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Asymptotically flat stationary solutions of the Einstein and Einstein-Maxwell equa-
tions, including the Kerr solution, are generated from solutions of Laplace’s equation.

I. INTRODUCTION

Axially symmetric exact solutions with physical
relevance are powerful guides for better under-
standing the implications of general relativity. A
lot of work is, therefore, done in this field which
falls into the category of axially symmetric station-
ary solutions. Nevertheless, only a few such solu-
tions appear to be physically interesting. The situ-
ation for electrovac fields is not much better.

In a paper by Herlt,! several transformation
techniques have been applied to the Van Stockum
solution, and in particular the Kerr solution was
reproduced. In the vacuum case, the central prob-
lem of maintaining a real metric with proper sig-
nature remains unmanageable, and no further prog-
ress has thus far been made. However, Herlt’s
technique beautifully applies to electrovac cases,
where fewer difficulties are encountered. As re-
gards the generation technique for stationary
Einstein-Maxwell fields given by Israel and Wil-
son® and by Perjes,’ the situation is not much
better. Very few physically realistic axially sym-
metric stationary solutions of the Einstein-Maxwell
equations have been worked out their way.

In this paper we show that physically realistic
axially symmetric vacuum stationary solutions are
obtainable from solutions of Laplace’s equation by
the same combinations of transformations given by
Herlt.! A new stationary axially symmetric vacu-
um solution of the Einstein equations is presented
here starting from a solution of Laplace’s equation.
The same solution of Laplace’s equation is used as
an input to the Israel-Wilson and Perjes technique,
and another new axially symmetric stationary solu-
tion of Einstein-Maxwell equations is derived.
Thirdly, a new set of static axially symmetric elec-
trovac solutions is also presented.

In Sec. II, Herlt’s procedure is briefly reviewed
and it is shown how Laplace’s equation may be
considered to play a vital role instead of Eq. (2.2).
Section III gives the new stationary solution of

Einstein equation and also the electrovac solution
derived from the harmonic function used in the
former case. In Sec. IV, we present the new sta-
tionary solution of the Einstein-Maxwell equations
with a brief review of the techniques of Israel and
Wilson and Perjes. Our conclusions follow.

II. HERLT’S PROCEDURE

The Van Stockum metric can be written as
ds*=p~VUdp*+dz*)+2pdeadt —)(,,dt2 ,
(2.1)

and all the metric coefficients are derivable from
the solution of the single equation!

x,,,,+xa—%x,,=o : 22

Any axially symmetric stationary metric on the
other hand can be expressed in the form

ds*=f""[eMdp?+dz*)+p*d¢?]
—fldt+odp)*. (2.3)

Ernst* simplified the Einstein field equations and
showed that the metric (2.3) can be obtained from
the solution of the single equation

(EE* —1)VX=2£*VE-VE 2.4)

where &=(§ —1)/(§+1)=f+i¢. ¢ is known as
the twist potential.

Herlt has shown that if one obtains the solution
of Eq. (2.2), one can get the solution of Eq. (2.4)
and consequently f and ¢ can be determined.
After performing a series of transformations for
obtaining realistic solutions, Herlt finally has given
S and ¢ in terms of the solution of Eq. (2.2), viz.

1
(Xp) 'O +X, 0 —X

1
f=B1B: Y-F » (2.5)
p
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6=iBiB, |+ .

- +D
X p,) X, X —X

(2.6)

A subscript after X indicates partial differentiation.
X is a complex solution of Eq. (2.2). Unfortunate-
ly, all the complex solutions of Eq. (2.2), it is seen,
do not give f and.¢ real simultaneously, which is
essential for obtaining realistic axially symmetric
stationary vacuum solutions of Einstein’s equa-
tions. Herlt was able to identify only one choice of
X, which ultimately leaves f and ¢ real. This
choice is as follows:

X=AQ2+e*r +e ), (2.7)
where
ri4r=2x, ri—r,=2p. (2.8)

x and y are the prolate spheroidal coordinates and
A and A are two arbitrary real constants. Herlt ac-
tually obtained two real solutions of Eq. (2.2), and
made a complex one using e *™,

We show in the following that solutions of the
more familiar Laplace equation can be used as gen-
erating functions to obtain axially symmetric sta-
tionary vacuum fields instead of solutions of Eq.
(2.2).

(i) If we put

Xp=p¥, (2.9)
Eq. (2.2) implies
Vopttz+¥,/p=0, (2.10)

i.e., ¥ is a harmonic function which is independent
of azimuthal angle ¢ in cylindrical coordinates
(p,z,@).

(ii) Equation (2.2) implies (p_l)(p)p-{—(p“l)(z ),
=0. Hence there exists a potential { such that
Xp=p&; and X, =—p{,. The potential & is found
to satisfy Laplace’s equation.

(iii) Again, if § is a harmonic function, then so
is =¢,. In this paper we shall display 1 rather
than ¢.

In prolate spheroidal coordinates (x,y), two sim-
ple solutions of Eq. (2.10) turn out to be
1 1 and ! 1

=—, (2.11)
xX—=y I

¢=X+y r

where

p=(x2—D2(1—p)12 | z=xy. (2.12)

From Eqgs. (2.9) and (2.11) one reproduces Herlt’s
result (2.7), i.e.,

X=A[2+eMx +y)+e " Mx —p)]. (2.13)

Here A and e are two arbitrary constants, the
latter is used only to make X complex. It is seen
that the X we obtained using the above procedure
actually satisfies Eq. (2.2), while in principle it
need have satisfied only

)

op

1

pr+Xzz—;Xp =0.

From X, given by (2.13), when used in Egs. (2.5)
and (2.6), we obtain f and ¢. The solution so de-
rived is of course the Kerr solution corresponding
to

BiB: x2cos*A+y%sin’A—1
24 (x cosA+1)*+yZsin’A

f=— , (14

and

_ iB1B, —2iy sinA
24 (x cosA+1)*+pZ%sin®A

$= (2.15)

Thus the harmonic functions (2.11) have given rise
to the Kerr metric. All solutions of Laplace’s
equation, however, do not give f and ¢ real simul-
taneously, and therefore the central problem
remains where it was.

We have discovered another set of harmonic
functions which give f and ¢ real. The new sta-
tionary vacuum solution generated from this set is
given in Sec. IIL. It is interesting to speculate that
this set in combination with other known sets
might generate the Tomimatsu and Sato metric for
0=2. But this awaits further investigation.

III. STATIONARY GRAVITATIONAL
AND STATIC ELECTROVAC FIELDS

In Sec. II it was shown how a complex harmonic
function can be used to generate a stationary gravi-
tational field. The central problem lies in identify-
ing a complex solution of Laplace’s equation which
ultimately leaves f and ¢ real. We shall see that
an arbitrary real harmonic function can be used to
construct a realistic static electrovac field.

The second harmonic function in prolate
spheroidal coordinates which we have identified
for generating a stationary gravitational field is of
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the form
_xy+1l
= S . (3.1)

This solution in combination with the previous one

gives, using Eq. (2.9), |

BAx2—1)(1—y%)—A4x +y)*

X=A(x +y>+i3i;’—fyi icC. (3.2)

With the use of Egs. (2.5) and (2.6) and after

straightforward but lengthy calculations, we obtain
f and ¢; namely

(3.3)

f

(xy +1)(x +y)
(x +y)(Ax 4By +C?*+CHxy +1)*

6=28C

=B A%C(x +9)*+24C%x +p)3+C3Hx +y)*+C¥xp +1)* ’

(3.4)

It is to be noted that in the above, neither f nor ¢ is complex although X in (3.2) is complex. Ernst* has al-
ready shown that the above two potentials f and ¢ are sufficient to determine the metric (2.3) uniquely. S is
an arbitrary constant which is connected with 4 and B intimately in making the metric coefficients of (2.3)
flat at spatial infinity with proper signature. The constants B and C in Eq. (3.2) and D in Eq. (2.6) are suit-
ably adjusted to make f and ¢ real, otherwise no realistic stationary gravitational field is obtainable:

B=C=Kand D=—-1/K .

(3.5)

The above asymptotically flat stationary gravitational solution is new. f and ¢ when expanded asymptoti-

cally take the following forms:

84%(2y +A4)+(6y +1) 4.

f=—B|1+2/4x - e , (3.6)
¢ =2B{y/x*+(1/4A%3[(1+y)42—y 4y +24)]+ - - - } , 3.7
K=1.
|
These expansions show that = —1 so that f ap- f—e*, d—ilke/2)V* 3.9

proaches unity at spatial infinity (x — ). ¢ con-
tains a dipole term as well as higher multipole
terms and f contains a mass monopole term as
well as other higher multipole terms.

Thus we obtain asymptotically flat stationary
gravitational field with mass term present from a
harmonic generating function. In addition, we
know that static vacuum metrics are also deter-
mined by solutions of Laplace’s equation. There-
fore, the technique discussed is a technique which
may be used to map static gravitational fields into
stationary fields, and except in special cases there
will be no functional relationship between f and ¢.

In the following we discuss briefly the technique
of obtaining electrovac fields with an illustration
using the same solution (3.1) of Laplace’s equation.

A static axially symmetric metric may be writ-
ten as

ds’=e " [eM(dp®+dz?)+p*d¢?]
—e®dr? (3.8)
Bonnor® and Kramer and Neugebauer® discussed a
theorem which maps stationary vacuum fields into

static Einstein-Maxwell ones. It connects the twist
potential ¢ and f [Eq. (2.3)] by

with electric potential ¥ and metric coefficient e%*
of the static Einstein-Maxwell fields [Eq. (3.8)].

Equation (3.9) shows that if ¢ is originally real,
then the electric potential ¢ becomes imaginary.
Even then elimination of the imaginary term can
be achieved by redefining certain constant parame-
ters present in f and ¢. For a full discussion of
the technique one may refer to a paper by Das and
Banerji.’

In the following example we choose X to be a
real function and therefore get, with the use of
Egs. (2.5) and (2.6), f real but ¢ imaginary. f and
¢ so derived for a stationary metric are trans-
formed by (3.9) into e* and real ¢ for static elec-
trovac metric (3.8). Thus any real solution of Eq.
(2.2) or, alternatively Eq. (2.10), gives rise to an
electrovac metric. Here also in general no func-
tional relationship exists between e?* and 1.

We select for illustrative purposes

X=A(x +y)+B(xy +1)/(x +y)+C (3.10)

as a generating function which is equivalent to a
solution of Laplace’s equation, and we construct
e? and v using Egs. (2.5), (2.6), and (3.9). Thus,
we find
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. A%x )+ BAx2—1)(1—y?)

e'=—p

AXC(x +p)*+A4(c>*—B*)(x 4y’ =B C[(x*—= 1)1 —p?)+2(xy +1)?] ’
BC(x +y)xy+1)

(3.11)

¢=2B(2/k0)'/2A

The above static electrovac solution with metric
(3.8) is asymptotically flat, and mass and charge as
well as higher multipoles are present. In the sta-
tionary case no monopole term is present in the ex-
pression for ¢. There, ¢ varies as ~x ~2 at spatial
infinity, which is essential for vanishing of w at in-
finity. This property is exposed from the study of
Tomimatsu and Sato metrics.” Moreover, in the
solution given by Egs. (3.11) and (3.12), no restric-
tion on constants B and C is necessary, which on
the other hand, is necessary in the stationary axial-
ly symmetric case (3.5) to make f and ¢ real. As
it is easy to tackle the static electrovac case, several
new electrovac solutions have been given by Herlt.
But as regards stationary solutions, we get only one
such solution from his work, which is already
known as the Kerr solution. In this paper we have
presented a new stationary solution of Egs. (2.3)
and (2.4) and observe that its counterpart can simi-
larly be constructed with the following solution of
Laplace’s equation instead of (3.1):

Y=A+B/(x —y)+C(xy —1)/(x —p)* .
(3.13)

There exists a hopeful possibility of getting a series
of new stationary or electrovac fields from a com-
bination of the series of harmonic functions
presented above and other solutions already known.
A third simple harmonic function in oblate
spheroidal coordinates exists unnoticed, namely,

Y=03x%p*—x?—4dixy +y*—3)(x —iy)~>.
(3.14)

It is hoped that all these solutions of Laplace’s
equation in suitable combination may lead to very
interesting and yet unexplored stationary gravita-
tional fields.

IV. STATIONARY EINSTEIN-MAXWELL
FIELDS

Israel and Wilson? and Perjes® independently
published a method of generating a solution of the
stationary Einstein-Maxwell equations from a com-
plex harmonic function. They have shown that the
generated solution can be interpreted as the exteri-

2C(x +y)*+A4(C*—B*)(x +y)*—BC[(x*— 1)(1—p}) +2(xy +1)*]

(3.12)

[or field of a static or steadily moving distribution
of charged dust having numerically equal charge
and mass densities. Their method is summarized
below.

The stationary axially symmetric line element

ds*=f"{e¥[(dp*+dz*) +p*d¢*]}
—fldt —wdg)? | @.1)

may be constructed if we know Ernst’s potentials
&=f —PdP* —i¢p and ® in detail. f, ®, and ¢ are
considered for this investigation as functions of p
and z only. @ and ¢ are known as complex elec-
tromagnetic scalar potential and twist potential,
respectively.

Israel and Wilson and Perjes have shown that
stationary electrovac solutions can be obtained
directly from complex solutions of Laplace’s equa-
tion when mass and charge densities become nu-
merically equal. In this case &=2/y—1, where

V=0 4.2)

and V? is the Laplacian operator. Expressing ¢ in
the form

Y=1+L +iM , 4.3)
where L and M are real, we have

&=(1—L>—M?>-2iM)/[(1+L)*+M?],

4.4)
®=e'*(L +iM)/(1+L +iM) , (4.5)
¢=—2M/[(1+L)*+M?*], (4.6)

and
f=[A+LP*+M?*]"". @.7)

where « is a real constant.

After a lengthy but straightforward calculation,
® may be obtained by solving the following two
equations in prolate spheroidal coordinates:

p=(x =DV 1—pH)2, z=xy, (4.8)
wy=—2(1—y?)[ML,—(L +1)M,], 4.9)
w,=2(x*—D[ML, —(L +1)M,], (4.10)

where subscripts x and y indicate partial differen-
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tiations with regard to x and y, respectively.

The central problem therefore reduces to select-
ing a complex harmonic function. The various
metric coefficients of (4.1) can be obtained then
from Egs. (4.5)—(4.7) and (4.9) and (4.10). As an
illustration we shall select the harmonic function

l

F=x+»(x +y +472+B%xy +17]7",

__AB(1—y®) 34By+3B(1—y?) 4By—4B B

Y=1+A4(x +p)""+iB(xy + 1)(x +y)~3,
4.11)
where x and y are prolate spheroidal coordinates
and 4,B are arbitrary real constants. A lengthy
and laborious calculation gives the metric coeffi-
cients as follows:

(4.12)

o=—21—y?

2x +p)* 3(x +y)°

An asymptotic expansion of f takes the form
24 24y _ B’ 2xy

=1-£ -
Y x * x2 (x4y)?  (x+y)?

xR (4.14)
(x +y)?
This shows that f—1 when x — «, i.e., at spatial
infinity f goes to asymptotically flat form. At in-
finity, it is observed that w and & also vanish and
therefore the derived stationary Einstein-Maxwell
field is well behaved at infinity.
Perjes has pointed out that if one obtains for

large values of the radial coordinate r,

cos6

¢=1+%+U 2t 4.15)
where 7 stands for real terms of order 2 and for
imaginary ones of order » ~3, and @ is the polar an-
gle, then the derived stationary Einstein-Maxwell
field is well behaved in the sense that the derived
metric is asymptotically flat at large distance and
o and P go to zero appropriately. Our ¥ given by
Eq. (4.11) fits the above requirements. A draw-
back of the Israel-Wilson-Perjes method is that we
cannot simply switch off the electromagnetic field
and obtain thereby a purely gravitational analog.

Rotating stars take the form of oblate spheroidal
objects and therefore solutions in oblate spheroidal
coordinates are of much interest. In this coordi-
nate system two other simple solutions of Laplace’s
equation besides the one given in (3.14) may be cit-
ed, namely,

v=A4/(x —iy), (4.16)
and
Y=i(xy —i)(x —ip)~3. 4.17)

The stationary Einstein-Maxwell solution derived
from the potential (4.16) by the Israel-Wilson-

2 ap? x4y +const . (4.13)

l
Perjes method corresponds to

f=24+yIx +12 471,

d=e[(x +1)—iy]~ !, (4.18)
¢=—2[(x +17+p’]7",

o=(1—yH)(2x +1)(x2+pH~1.

This solution does not have a purely gravitational
analog, although it is well behaved in the sense
that f—1, —0, ©—0 at spatial infinity. Addi-
tional solutions in oblate spheroidal coordinates
may be derived from linear combinations of the
potentials given in (3.14), (4.16), and (4.17).

IV. CONCLUSION

No physically realistic axially symmetric and
asymptotically flat stationary gravitational solution
other than the Kerr and Tomimatsu-Sato® series
was available in the literature till a few years back.
Recently Kinnersley and Chitre,” Hoenselaers,
Kinnersley, and Xanthopoulos,'® Yamazaki!! et al.
have added a few to the list but their solutions are
more complicated than the former and therefore it
is difficult to analyze those properly. The station-
ary field given by Egs. (3.3) and (3.4) is fairly sim-
ple and no doubt constitutes an addition to the list
of stationary gravitational solutions. Moreover the
harmonic function (3.1), when used as input to
Herlt’s transformation equations (2.5) and (2.6), re-
sults in only the second example of the successful
use of Herlt’s procedure; namely, it leaves f and ¢
as real functions. It is hoped that suitable finite
combinations of the stated solutions of Laplace’s
equation may be selected and mingled with e ¥ to
give rise to the Tomimatsu-Sato series. Further in-
vestigation along these lines is suggested. With a
little effort, solutions similar to (3.3) and (3.4) may
be constructed from the complex harmonic func-
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tion
v=A(x —p) ' +iB(xy +Dx —p) 7. (5.1)

This will be the third example of a harmonic func-
tion which gives f and ¢ real. With a procedure
similar to that discussed in the previous section the
above solution (5.1), when used as input to the
Israel-Wilson-Perjes method, will yield another in-
teresting solution of the stationary Einstein-
Maxwell equation similar to (4.12) and (4.13). Of
course, other linear combinations of the cited har-
monic functions will also produce electrovac fields.
Thus Herlt’s transformation equations (2.5) and
(2.6) are very promising and they have opened up
an avenue towards generation of new stationary
gravitational fields: very little work has yet been
done and a lot remains unexplored.

The electrovac solution given by Egs. (3.11) and
(3.12) has been derived directly from a real har-
monic function by using the transformation Egs.

327

(2.5) and (2.6). Another class of electrovac fields
may be obtained from solutions (3.3) and (3.4) by a
procedure described in Ref. 7. This procedure may
lead to new solutions other than (3.11) and (3.12).

In oblate spheroidal coordinates three sets of
complex harmonic functions (3.14), (4.16), and
(4.17) will also generate stationary Einstein-
Maxwell fields when used separately or in com-
bination. We have constructed just one of them,
(4.18). In prolate coordinates we have already ob-
tained stationary Einstein-Maxwell fields given by
Eqgs. (4.12) and (4.13) from two sets of harmonic
functions. The remaining ones may be utilized
too.
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