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Slowly rotating fluid spheres in general relativity
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We show that solutions of Einstein’s field equations for static fluid spheres can be immediate-
ly generalized to slow differential rotation with a particular form for the rotation function,
without solving any additional differential equations.

In a recent article! we introduced slow rotation to
some of the solutions given by Vaidya, which corre-
spond to radiating fluid spheres in general relativity.
We gave several new analytic solutions, some of
which correspond to uniform rotation and others to
differentially rotating fluid spheres. We also studied
the stationary field equations for slowly rotating and
nonradiating fluids spheres and presented a new ana-
lytic solution. In this Brief Report we will present
some additional information that will immediately al-
low one to obtain a solution to the field equations
with slow but differential rotation, once a static solu-
tion is given.

The field equations for static fluid spheres with the
Schwarzschild metric are given as?
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where P, and P, are the pressures along the radial
and tangential directions, which in general could be
different in anisotropic fluid spheres.®> The above
system of differential equations has five unknowns
and three equations. Hence, in general we need two
more relations to be supplied to complete the set.
For isotropic fluids P, = P,; hence, equating (2) and
(3) gives us a coupled differential equation in 4 (r)
and B(r) as
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With the addition of an equation of state to this sys-
tem we obtain a second coupled differential equation,
which could be solved simultaneously with (5).?

For slowly rotating fluid spheres it is well known
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that the metric is given as
ds*=A*(r)dt*— B*(r)dr? —r*(d9?+sin®0 d?)
+2r%in20Q (r)do dt 6)

where Q (r) represents the dragging of inertial
frames. In this case the field equations to be solved
are the same three equations (2)—(4) plus an addi-
tional equation to be solved for Q (r), which is given
by

Q' =16aB(P+p)(Q —w) ,
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where w(r) =dd@/dt is the rotation function of the
fluid. For a given static solution and a rotation func-
tion the coefficients in the above second-order linear,
inhomogeneous differential equation can be deter-
mined and the differential equation for Q (r) can be
solved, with the appropriate boundary conditions.

However, following Whitman’s interesting paper?
we will show that, if the metric is split up in a special
form, then any static solution can be immediately
used to obtain a slowly rotating solution with a partic-
ular form of the rotation function. We write the
metric given in (6) in the form
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where u = r%. Metric coefficients 4 () and B (r)
redefined in this way put Egs. (5) and (7) into the
following forms, respectively:
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where u =r2. As seen, any solution of ( 9 ) with a This solution can immediately be generalized to the
given equation of state is also a solution of the equa- slow-rotation case, where
tion for the dragging of inertial frames with the rota-
tion f ti t
ion function of the star equal to ()= DC 2 e/ D)
o(u) ==1/2u*(df /du) . (11) 4a(1+a)
and (13)

As an example we can take the solution for the
P = ap equation of state, which is given as'

— 2. 2a-2)/(a+1)
A(r)=clr2a/(a+l) Q(r)—C‘r o @ .

2 2
B*(r)=D/(1+a), D=(+a)'+4a , Similarly all known static solutions in the literature
o (12) can be generalized to slow differential rotation im-
P(r)= , mediately.
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