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Eigenvalues of 4, 8, and 16 coupled anharmonic oscillators
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We present graphs of 48—96 eigenvalues of 4, 8, and 16 anharmonic-oscillator approximations

to g:4t:2 field theories for g ~ 0. The graphs show how the energy levels develop critical

behavior as the number of oscillators increases. The graphs also illustrate how the large-g

behaviors of the spectrum for Dirichlet and periodic boundary conditions differ.

INTRODUCTION

We present graphs of 48—96 eigenvalues of coupled-anharmonic-oscillator operators of the form
N N —1H'"'= H'"'(qi q~;g, a) =—X [ a'ldqq'+ -gq&'+ (3 wg )qj'1 ——X qjqj+i &q lqN

2 J~] J~]

for N =4, 8, and 16, &=0 or 1, and 0~g ~ 30. The
constant w = w(N, e) is chosen so that dmt~~(g)/
dg ~g 0 ——1, where mt '(g ) is the gap between the
lowest two eigenvalues of Hi~i (this amounts to
Wick ordering gqj ).

The operators H'"' result from a quantization (and
Wick ordering or mass renormalization) of finite
difference approximations to the classical. Hamiltoni-
an

r I/2

—, J,l, (4 i'+ 4 '+ 4 '+ g 4')dx

We have taken the lattice spacing to be 1. Dirichlet
boundary conditions correspond to & = 0 and periodic

I

boundary conditions to e = 1.
The operators H frequently appear in the phys-

ics literature not only because of their intrinsic in-
terest but also because they provide a testing ground
for methods designed to approximate the critical
behavior and particle structure of lattice approxima-
tions to local field theories.

Several recent papers devoted to moment recursion
methods for computing the eigenvalues of H "are
Refs. 1—3. A method for computing the eigenvalues
and eigenfunctions of H "that is uniformly accurate
for all g ~ 0 is described in Ref. 4 (this article con-
tains proofs of convergence and graphs of several of
the lowest eigenvalues of H"' for 0 ~ g ~ 30).
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FIG. 1. Lowest 12 eigenvalues of H (& 0) in H, J. FIG. 2. Lowest 12 eigenvalues of H (a=0) in H; J.
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FIG. 3. Lowest 12 eigenvalues of H ' (~ =0) in H, J. FIG. 5. Lowest 12 eigenvalues of H (~=1) in H,.jk.

The moment recursion method was generalized
and applied to operators of the form H in Ref. 2

by Blankenbecler, Deorand, and Sugar. H ' is also
studied in Ref. 5, where a method that is uniform in

g ~ 0 is proven to converge rapidly and graphs of
several of the lowest eigenvalues as functions of g are
given.

Variational trial functions for the ground state of
H are constructed in Richardson and Blanken-
becler, Bronzan and Sugar, ' and Pacheco. '

These trial functions were used to study the
N oo limit of the vacuum energy per particle and
the critical behavior of the two-point function.

In this paper we describe briefly a method (which
is convergent and, for each N, uniform in g ~0) for
computing eigenvaiues and eigenfunctions of H'
when N = 2", n = 2, 3, 4. This algorithm may be used
to study the limit of H" as N tends to infinity.

The main purpose of this paper is to present graphs
of the energy levels of H when N 4, 8, and 16.
These graphs are interesting because with just 16 os-
cillators many features of the infinite oscillator limit
can be seen. Some of the features that can be seen

in Figs. 1—6 are (i) the approaching critical behavior
of the mass and degeneracy of the vacuum for g
large; (ii) the formation and approaching critical
behavior of the two-particle threshold; (iii) the
periodic energy spectrum for g large is missing the
elementary particie present in the Dirichlet spectrum.

METHOD

We describe briefly the method used to approxi-
mate the energy levels of H' ' for N = 2",
n = 2, 3, 4, . . . . Details of the method are given in

Ref. 10. For simplicity we describe the Dirichlet
(e=o) case.

Let E,'"'and%', ' (q~ q') for j=1,2, . . .

denote the eigenvalues and eigenfunctions of
H (q& qz). Here E~ & E2 ~E3(N) (w) (w) (w)

and H "4J = EJ OJ . Assume we know the
eigenvalues EJ and matrix elements

x,,'' = O'J (q& qN)q
(N ~) ' (~)

x%, (q' qg)dqt dqy
(w)
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for a = 1,N (computation of these for N = 2 is ex-
plained in Ref. 5). We may compute approximations
to Ej and Xj,i

' as follows. Expand
q1',. " (q1 q2N) in the basis

(q ' (q 1
' ' ' 'qN) Pk ('qN+1 ' ' ' q2N)]

so that

q J $ Cikq ' (ql ' ' ' qN)Pk (qN+1 ' ' ' q2N)
(2N) j (N) (N)

i,k-i

Then the equation H"N' Pj = Ej Pj becomes
equivalent to the infinite-matrix eigenvalue problem

X [(E(N) ~ E (N))B
i,k-l

-X("")X(""]C' =E'"'C', ,ii kk ' j ik (2)

for i', k'=1, 2, . . . . To approximate E, just re-
place the infinite sum (2) by a finite one and numeri-
cally compute the lowest eigenvalues and eigenvec-
tors of the resulting finite-dimensional eigenvalue
problem. ' Having computed approximations to
Ej' ' we may compute approximations to Ej" ' in
an analogous manner once we have approximations
to Xj l

' . These may be obtained by truncating the
infinite sums in the identities

~ (2N, l ) ~ ~ CJ Cl y (N, l )
~i,k ii kk

i,k

This allows us to compute the lowest few eigenvalues
in each of the 4 invariant subspaces , j where for
ij =+1

Ã,;=(q ~Rq =iq and Sq =jq) .

For periodic boundary conditions (a = 1) H(N) also
commutes with T, where

Tq (qI ' ' '
qN qN+1 ' ' ' q2N)

= 'P(qN+1 ' ' ' q2N q1 ' ' ' qN)

Thus when & = 1 we compute the lowest few eigen-
values in each of the 8 invariant spaces

K,&k = (1p~R 4 =i qf, S'1p =jq1, Tq1 = k'p]

j l ~ ~ ik
I k i' k'

In practice we take advantage of the fact that H "'
commutes with the unitary operators R and S. Here

qN) =+(qN
and

S'111(q) qN) =q1(—q —qN)i

GRAPHS

Figures 1—6 were made by computing approxima-
tions to the lowest 12 eigenvalues EJ (g ) and their
derivatives BE& (g )/Bg in each of the 4 (8) invari-
ant subspaces X;,J (&;&k) for a sequence of values of
g between 0 and 30.

The eigenvalues and their derivatives were comput-
ed to graphical accuracy (= 1%). For each value of g
we formed the normalized values

E(")( )=[E(")( ) E'")( )]/M(»(0)

and plotted a short line segment whose center had
the coordinates (g, E,' (g )) and whose slope was

BE~ (g )/Bg.
The subtraction of E1 (g) is just the usual vacu-

um energy renormalization. The division by
M(")(0) has little effect because for periodic boun-
dary conditions M(")(0)= 1, and for Dirichlet boun-
dary conditions M'N)(0) converges to 1 rapidly as N
approaches infinity.

For g = 0 the graphs display the normalized eigen-
values of N coupled harmonic oscillators which are

N

Xnj [1+4 sin (j n/2N + 2) ] ' 2

j~i

[1+4 sin'(2r/2N + 2) ] 'i'

for the Dirichlet case, and

NI2-1

(n&+ i&) [1+4sin (j2r/N) ]' '+ no+ nNi2JS

for the periodic case (here nj and ij ——0, 1, 2, . . .).
The graphs show the asymptotic degeneracy of all

the energy levels as g increases. Although for finite
N the vacuum is never degenerate, the vacuum be-
comes degenerate to graphical accuracy at a sequence
of values of g that decrease as N increases.

The two-particle threshold is seen to come down
and cross the one-particle states and become the bot-
tom of the gap in the two-phase (approximately de-
generate vacuum) region.

A striking feature of the graphs is the difference
between the Dirichlet and periodic spectra for large g.
The Dirichlet spectrum has the kink (or soliton)
bound state but the periodic spectrum is missing this
particle. An analogous phenomenon occurs in the
two-dimensional Ising model as is nicely described by
O'Carroll and Schor in Ref. 11.

CONCLUSION

We have described a method for approximating the
low-energy spectrum of N anharmonic-oscillator ap-
proximations to g:p4:2 field theories. Graphs of the
spectra when N = 4, 8, and 16 were presented which
illustrated asymptotic eigenvalue degeneracy for fixed
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N as g goes to infinity. The graphs also illustrated the manner in which the vacuum becomes degenerate as N in-
creases, and the fact that the particle structure of the spectrum in general depends on the boundary conditions.
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