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c-number time-energy uncertainty relation in the quark model
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The time-energy uncertainty relation is studied for the time- and energy-separation variables
between two constituent quarks inside a hadron bounded by a harmonic-oscillator force. The
0(3,1) and O(3)-like internal space-time symmetries discussed in a previous paper are formulat-
ed in terms of covariant commutators. It is shown that the resulting commutation relations
constitute a covariant realization of Dirac’s c-number time-energy uncertainty relation.

The time-energy uncertainty relation in the form of
(A9 (AE) =1 was known to exist even before the
present form of quantum mechanics was formulated.!
This problem can be studied either with or without
reference to the Schrodinger equation.?”” Indeed, the
time-energy uncertainty relation is universal and is
expected to hold even in systems which cannot be
described by the Schrodinger equation.

In studying this uncertainty relation, we encounter
the following problems:

While there exists the time-energy uncertainty rela-
tion in the real world, possibly with the form [, H]
= —j,8 this commutator is zero in the case of
Schrodinger quantum mechanics. As was noted by
Dirac in 1927,2 the time variable is a ¢ number.
Then, is this form of the c-number time-energy un-
certainty relation universal, or true only in nonrela-
tivistic quantum mechanics?

If the time variable is a ¢ number and the position
variables are ¢ numbers, then the coordinate vari-
ables in a different Lorentz frame are mixtures of ¢
and ¢ numbers. This cannot be consistent with spe-
cial relativity, as was also pointed out by Dirac.?
These were the fundamental problems in 1927, and
today’s situation does not appear to be different.

The reason for this slow rate of progress is very
simple. While the time-energy uncertainty relation is
to be formulated from experimental observations,’
there are not many experimental phenomena which
can be regarded as direct manifestations of this rela-
tion. In fact, the connection between the lifetime
and the energy width of unstable states is the only
well-known direct application of this important rela-
tion.!"4

The purpose of the present note is to point out that
the relativistic quark model is one physical example
in which this point can be studied in detail. The
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time-separation variable between the quarks confined
within a hadron plays an important role here. While
this variable is not contained in the Schrodinger
equation, it is an interesting proposition to see
whether the uncertainty relation applicable to the
time-separation variable is the same as the currently
accepted form of the time-energy uncertainty relation
largely based on nonrelativistic quantum mechanics.!?

When we say that the time variable is a ¢ number
or write

[tH]=0, (D

we are implying that the Robertson procedure!! appli-
cable to Heisenberg’s position-momentum uncertain-
ty relation does not work here. Classically, this cor-
responds to the fact that r and H are not canonically
conjugate variables.! In quantum mechanics, the
above commutator means that there is no Hilbert
space in which ¢ and i/ act as operators.!> Howev-
er, it is important to note that there still exists a
““Fourier”’ relation between time and energy, '°
which limits the precision to (A¢) (AE) = 1.

Using the language of wave functions in the covari-
ant harmonic-oscillator model which was formulated
to explain basic high-energy features of quark-model
hadrons,® *~13 we have pointed out in our previous
paper'® that the time-separation variable between the
quarks in the hadronic rest frame exhibits the above-
mentioned form of time-energy uncertainty relation.
It was noted in earlier papers® that the parton
phenomenon is a manifestation of the relation
(At')(AE’) =1, where t' and E’ are, respectively,
the time and energy separations in the hadronic rest
frame. It was emphasized that, in spite of this rela-
tion, there is no experimental evidence to indicate
the existence of excitations along the time-separation
axis.!?
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In addition, it was pointed out repeatedly in the
literature that this form of time-energy uncertainty
relation can be covariantly combined with the uncer-
tainty relations applicable to three spatial variables.!’
This form of space-time asymmetry has been shown
to be perfectly consistent with the concept of the
0(3)-like little group of the Poincaré group for mas-
sive particles.!6 18

In this paper, we would like to summarize all these
into a commutator form. From a mathematical
standpoint, this is not a new story. We are, in fact,
quite familiar with the commutator form for vector-
meson quantization which deals covariantly with vec-
tor mesons with three spatial components.!* The
question then is whether we can use a similar form to
represent the above-mentioned time-energy uncer-
tainty relation combined covariantly with position-
momentum uncertainty.

Let us consider for simplicity a hadron consisting
of two quarks, and let x; and x, denote the space-
time coordinates for these quarks. Then the standard
procedure is to define the new variables

X=(X1+x2)/2 »

x=(x;—x2)/2V2 , 2

where X and x correspond, respectively, to the overall
hadronic coordinate and space-time separation
between the quarks. While the hadronic space-time
coordinate is specified by X, its structure is deter-
mined by the internal space-time separation between
the quarks.

Without loss of generality, we assume that the ha-
dron has definite four-momentum P, and moves
along the z direction with velocity parameter 8. In
terms of the above coordinate variables, we can write
down the ten generators of the Poincaré group and
their Casimir operators corresponding to (mass)? and
(intrinsic spin)? of the hadron.!” It has been shown
that the covariant harmonic-oscillator formalism,
while being consistent with observed high-energy ha-
dronic features,® 1*~15 provides relativistic wave func-
tions which are diagonal in the Casimir operators.'®!?
While the exact form for the hadronic wave function
is somewhat complicated, the essential element of the
wave function takes the form

U (X) = (/72" *n 1k V) V2 H, (2" ) Hi (1)

x expl—(z"+¢H1 3)
where

'=(z=-B0/(1-gH"*,
t'=(t—B2)/(1-H"2 .

In the above expression, we have suppressed all the
factors which are not affected by the Lorentz
transformation along the z axis. This is possible be-
cause the oscillator wave functions are separable in

both the Cartesian and spherical coordinate systems.
z' and ¢’ are the longitudinal and timelike coordinate
variables, respectively, in the hadronic rest frame.

In terms of the standard step-up and step-down
operators,

a,=(1/v2)(x,—d/0x*) ,
ap=(1/v2)(x,+8/8x*) ,

4

the oscillator wave function of Eq. (3) satisfies the
differential equation'’

apaty(x) = +1Dy(x) , Q)

where the eigenvalue A, together with transverse ex-
citations, determines the (mass)? of the hadron.!’

The operators given in Eq. (4) satisfy the algebraic
relation

[aura:]=_—gp,v . (6)

This commutation relation is Lorentz invariant.?®

The timelike component of the above commutator is
—1 in every Lorentz frame. This allows timelike ex-
citations. Indeed, in his recent paper,?! Rotbart dis-
cussed the covariant Hilbert space of harmonic-
oscillator wave functions in which time-like excita-
tions are allowed in all Lorentz frames.

On the other hand, there is no evidence to indicate
the existence of such timelike excitations in the real
world.!® This is perfectly consistent with the fact that
the basic spacetime symmetry of confined quarks is
that of the O(3)-like little group of the Poincaré
group.!®!® We can suppress timelike excitations in
the hadronic rest frame by imposing the subsidiary
condition!¢17-22.23

Pha ) ym(x) =0, )

where P, is the hadronic four-momentum. Then
only the solutions with k =0 are allowed, and the
commutator given in Eq. (6) is not consistent with
the above subsidiary condition.

How can we then construct a covariant commutator
consistent with Eq. (7)? In order to attack this prob-
lem, let us divide the four-dimensional Minkowskian
space-time into the one-dimensional timelike space
parallel to the hadronic four-momentum and to the
three-dimensional space-like hyperplane perpendicu-
lar to the four-momentum.?* This hyperplane accom-
modates the internal space-time symmetry dictated by
the O(3)-like little group.'®!® This leads us to con-
sider the operator

b,=a,— (P,P*/M¥Ya, . (8)
Then b, satisfies the constraint condition
Peb,=P*b. =0 , )

and has only three independent components. Thus,
for b, and b, we can write the covariant commuta-
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tion relation?
(buby ) =—gu+ PP, /M? . (10)

The right-hand side of the above expression is sym-
metric in u and v, and satisfies the relation

PH(—gu+ PP, /M) =0 . an

Therefore the covariant commutation relation given
in Eq. (10) is consistent with the subsidiary condition
of Eq. (7).

The covariant form of Eq. (10) represents the usu-
al Heisenberg uncertainty relations on the three-
dimensional spacelike hypersurface perpendicular to
the hadronic four-momentum. This form enables us
to treat separately the uncertainty relation applicable
to the timelike direction, without destroying covari-
ance. The existence of the ¢’ distribution due to the

ground-state wave function in Eq. (3) restricted by
Eq. (7) allows us to write the time-energy uncertainty
relation in the form

(A)(AE) =1 , (12)

without postulating the commutation relation. E’ in
this case is the energy separation between the quarks
in the Lorentz frame in which the hadron is at rest.
The parton phenomenon,® together with other high-
energy features in the quark model,’>!5 indicates
clearly the existence of this uncertainty relation.

As has been expected, the uncertainty relation ex-
ists between the time- and energy-separation vari-
ables in the quark model. The remarkable fact is that
this uncertainty relation is just like the one expected
in all other physical phenomena.!?

*Present address: Department of Physics, Columbia Univer-
sity, New York, NY 10027.

IE. P. Wigner, in Aspects of Quantum Theory, edited by A.
Salam and E. P. Wigner (Cambridge Univ., London,
1972).

2P. A. M. Dirac, Proc. R. Soc. London A114, 234 (1927);
Al14, 710 (1927).

3Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961);
V. A. Fock, Zh. Eksp. Teor. Fiz. 42, 1135 (1962) [Sov.
Phys. JETP 15, 784 (1962)]; J. H. Eberly and L. P. S.
Singh, Phys. Rev. D 7, 359 (1973). For some review pa-
pers on the time-energy uncertainty relation, see articles
by J. Rayski and J. M. Rayski, Jr., by E. Recami, and by
E. W. R. Papp, in The Uncertainty Principles and Quantum
Mechanics, edited by W. C. Price and S. S. Chissick (Wi-
ley, New York, 1977).

4As was pointed out by Wigner (Ref. 1), the time-energy
uncertainty relation applicable to the decay width and life-
time of unstable systems was widely known before 1927.

5For the role of the time-energy uncertainty relation in
quantum field theory, see W. Heitler, The Quantum Theory
of Radiation, 3rd ed. (Oxford Univ., London, 1954).

6The uncertainty relation applicable to the time separation
between the constituent quarks is responsible for the
peculiarities in Feynman’s parton picture universally ob-
served in high-energy hadronic experiments. See P. E.
Hussar, Phys. Rev. D 23, 2781 (1981). For papers dealing
with qualitative features of the parton picture, see Y. S.
Kim and M. E. Noz, Phys. Rev. D 15, 335 (1977); J.
Math. Phys. 22, 2289 (1981); Am. J. Phys. 51, 368
(1983). For earlier papers dealing with the dependence of
the quark-model wave function on the time-separation
variable, see G. Preparata and N. S. Craigie, Nucl. Phys.
B102, 478 (1976); Y. S. Kim, Phys. Rev. D 14, 273
(1973).

TThe uncertainty relation applicable to the time separation
between the quarks is not inconsistent with the proposi-
tion that the time-energy uncertainty is applicable only to
the time separation between two independent events. See
L. D. Landau and E. M. Lifschitz, Quantum Mechanics,
2nd ed. (Pergamon, New York, 1958).

8W. Heisenberg, Z. Phys. 45, 172 (1927).

9W. Heisenberg, Am. J. Phys. 43, 389 (1975).

10For a recent pedagogical paper on this problem, see C. H.
Blanchard, Am. J. Phys. 50, 642 (1982).

ITH. P. Robertson, Phys. Rev. 34, 163 (1929).

12E. Prugovecki, Quantum Mechanics in Hilbert Space, 2nd ed.
(Academic, New York, 1981). For an earlier review of
this subject, see G. R. Allcock, Ann. Phys. (N.Y.) 53, 253
(1969); 53, 286 (1969); 53, 311 (1969).

3For some of the latest papers on hadronic mass spectra,
see N. Isgur and G. Karl, Phys. Rev. D 19, 2653 (1978);
D. P. Stanley and D. Robson, Phys. Rev. Lett. 45, 235
(1980). For review articles written for teaching purposes,
see P. E. Hussar, Y. S. Kim, and M. E. Noz, Am. J. Phys.
48, 1038 (1980); 48, 1043 (1980); O. W. Greenberg, ibid.
50, 1074 (1982).

14For papers dealing with form-factor behavior, see K.
Fujimura, T. Kobayashi, and M. Namiki, Prog. Theor.
Phys. 43, 73 (1970); R. G. Lipes, Phys. Rev. D 5, 2849
(1972); Y. S. Kim and M. E. Noz, ibid. 8, 3521 (1973).

I5SFor papers dealing with the jet phenomenon, see T. Kita-
zoe and S. Hama, Phys. Rev. D 19, 2006 (1979); Y. S.
Kim, M. E. Noz, and S. H. Oh, Found. Phys. 9, 947
(1979); T. Kitazoe and T. Morii, Phys. Rev. D 21, 685
(1980); Nucl. Phys. B164, 76 (1980).

16D, Han, M. E. Noz, Y. S. Kim, and D. Son, Phys. Rev. D
25, 1740 (1982).

17y, S. Kim, M. E. Noz, and S. H. Oh, J. Math. Phys. 10,
1341 (1979); Am. J. Phys. 47, 892 (1979); J. Math. Phys.
21, 1224 (1980).

18E, P. Wigner, Ann. Math. 40, 149 (1939).

19For a discussion of the connection between the little group
and canonical commutation relations for quantization of
vector-meson fields, see N. Nakanishi, Prog. Theor. Phys.
Suppl. 51,1 (1972).

20For a recent attempt to explain this type of commutation
relation using the Liouville space instead of Hilbert space,
see E. Prugovecki, Found. Phys. 12, 555 (1982). See also
E. Prugovecki, Phys. Rev. Lett. 49, 1065 (1982).

21F, C. Rotbart, Phys. Rev. D 23, 3078 (1981). For a physi-
cal basis for Rotbart’s calculation, see L. P. Horwitz and C.



27 BRIEF REPORTS 3035

Piron, Helv. Phys. Acta 46, 316 (1973). See also Ref. 16.
22For early papers on this subject, see H. Yukawa, Phys.

Rev. 79, 416 (1953); M. Markov, Nuovo Cimento Suppl.

3,760 (1956); T. Takabayasi, Nuovo Cimento 33, 668
(1964). For review-oriented articles comparing various

early approaches to this problem, see T. Takabayasi, Prog.

Theor. Phys. Suppl. 67, 1 (1979); D. Han and Y. S. Kim,
Prog. Theor. Phys. 64, 1852 (1980).

23For some of the recent articles, see S. Ishida, Prog. Theor.

Phys. 46, 1570 (1971); 46, 1905 (1971); R. P. Feynman,
M. Kislinger, and F. Ravndal, Phys. Rev. D 3, 2706
(1972); J. Lukierski and M. Oziewics, Phys. Lett. 69B,
339 (1977); D. Dominici and G. Longhi, Nuovo Cimento
A42, 235 (1977); T. Goto, Prog. Theor. Phys. 58, 1635
(1977); H. Leutwyler and J. Stern, Phys. Lett. 73B, 75
(1978); Nucl. Phys. B157, 327 (1979); 1. Fujiwara, K.
Wakita, and H. Yoro, Prog. Theor. Phys. 64, 363 (1980);

J. Jersak and D. Rein, Z. Phys. C 3, 339 (1980); I. Sogami
and H. Yabuki, Phys. Lett. 94B, 157 (1980); M. Pauri, in
Group Theoretical Methods in Physics, proceedings of the
Ninth International Colloquium, Cocoyoc, Mexico, edited
by K. B. Wolf (Springer, Berlin, 1980); G. Marchesini and
E. Onofri, Nuovo Cimento A65, 298 (1981); E. C. G. Su-
darshan, N. Mukunda, and C. C. Chiang, Phys. Rev. D
25, 3237 (1982).

24For earlier discussions on this three-dimensional space, see
G. N. Fleming, Phys. Rev. 137, B188 (1965); J. Math.
Phys. 7, 1959 (1966); A. J. Hanson and T. Regge, Ann.
Phys. (N.Y.) 87, 498 (1974); N. Mukunda, H. van Dam,
and L. C. Biedenharn, Phys. Rev. D 22, 1938 (1980).

25This commutator can be translated into the wave-function
formalism. For a wave-function description of this com-
mutation relation, see M. J. Ruiz, Phys. Rev. D 10, 4306
(1974). See also Refs. 17 and 21.



