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It is shown that the bound on entropy-to-energy ratio recently proposed by Bekenstein actual-
1

ly implies the existence of a limitation on the entropy-to-surface ratio S/3 ~ —for any bounded
4

spherical system. The implications of this on the full number of particle species that may exist
are briefly discussed.

Bekenstein recently suggested' that for any bound-
ed system with entropy S and rest energy E there ex-
ists a universal upper limit on the entropy-to-energy
ratio which reads

S/E ~ 2rrR

S/A ~
4 (2)

In fact, the physical interpretation of the general
theory of relativity requires that 1+2C ~ 0. At a
distance R from the center of the spherical system
the potential 4 becomes 4 = —E/R. Hence, R ~ 2E
which can be combined with (1) to yield (2).

The upper limit in (2) coincides with the familiar

where R is the radius of the sphere circumscribing
the system (if the system is topologically compact, R
is to be defined in terms of the system's volume) and
we have used units t = c = k = 6 = 1. Such a bound
can give considerable new insights into ordinary ther-
rnodynamics, particle physics, and communication
theory. By judiciously applying (I), Bekenstein
showed that black holes set a limitation on the infor-
mation rate for given message energy by any com-
munication system, ' and on the full number of parti-
cle species. ' Examples of fields with negative vacu-
um energy have now been adduced against
Bekenstein's bound on specific entropy. Neverthe-
less, Bekenstein himself has showed' that bound (I)
still holds if applied to a complete system.

I note first that the upper bound in (1) corresponds
to black-hole systems for which R = 2E and S = A /4.
It is easy to show that bound (I) implies necessarily
an upper bound on the entropy-to-surface-area ratio
of the form

expression S =A/4 for black holes. Thus, (2) sug-
gests some sort of unification between the thermo-
dynamical concepts for black holes and external sys-
tems. For example, one could think about a bound
T ~ ~r/2rr, where T is the surface temperature of
any spherical bounded system with "surface gravity"
Kr = 8 7r BE/ "dA ~ I/4E.

In the case of an elementary particle, it is
known ' that it cannot be bounded in a spherical re-
gion whose radius is less in order of magnitude than
the Planck length, i.e., R & 2' '. The direct applica-
tion of this bound to (2) leads to

S~nR &2m (3)

which does not set, in principle, any 2m bound on S.
%e conjecture, however, that there exists a bound

S ~2~ (4)

for individual, elementary systems —quarks and
leptons —and add reasonable arguments in favor of
(4). The main of these arguments is that the rest en-

ergy of any individual, elementary system cannot be
greater than the Planck energy:

E ~ ( —,) '~'—= —,(Planck length) (5)

which is, of course allowed by the present status of
experimental and theoretical particle physics. The
upper limit in (5) should correspond to a black hole
with minimum energy, as suggested by Hawking's
theory of radiation from black holes, according to
which every black hole loses mass until it reaches the
Planck mass, at which point it disappears in a burst of
radiation containing all species of elementary parti-
cles. Thus, such particles should all obey bound (5).
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A black hole with the Planck mass is quantum
mechanically made up of only one particle with
minimum energy ("elementary black hole" ). There
is also a cosmological argument in favor of (5). It is
that cosmological times earlier than the Planck time
(—10 4' sec) do not make physical meaning, so that
we must take the Planck temperature ( —103' K) as
the initial (maximum) temperature of the Universe. "
Thermal equilibrium at that temperature then
predicts also the Planck energy as the upper limit for
the rest energy of elementary particles.

On the other hand, a nonrotating, uncharged black
hole with rest energy E requires (even if it is con-
sidered quantum mechanically" ") a smaller deal of
information to describe it than any spherical un-

charged non-black-hole system with the same rest en-

ergy. The no-hair theorems' ensure that the specifi-
cation of E suffices for knowledge of all relevant
physical quantities —radius, entropy, temperature —of
a nonrotating, uncharged black hole. This is not the
case for a non-black-hole system for which at least
the radius (to say that T ) 2E does not suffice, of
course, to set up the radius of the system) needs to
be specified in addition to E for a complete descrip-
tion of the system. Relating entropy with informa-
tion, "we can say then that the entropy of a black
hole must be always larger than that of any closed
non-black-hole system with the same rest energy,
i.e. , S ~ 4rrE2 [note that (1) arises immediately from
this bound when it is combined with the condition
R ~ 2E]. Equation (4) then results from combining
this bound with (5). Or, in other terms, by taking
into account the quantum nature of a closed spherical
system, we cannot choose particles of arbitrarily small

energy to constitute the closed system: The mini-
mum particle energy allowed by quantum theory will

be e = R '. Hence the maximum number of such
particles that go to make up a closed system with ra-
dius R and rest energy E is ER. An estimate of the
entropy of the full closed system should be then
S = o-ER, where a- is a number of order unity or so'
which is to be interpreted as the specific entropy
(entropy/Boltzmann's constant) due to each particle
constituting the system. The parameter o- should be
calculated from a proper, full quantum theory for the
closed system; however, the value of this parameter
may be bounded by comparing the expression
S = aER with. (1). This yields bound (4) again.

Following the idea attributable to Bekenstein him-
self, ' (4) can be used to set a fundamental limitation
on the number of the elementary-particle species-
quarks, leptons, neutrinos —which may exist. Thus,
considering a baryon as a bag containing three
quarks, ' S = ln W(q, s, ) where W is the number of
permitted three-quark (antiquark) combinations cor-
responding to a baryon or antibaryon with charge q
and spin projection s„we obtain W = 3 (g 3+ 2g ), g
being the number analogous generations. From (4)
it follows then that there may be a compelling max-
imurn of five generations of quarks, leptons, and
neutrinos, all exactly analogous in structure. This
prediction is allowed by the present status of particle
physics where three such generations are already
known. It is worth noting that g = 5 is precisely the
constraint estimated from standard big-bang cosmolo-

gy for helium production, " though recent astronomi-
cal evidence and theoretical particle-physics con-
siderations have raised' some doubts about it.
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