 1

The set of distributions given in (3.1) and (3.2) is
compatible with the existence of non-negative
three-axis functions FJ k and Fk,j with all the prop-
erties required by (1A) and (1.5). One such set, for
example, is given explicitly by the following.

Case (i), i =j.
FtJ~k(m1m2, m3)=Fk fj(m3, rn1m2)

Case (iii), i +j and k+3 and either k =i or k =j.
FJ k(m1m2, m3) =Fk;j(m3, m1m2)

=3pk(m1, rn3)pjk(m2, m3) .
(3.6)

As defined these functions are explicitly non-
negative. The reader can verify that they give the
distributions (3.1} and (3.2) as marginals, i.e., that
they satisfy (1.4), which in the present case amounts
to the conditions

g F; k(m1m2, m3) = g Fji,k( 2m 1 3 }

m2 m2

= gF;Jk(m1, m2m3)
m2

= gF~ kj(mr, m3m2)
m2

=0, all other cases . (3.5) =P k(m1, m3) (3.7}
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for all 27 values of ijk. It can also be verified by ex-
plicit computation that the functions satisfy (1.5),
i.e., that

QFJ &(m]m3, mz) and QFk;i(mz, m]m3)
m2 m2

(3.8)

are independent of k for all nine values of jt

We show next, that in spite of the existence of all
the required three-axis functions, there can be no set
of four-axis functions Fik](m]mz, m&m4) that are
non-negative and satisfy (1.4) and (1.5). The re-
quiren]ent (1.4) that the four-axis function returns
the given distributions as marginals requires, in con-
junction with (3.2), that

F\3 z3(m ]mzym3m4 )

m)m2

m)m2

Fzz z3(m ]mz, m &m4 )

But the right-hand side of (3.14) is just the marginal
of the four-axis function F&3 ~3 that is equal to the
distribution p»(mz, m]). According to (3.2) this
distribution is just f(m], mz) (note that f is sym-
metric in its two variables) and therefore (3.14)
reduces to (3.9) in the case ah, cd =34, 12:

F]3 z3(m]mz m3m4)=f (m], mz) . (3.15)
m3m4

The other case, ab, cd =12,34, is similarly dealt
with:

g F]3z,(m]mz, m, m4)=f(m„md)
m mb

(3.9) == g Fz3 zz(mzmz, mzm4)
m2

for ab, cd equal to 13,24; 14,23; 23,14; or 24, 13. We
first show that (3.9) must also hold for the remain-

ing choices 12,34 and 34,12.
Condition (1.5) requires that

F]3 zz (m ]mz, m 3m 4 )

m3m&

F]3 ]3(m]mz, m3m4) (3.10)
m3m4

since the sum on m3 must be independent of the
corresponding axis. Now according to (3.1),
p]](m],mz)=0, m]&m3. Writing p]] as the mar-
ginal of F}3]3 we then have

m&m2

Fzz z3(mzmz m]m4)

=pzz(m 3,m4)

=f(m&, m4) . (3.16)

We have therefore established that (3.9) holds for
all six possible choices of the pair of variables
summed over. We next use this fact to evaluate the
non-negative quantity:

~= Q (m]+mz+mz+m4)z
m)m2
m3m4

0—y F]3 ]3(m]mzym3m4)y m]/m3
m2m4

+F]3,z3(m]mz m3m4) (3.17)

(3.1 1)

F]3 ]3(m]mz, mzm4) =0, m]&m3 (3.12)

But (3.11) can hold for non-negative F]3» only if
every term in the sum vanishes:

If we multiply out the square of m j+mz+m3+m4
then in each of the 16 terms that result the sum of F
on two of the indices will be given by (3.9). The 4
diagonal (m; ) and 12 off-diagonal (m;mj, i&j)
terms combine to give the simple result

Using (3.12) to rewrite the right-hand side of (3.10),
we have

W= g (4m +12mm')f(m, m') . (3.18)

F]3 z3(m ]mz, m3m4 )
m3m4 But the explicit form (3.2) for f (m, m') gives

= QF]z ]3(m]mz, m]m4) . (3.13)
m4

But we can again use (3.12) to rewrite the right-hand
side of (3.13), casting it in the form

mm'
m m, m' =» mm' m, m' = —»

mm'

(3.19)

g F]3 z3(m]mz m3m4)
m3m4

g F]3 ]z(mzmz, m]m4) . (3.14)
m3m4

and these, together with (3.18), require that 8' =0.
Returning to the definition (3.17) of 8' and noting

that F~3 z3 must be non-negative, we conclude that
W can be zero only if F]3 z3(m]mz, m&m4) vanishes
wherever m I+mz+m3+m4 does not:



27 LOCAL REALISM AND MEASURED CORRELATIONS. . . 345

F13 23(mimp, m3m4) =0

unless m~+mq+m3+m4 —0 . (3.20)

But consider now the relations (3.9) when m, = 1,
mz ——0. Because of condition (3.20) there can be
only two non-vanishing terms in the sum, given
when the pair m, mb is either 01 or 10 (we define
m= —m). Since (3.2) gives f(1,0)=—„,we then

have for the choices cd =12, 13, 14, respectively,

—
27 =Fi3 $3(10y01)+F$3 23(10,10),

27
—F13 23(10,01)+F13,23(11000) i (3.21)

—„=Fi323(10,10)+F)323(11,00) .

Equations (3.21) are three linear equations in three
unknowns with the unique solution

and

QFij k(m&m2, m3)= QFi, k(m2mi, m3)
m2 m2

= QFiik(mi, m2m3)
m2

= gF;ki(mi, m3m2)
m2

=p;k(m „m, ),

Fij k(rn&m3, m2)=rj(m&rn3)
m2

independent of k,
Q Fi,kl(m2~m 1m 3 }=Ski(m 1 m 3) ~

m2

(Al)

Fi3 23(10y01}—F/3 $3(10,10)

=Fi3 23(11,00)=—„. (3.22)
independent of i .

(A2)
Consider, finally, the relation giving p32(0, 0) as a

marginal of Fi3 23
..

p32(0, 0)= g Fi323(m0, 0m') .
mm'

(3.23)
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This sum includes the term Fi3 23(10,01), and since
every other term in the sum is non-negative, we have

p32(0, 0) & F&3 $3(10,01)= (3.24)

But this is incompatible with the actual value
p3z(0, 0}=—„,given in (3.2). There can therefore be
no set of non-negative four-axis functions satisfying
(1.4) and (1.5).

We show that a full set of non-negative four-axis
functions F1 ki(m im2, m3m4) can be found satisfy-
ing (1.4) and (1.5) provided the given distributions
p k(m, m') all have inversion symmetry':

p;k(m, m ')=pk(m, m') (m = —m, etc. ) .

(A3)

To establish the existence of the required four-
axis functions we first define a set of inversion-
syrnmetrized three-axis functions:

GJ k(m)m2, m3)
]= —,FJ k(mim2, m3}+' —,Fi k(mmmm~, rn3),

This work was supported by the National Science
Foundation under Grant No. DMR 80-20429. 6;ki(mi, m2m3)

(A4)

APPENDIX A: EXISTENCE OF FOUR-AXIS
FUNCTIONS IN THE SPIN-

2
INVERSION

SYMMETRIC CASE

We specialize here to the spin- —, case, proving a
result we quoted without proof in Ref. 10, which
shows why a spin- —, counterexample to Fine's con-
jecture must either use asymmetric distributions, or
deal with n-axis functions with n & 5.

Suppose we are given distributions p;k(m, m') for
all axis pairs a;b~, i =1 . . N, k=1 - N', and
suppose all non-negative three-axis functions
FJ k(mim2, m3) and F; ki(m, ,m2m3) exist and satis-
fy (1.4) and (1.5):

1 12,kl™1 m 2m 3 }+2 F;,ki(m ],mzm3 )

g Gij k(mim2, m3) = g GJ; k(m2m i,m3)
m2 m2

= g G; ik(mi, m2m3)
m2

= g Giki(mi, m3m2)
m2

=pik(m i|m3) . (A5)

Because the F's are non-negative, so are the G's.
Because the given distributions p satisfy (A3), it fol-
lows that the 6's satisfy the same condition (Al) as
the I 's:
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Finally, the G's satisfy

Q Gl k(rnlm3, m2) =R j(mlm3),
mp

independent of k,

g G; kl(m2, m 1m3) =Ski(mlm3),
(A6)

tions Fj kl(m, m2, m3m4) that returned the G's as
marginals; i.e., the F's obeyed

g Fij kl(m1m2, m3m4) =Gj k(m1m2, m3 )

m4

(AS)

and the corresponding three equations in which m3,
m2, and m i were summed on. The very structure of
these equations would guarantee that the F 's obeyed
condition (1.5), and property (A5) of the G's would

ensure that the F's returned the given distributions
as marginals, as required by (1.4). The problem
therefore reduces to showing that such a set of F 's

can be constructed when the given distributions
satisfy condition (A3).

If we ignore the requirement of non-negativity it
is easy to specify a family of four-axis functions re-

m2

independent of i,
where R.,J and Skl are the inversion-symmetrized
forms of the r;j and ski appearing in (A2):

1 1

Rl(m1 m3) = —,rij(mlm3)+ —,rij(m1m3),

(A7)
1 1

Ski(m1m3) =
2 ~kl(mlm3 )+ 2 ski(mlm3) ~

(A9)

Suppose we were able to find non-negative func- turning the G's as marginals. Define
I

1 1 1 1Fj kl(ml m2 m3 4) Gjk(m 'lm2 m3)+ G'j l(m 1 m2 m4)+ G', kl( 1 m3m4)+ Gj kl(m2 m3m4)
1 1 1 1 1

4 jrik(mlim3) 4pil(m1 ~m4) 4 jjk(m2~m3) 4pjl(m2™4 4 iJ

1 3——,Ski(m3m4)+ —„.

F(m1m2, m3m4) =F (mlm2, m3m4)0

+mim2m3m4 W (Al 1)

non-negative for all 16 ways of assigning the values
+ —, to the variables m&

. - - I4. Since the term in
8'assumes only the values + 8"/16, we require

F (m, m 2,m 3m 4)+ W/16) 0,
m 1m 2m 3m 4 positive, (A12)

It follows from (A5), (A6), and the inversion sym-
metry of the two-axis functions' p, R, and S, that
the F 's do indeed return the 6's as marginals.
Furthermore, so do the functions

0F; kl(m1m2, m. 3m4)=Fl kl(rn1m2, m3m4)

+mim2m3Pl48 fJ

(A10)
for any set of numbers W, since the sum over any m
of the product rn lm2m3m4 vanishes. We complete
the proof by showing that numbers Wijkl can al-
ways be found to make the-functions Fij ki defined
in (A10) non-negative. We can do this separately for
each set of indices ij,kl, and therefore drop these
subscripts for the rest of the argument.

We require a number W that will make the func-
tion

I

F (m lrn2, m3m4) —W/16) 0,
mlm2m3m4 negative . (A13)

Such a W can be found if and only if every upper
bound on W/16 given by (A13) exceeds every lower
bound given by (A12)

F (mlm2, m3m4)) —F (m 1m2, m3m4),0 0 0 0 0 0 1 1 1 1

(A14)

where the m; are any set of m; with negative prod-
uct and the m, any set with positive product. This
condition can be put more symmetrically in the
completely equivalent form,

F (mlm2, m3m4)+F (m'1m2, m3m4))0,

(A15)

where the m; are unrestricted, and the m are ob-
tained from the m; by changing an odd number of
signs.

%e now make our only essential use of the as-
sumption of inversion symmetry. Because all the
functions on the right-hand side of (A9) are inver-
sion symmetric, it follows that F has inversion
symmetry:

F (m1m2, m3m4)=F (mlm2, m3m4) (m;= m;) . —

(A16)
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It is therefore enough to consider the case in which
the m in (A15) are obtained from the m; by a sin-
gle change of sign (since in the only other case—
three sign changes —we could, in addition, reverse
the signs of all the mt' without altering the value of
F ).

Suppose it is m4 that differs in sign from m4.

Then (A15) requires

ly similar conclusion of Fine. Fine constructs his
four-axis function in a very different way, which
does not require the given distributions to be inver-
sion symmetric. However his construction fails to
satisfy condition (1.5) unless E or X' is less than 3,
whereas ours has all the required properties for any
N and N'.

F (m?m2, m3m4)+F (m?m2, m3m4) &0.

(A17)
APPENDIX B: WHY THE CLAUSER-HORNE

TEST REQUIRES FOUR AXES
1

But since the m; only can assume the values + —,,
the left-hand side of (A17) is just

gF (m? m2, m?m4)
m4

(A18)

which is precisely the three-axis function
G (m???? 2 m 3 )~ Condition (A 17) is thus guaranteed
by the non-negativity of the three-axis functions.
Evidently the same conclusion holds if the sign re-
versal is made for any other value of i, and the result
is therefore established.

This result should be contrasted with an apparent-

Suppose we are given the distributions character-
izing the Einstein-Podolsky-Rosen data in two sets
of runs characterized by axis pairs a ~b and a2b, and
suppose those distributions satisfy the condition

$p; s(m?, m)= $p; b(m2, m)=pb(m) (Bl)
m2

required by the constraints (1.1) and (1.2) of local
realism. One can then always find a non-negative
three-axis function with the required marginals by a
simple construction similar to one used by Fine in
Ref. 8:

F- - b(mim2, m)=0, if pb(m)=0,

s(m? m2 m) =p.-, s(m i,m)p;, b (m&, m)/pb(m), if p&(m)~o
(B2)

One easily verifies that (1.4) holds, and (1.5) is
without content, since there is not enough data
available to test it. It is thus necessary to have data
from at least two orientations of each' detector to
test local realism.

Note that if one tries to use the construction (B2)
in the four-axis case, defining F;; b by (B2) with b

A
set equal to b; for i =1,2, then condition (1.4) con-
tinues to be satisfied. However condition (1.5) now
has content and is in general not satisfied, since
there is nothing in the construction to ensure that

yF; -
$ (mim2, m)= yF- - t", (mim2, m) .

(B3)

Indeed, we know that in general it is impossible to
ensure condition (B3), since we know that in general
the Clauser-Horne conditions are violated. This
limitation to the usefulness of (B2) in constructing
three-axis functions from two-axis distributions is
entirely analogous to our criticism' of Fine's
method for constructing four-axis functions from
three-axis functions.
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t this observation has no bearing on the argument that
follows, but it does indicate that there is nothing patho-
logical or contrived about our counterexample. We
show in Appendix A that a similarly "natural" coun-

1
terexample cannot be constructed for spin- —at the lev-

el of four-axis functions.
Inversion symmetry requires that p; b(m, m ')

=p; b(m~m'). In addition, p b(mmmm )

=p; b(m, m '), since a spin component of —m along
an axis —a is identical to a spin component m along a.
Thus inversion symmetry also requires that
p-"(m, m )=p. b(m, m ).
If the two-axis functions are inversion symmetric so are
their one-axis marginals. But p(m)=p(m ) requires

1 ~ . 1p(m) =p(m) = 2, in the spin- —case. This permits the

final term in (A19) to be simply —, , rather than the

sum of one-axis functions it would have to be in the
general case.

t9If there is on1y one axis b, then three-axis functions of
the required form are given for any number of axes a,
by definitions (B2) for all possible pairs a;a, .


