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A new analytical solution has been obtained for stellar models by solving Einstein’s
field equation for the spherically symmetric and static case. The variation of density is
smooth and gradual. The density remains positive under all conditions. For all finite
pressures the configurations are stable under radial perturbations. For dP/dp< 1, the
maximum mass of a neutron-star model is 4.56M ), and the surface and the central red-
shifts are 0.787 and 2.673, respectively. For an infinite central pressure the surface red-
shift is 1.575 which is greater than that for any other analytical solution with varying

density.

I. INTRODUCTION

The study of fluid spheres in general relativity
requires the solution of Einstein’s field equations.
Due to the nonlinearity of these equations it be-
comes difficult to obtain analytic solutions. Op-
penheimer and Volkoff! were the first to give a
computational solution of these equations for a de-
generate neutron gas, while in the same issue of
Physical Review, Tolman® showed the importance
of analytic solutions by putting forth eight dif-
ferent exact solutions of Einstein’s field equations.
Five of them, namely IIL, IV, V, VI, and VII, were
pertaining to the fluid spheres, and they have
found applications to physical problems. Tolman’s
solutions have been discussed in detail by Durgapal
and Pande.* The III solution corresponds to a
sphere of constant 'density,4 but for it we have
dP/dp=— . The V and VI solutions correspond
to infinite central density. In the IV solution the
value of P/p is not maximum at the center for u
(= mass/radius) > 0.25, and hence it has a limited
range of applicability. The VII solution has been
applied to the neutron-star problem,’ but it has
been found to be unstable under radial perturba-
tions.®

Though a large number of numerically comput-
ed solutions are available in the literature, the sim-
plicity and elegance of the exact solutions to give a
clear understanding of the internal structure of a
relativistic sphere cannot be denied. In view of the
shortcomings of Tolman’s solutions mentioned
above, a new exact solution is always welcome. In
this paper, we have proposed a new analytic solu-
tion of Einstein’s field equations which is free

from any of the shortcomings of Tolman’s solu-
tions.

The general assumptions made for solving
Einstein’s field equations are the following. (a)
The system is spherically symmetric and static. (b)
The space-time is everywhere regular. The origin
is taken as the center of spherical symmetry. (c)
At the center of the system e*®=1. (d) The space
is empty outside a finite region of radius a. (e) At
¥ =a, the internal solutions are continuous with the
exterior Schwarzschild solutions. That is, at r =a
we have e "M@ =¢"9=1_2y and P(r=a)=0,
where u =m /a =mass/radius of the fluid sphere.
(f) The pressure is positive and finite at all points
within the structure. (g) The density is positive
and finite at all points within the structure and
dp/dr <0. For obtaining the analytic solution
conforming to all the above assumptions, it is as-
sumed that the density is given by

p=(3C/16m)(3+Cr?) /(14+Cr?)*.

(h) The pressure and the density follow certain re-
strictions depending upon the constraints put upon
them, viz.

(i) The trace of the energy-momentum tensor is
not negative,

P<pct.

(ii) The signal cannot propagate with a speed
greater than that of light,” P <pc? and dP/dp <c?.
In some cases the speed of the signal is not given
by V'dP/dp (Ref. 8) and there will be no violation
of causality if dP/dp or P/p exceed c? in these
cases.
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(iii) The pressure at the center should be finite,
P< .

Taking the velocity of light c=1 and the gravi-
tational constant G =1, the relations between the
density p, the pressure P, and the energy-momen-
tum tensor of a perfect fluid are given by

p=T), P=—T}|=—T3=—_Tj}. (1)

II. FIELD EQUATIONS
AND THEIR SOLUTIONS

Field equations

The line element is given by

ds*=godt*+g;dx'dx’ @)
where (i, j =1,2,3)
goo=e"", gu=—eM", gp=—r?,

g3 =—rsin’0, g;=0 for ij .

Here v and A are functions of r alone. The result-
ing field equations are

—87T|=87P=e~M(dv/dr)r—'+r=3—r=2, (3)

—87T}=—8nT3=8nP
=e M S(d%v/dr?)+ 1 (dv/dr}
—+(dv/dr)(dA/dr)
+Lav/dr—disdrr], @)
87TS=8mp= e ~M(dA/dr)r—'—r=2]4+r 2.

(5)
Let us assume the density as
p=(3C/16m)(3+Cr?)/(1+Cr?)*. (6)
From Egs. (5) and (6) we get
e")‘=1—%f81rpr2dr+§
=1-(3Cr®)/2(1+Cr*)+K /r , v)

where K is a constant. For making the solution
regular at the origin we must take K equal to zero.
Thus

e r=02—-Cr?)2(1+Cr?) . (8)
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Let us now assume
Crl=x, e *=2Z, and e"=4y?, (9)

where 4 is a constant. Equations (3) and (4) can
now be expressed as

8aP/C=4Z(y'/y)—(1-2Z)/x , (10)
(4Zx2)y" +QZ'x%y'+(Z'x —Z +1)y=0, (11

where the primes denote differentiation with
respect to x. Substituting

Z=(2—x)/2(1+x) (12)

into Eq. (11), we obtain a particular solution of
this equation as

y=yi=(14x)""?. (13)

A more general solution of the Eq. (11) is obtained
as

y=yi [1+B fdx/y,-2z'/2] (14)
or

y=(1+4x3"24+B2—x)"%5+2x), (15)

where B is a constant. From Egs. (10), (12), and
(15) the expression for the pressure can be obtained
as
8P 9(1—x)(1+x)'2—B(17+14x)(2—x)'"

C  2014x)[(1+x)*?+B(5+2x)(2—x)'"]

(16)

The constants 4, B, and C appearing in the solu-
tions can be evaluated from the boundary condi-
tions given in Sec. I, assumption (¢). Thus

Ca’=X=4u/(3—4u),
B=9(1—X)(1+X)'2/(17+14X)2—-X)"%*, (17
A=(1-=2u)[ (14+X)*?

+B(5+2X)(2—X)!2]72.

III. APPLICATIONS

Some useful quantities in relativistic objects
which can be obtained by simple calculations are
the surface red-shift, the central red-shift, and the
size ay and mass my of a neutron-star model.

(a) The surface red-shift is given by

142z, =(1—2u)"12,
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(b) The central red-shift is given by
142z, =4~ V2(14+5Bv2)" !,

(c) The neutron-star model can be constructed by
considering the surface density p; =2 10'* g/cc
(Ref. 9) or by using the P vs p curve of a standard
equation of state for nuclear matter and setting the
scale of central density.!® Here we have made use
of the former method for our calculations. From
Eq. (6) we obtain

16mp,a’=3X (3+X)/(1+X)?
or

ay=13.375u"/%(9—8u)""? km
and

my=9.074u>"%(9—8u)"*M, .

The limiting values of z, z, ay, and my will be
determined from the restrictions on the pressure
and density inside the configuration.

Limitations on pressure and density

From Egs. (6) and (16) we see that the ratio of
pressure and density at the center o, is given by

o=Py/po=(9—17BV2)/9(1+5BV2) .

For o= %, we have B=3V"2/32, which corre-
sponds to a value of X=0.1712 and u =0.296 09.
The surface red-shift and the central red-shift are
0.566 and 1.474, respectively. The radius and the
mass of the neutron-star model are 18.74 km and
3.76 M, respectively. For o=1, we have

B=0, X=1, u=3.375,
z,=1.0, and z, =4.657 .
For 0= w0, we have
B=v72/10, X=1.305, u=0.4246,
z,=1.575, and z, = 0 .
The value of dP/dp can be calculated very easily.
For u <0.343 4 the value of dP/dp <1 throughout

the configuration. For u >0.343 4 the value of
dP /dp exceeds 1 inside the configuration.

IV. STABILITY

The static character of any solution is in itself
only sufficient to assure us that the solution de-

TABLE I. Some important parameters.
u o Zg Zo ay (km) m(Mg)

0.05 0.022 0.054 0.095 8.77 0.0297
0.10 0.050 0.118 0.216 12.11 0.822
0.20 0.138 0.291  0.606 16.27 2.208
02961 0.333 0.566 1.438 18.74 3.764
0.3434  0.584 0.787 2.673 19.60 4.566
0.375 1.000 1.000  4.657 20.06 5.104
0.4246 Infinite 1.575 Infinite  21.90 5.940

scribes a possible state of equilibrium, but it is not
sufficient to tell us whether or not that state of
equilibrium would be stable towards disturbances.
Now, this spherically symmetric and static config-
uration can have a relativistic gravitational collapse
before it attains a large value of central red-shift.
Hence, it is necessary to study the stability of these
configurations. The criterion to study the pulsa-
tional stability of a model is judged by studying its
behavior by introducing a radial perturbation.
Since the variation of density inside the configura-
tion is slow and smooth, we have used a variation-
al method!"!? to ascertain the pulsational stability.
It is seen that the solutions with finite central pres-
sure are stable under radial perturbation.

V. DISCUSSION

The new analytic solution given here has a finite
and positive density with a very smooth variation.
The values of z, z., ay, and my are shown for
various values of u in Table I. In the extreme lim-
iting condition o= 0, the values of u and z, are
found to be greater than the corresponding values
for other analytic solutions with varying density
(dp/dr <0). The maximum mass of a neutron star

for dP/dp <1 is 4.56 M which is just short of
the maximum mass obtained under similar condi-
tions by computations.’ The stability of the struc-
tures under radial perturbations for extremely large
central red-shifts makes this solution important for
applications to physical problems.

ACKNOWLEDGMENT
The authors acknowledge their thanks to the Ut-

tar Pradesh State Observatory, Nainital for library
facilities.




27 NEW ANALYTICAL STELLAR MODEL IN GENERAL ... 331

1], R. Oppenheimer and G. M. Volkoff, Phys. Rev. 35,
374 (1939).
2R. C. Tolman, Phys. Rev. 55, 364 (1939).

3M. C. Durgapal and A. K. Pande, Indian J. Pure Appl.

Phys. 18, 171 (1980).

4K. Schwarzschild, Sitzungsber Preuss. Akad. Wiss.
Phys. Math. K1. 424 (1916).

SM. C. Durgapal and P. S. Rawat, Mon. Not. R. As-
tron. Soc. 192, 659 (1980).

6P, S. Rawat, PhD. thesis, Kumaun University, Naini-
tal, 1981 (unpublished).

7Ya. B. Zeldovich, Zh. Eksp. Teor. Fiz. 41, 1609 (1961)
[Sov. Phys.—JETP 14, 1143 (1962)].

8G. Caporaso and K. Brecher, Phys. Rev. D 20, 1823
(1979).

9K. Brecher and G. Caporaso, Nature 259, 377 (1976).

I0R. C. Adams and J. M. Cohen, Astrophys. J. 198,
507 (1975).

11§, Chandrasekhar, Phys. Rev. Lett. 12, 437 (1964).

12B, K. Harrison, K. S. Thorne, M. Wakano, and J. A.
Wheeler, Gravitation Theory of Gravitational Collapse
(University of Chicago Press, Chicago, 1965).



