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We study the e+e ~yy amplitude in massive quantum electrodynamics in the large-s
and fixed-t limit. We compute the amplitude in the leading-logarithm and the next-to-the-

leading-logarithm approximations, to all orders in perturbation theory, and also find the
general form of the full amplitude up to any non-leading-logarithm approximation. We do
not use any transverse-momentum cutoff for our calculation. We find that, up to the next-
to-the-leading-logarithm approximation, the contribution to the positive-signature ampli-
tude is given by a single Regge pole. We find the contribution to the Regge trajectory up to
two-loop order. The contribution to the negative-signature channel is consistent with the ex-

change of a gluon and a Reggeized fermion, interacting with each other through a four-

point Reggeon vertex. The technique we have used to calculate the fermion exchange am-

plitude may also be used to calculate the vector-particle exchange amplitude in massive

quantum electrodynamics. We have calculated the gluon exchange amplitude in massive

QED in the positive- and the negative-signature channels in the leading-logarithm approxi-

mation.

I. INTRODUCTION
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FIG. 1. Process considered.

In this paper we shall study the amplitude for
fermion-antifermion annihilation into two gluons in
massive quantum electrodynamics in the limit of
very large center-of-mass energy vs and finite
momentum transfer q [Fig. 1(a)]. We also study the
nearly backward Compton scattering amplitude in
the same limit [Fig. 1(b)]. We define the positive-
and the negative-signature amplitudes as the sum
and the difference of these two amplitudes (a more
precise definition is given in Sec. II). This problem
was first tackled by Gell-Mann et al. ,

' who predict-
ed, on the basis of a one-loop calculation, that the
positive-signature amplitude behaves as

2ig P,fa(s—lm ) '«'(q I)—
Here t{

&
and fz are the external spinors, e, and e&

are the polarizations of the external gluons, m is the
fermion mass, g is the coupling constant, and a(q) is
a y-matrix function of q. They also predicted (er-
roneously) a similar s dependence of the negative-
signature amplitude, with the exponent a(q) re-

placed by —a(q).
Polkinghorne and Cheng and Wu verified Eq.

(1.1) up to two-loop orders in the leading-logarithm
approximation. They, however, could not get any
result for the negative-signature channel, since the
negative-signature amplitude does not receive any
contribution in the leading-logarithm approxima-
tion. The major difficulty in extending even the
leading-logarithm results to higher orders in pertur-
bation theory is that in r-loop order [O{(g )"+')],
individual diagrams in the Feynman gauge have
terms of order ln " 's. On the other hand, if we ex-

pand (1.1) in a power series in g, then, since
a(q)-g, the term of order (g )"+' in the expansion
will have at most r powers of lns. Thus, in order to
verify (1.1) in higher orders in g, one has to first
show the cancellation of all the terms having more
than r powers of lns in r-loop order. This was done
by the authors of Refs. 2 and 3 at the two-loop or-
der, but this becomes an extremely difficult task as
one goes to higher orders in perturbation theory.

McCoy and Wu avoided this problem by assum-
ing a hypothesis of transverse cutoff. In each Feyn-
man integral, if we cut off the transverse-momenta
integrals at some value A, then, in r-loop order, we
get terms of the form lnrs ln«A (p & r+ l,q & r). Of
course, when we set A~&v s, the logarithms of A
are converted to logarithms of s. According to the
hypothesis of transverse-momentum cutoff, in
evaluating the leading-logarithm contribution in the
r-loop order, we keep only those terms that are of
the form ln"s ln«A (q & r), but ignore all terms of the
form Ines ln«A for p &r, q &r. If we now sum the
left-over terms, all the logarithms of A cancel mi-
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FIG. 2. The factorized diagrams.

raculously, and we get a finite answer. The sum of
such terms then gives the leading Regge behavior
(1.1). There is, however, no justification for throw-

ing away terms of the form lrA In~A (p, q & r), since
thev may contain as many as 2(r —1) logarithms of
s when the cutoff A is removed. If the transverse
logarithms do not cancel, these apparently nonlead-
ing terms may completely upset the leading-
logarithm result. McCoy and Wu also calculated
the imaginary part of the first nonleading loga-
rithms using the same hypothesis.

This problem was tackled by Mason' in another
clever way. He showed that, if, instead of working
in the Feynman gauge, we work in the Coulomb
gauge, then, in low orders in perturbation theory,
the leading-logarithIn contribution comes from the
factorized diagrams of the form shown in Fig. 2. In
the Coulomb gauge, the individual Feynman dia-

grams contain 2r powers of lns in r-loop order;
hence, apparently, the behavior of the individual
terms is worse than that in the Feynman gauge.
However, if we assume that only the factorized dia-

grams contribute in the leading-logarithm approxi-
mation, then the constraint that the final result must
be I.orentz covariant immediately leads to the result
(1.1). Mason, however, could not show the factori-
zation of the amplitude in the leading-logarithm ap-
proximation beyond the two-loop order. As a result,
he could prove (1.1) in the leading-logarithm ap-
proximation, only up to the three-loop order.

Attempts have also been made to show that the
Regge behavior holds for the gluon and the fermion
exchange reactions in non-Abelian gauge
theories.

In this paper, we shall prove the cancellation of
the double logarithms in perturbation theory,
without assuming any transverse cutoff, and show
how to systematically calculate the amplitudes for
the processes shown in Fig. 1 in the leading-
logarithm, next-to-the-leading-logarithm, second-
non-leading-logarithm, . . .approximations. We
shall illustrate the method by calculating the contri-
bution to the positive- and the negative-signature
amplitude in the leading-logarithm and the first-
non-leading-logarithm approximation (here by first
nonleading logarithm we mean that in r-loop order
we keep terms carrying r —1 powers of lns). We

find that the sole effect of the first nonleading loga-
rithms in the positive-signature channel is to give an

O(g ) contribution to the trajectory function a(q)
and some overall multiplicative constant, indepen-
dent of s, without changing the form of (1.1). The
contribution to the negative-signature amplitude
may be interpreted as due to the exchange of a Reg-
geized fermion and a gluon in the t channel, in-

teracting with each other through a four-point Reg-
geon vertex. We have expanded our results in
powers of g and compared them with the results of
explicit calculations by McCoy and Wu up to the
four-loop order. Our results for the leading-
logarithm terms and the imaginary part of the first-
non-leading-logarithm terms agree with the results
of McCoy and Wu. The real part of the first non-
leading logarithms, which gives rise to the O(g )

term in the trajectory function, was, however, not
calculated by McCoy and Wu. This is a new result.
We have also calculated the asymptotic behavior of
the gluon exchange amplitude in the positive- and
negative-signature channels in the leading-logarithm
approximation using the same method. Also, as we
have mentioned earlier, our approach provides a sys-
tematic way of calculating the amplitudes up to any
nonleading logarithms. The techniques developed in
this paper are in no way limited to Abelian gauge
theories, and may be generalized to non-Abelian
gauge theories for gluon and fermion exchange am-
plitudes.

The various stages involved in our analysis are as
follows. In Sec. II we specify the kinematics, the

gauge, and the renormalization procedure that we
shall be using throughout this paper. We work in
the Coulomb gauge. Since the annihilation and the
Compton scattering amplitudes may be analyzed in
the same way, we concentrate on the annihilation
amplitude. We choose a frame in which the external
fermion and one of the outgoing gluons move with

very large momenta p, and k„respectively, in the
+Z direction, and the external antifermion and the
other outgoing gluon are moving with very large
momenta pb and kb, respectively, in the —Z direc-
tion. In Sec. III, we analyze the contribution to the
Feynman diagrams, contributing to the amplitude,
from different regions of integrations in the loop
momentum space. For this we use a power-counting
method developed by Sterman. " We find that if we
neglect all terms that are suppressed by some power
of m l~s, then, the momentum-space region, which
contributes to the amplitude, consists of a connected
set of lines moving along the Z axis with large mo-
menta, a connected set of lines moving along the
—Z axis with large momenta, and a set of soft lines
with all components (q, exchanged between the
two oppositely moving jets. The factorized dia-
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grams of Fig. 2 are special cases of this, where only
one soft-fermion line is exchanged between the two
jets. Using this picture, we express the full ampli-
tude as a sum of convolution of two Green's func-
tions G'"' and F'" '. G'"' is a Green's function with
an on-shell fermion line carrying momentum p„an
on-shell gluon line carrying momentum k„and a set
of n soft gluons and a soft-fermion line as its exter-
nal lines. Similarly, F'" ' contains an on-shell anti-
fermion line carrying momentum pb, an on-shell
gluon line carrying momentum kb, and a set of soft
gluons and a soft-fermion line as its external lines.

In Sec. IV, we study the properties of the Green's
functions G'"'. F'" ' may be analyzed in an exactly
similar way. We derive various relations between
the G'"'s. In particular, we study the variation of
6'"' under an infinitesimal boost along the Z axis;
this gives us some nontrivial relations among the
G'"'s. We show in Sec. V that using the relations
derived in Sec. IV the full amplitude may be ex-
pressed as a sum of the convolutions of the func-
tions I'"' and 4'" ' in the transverse-momentum
space, where the functions I '"' and 4'" ' are defined
in terms of G'"' and F'" ', respectively. In Sec. VI
we show that in r —loop order, I'"' can have at
most r logarithms of p,+Im and 4'" ' can have at
most r logarithms of pb Im This e.ssentially shows
the cancellation of double logarithms, so that only
the factorized diagrams contribute to the amplitude
in the leading-logarithm approximation, and only
the factorized diagrams and the diagrams which
have a one-gluon —one-fermion intermediate state in
the t channel contribute in the next-to-the-leading-
logarithm approximation, and so on. In Sec. VII,
we show, how with the help of the equations derived
in Sec. IV, we can systematically compute the
asymptotic behavior of the functions I'"' and 4'" '.
In Sec. VIII we explicitly evaluate the contribution
to the amplitude in the leading-logarithm and the
first-non-leading-logarithm approximation, using
the general method developed in Sec. VII.

We summarize our results in Sec. IX.
In Appendices A and 8, we prove some of the

technical results not proved in the text. In Appen-
dix C we show how our formalism may be applied
to study the gluon exchange processes in the Regge
limit. We find the expression for the fermion-
fermion scattering amplitude in the odd-C-parity
and the even-C-parity channels in the leading-
logarithm approximation.

II. KINEMATICS AND GAUGE

We shall consider the process of fermion-
antifermion annihilation into two gluons [Fig. 1(a)]

q =(O, q&, qi, O),

p, =((p'+m'+a'q )'~', —aq&, —
aqua, p),

ka =pa+q

a is determined from

2 2 2 2-2
m +a q =p +(1—a) q

(2.1)

(2.2)

We take the limit p,p'~ oo at fixed q. Thus the
particles labeled a move with large momenta along
the positive Z axis, while the particles labeled b
move with large momenta along the negative Z axis.
In this limit, we have

s =(P.+Pb)'=4PP'
2 -2t=q = —q

(2.3)

(2 4)

In this paper we shall consider the case of tran-
versely polarized gluons only. We shall compute the
amplitudes for the processes shown in Fig. 1 in an
Abelian gauge theory with massive vector bosons.
Such a theory is renormalizable' and also gauge in-
variant, in the sense that we may add any term of
the form (u"k'+u'k")l(k p, +ie) to th—e gluon
propagator, without changing any physical scatter-
ing amplitude, provided we include an extra wave-
function renormalization factor in the external fer-
mion lines (here u is any vector).

The amplitudes for the processes shown in Fig. 1

may be expressed as y-matrix functions of s, q, and
the polarization vector of the external gluons,
sandwiched between the external Dirac spinors. If
A

~ and Az are these y-matrix functions for Figs. 1(a)
and 1(b), respectively, we define the positive- and the
negative-signature amplitudes as

2-+=Hi+32 . (2.5)

The amplitudes are calculated by calculating the
sum of all the Feynman diagrams, including self-
energy insertions on external lines, and then dividing
it by the wave-function renormalization constant for
each of the external lines. The renormalization mass
is chosen to be of order m, p, q.

The convention about the y-matrices and the

and the backward Compton scattering amplitude
[Fig. 1(b)] in the limit of very large center-of-mass
energy and fixed momentum transfer. Let m and p
denote the physical masses of the fermion and the
gluon, respectively. We choose a frame in which
different momenta, shown in Fig. 1, are as follows:

p, =((p +m +a q )'~,aq), aqua, p),
pb ——((p' +m +a q )', —aq&, —aqz, —p'),
ka =pa —q~ kb =pb+q ~
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external spinors are the same as those used by Bjork-
en and Drell. ' We define

y'- =y'+r' (2.6)

For any four-vector k we define

ki ——(O, k', k,O), k+-=ko+k' . (2.8)

Then,

(y+)'=(y )'=0, Iy+, y I=4,
Iy-+, y'I =0, i =1,2.

(2.7)

We choose to work in the Coulomb gauge, in
which the unphysical longitudinal degrees of free-
dom are absent from the gluon propagator. The
propagator of a gluon, carrying momentum k, is
given in this gauge by

k k"+k k' —k k'
iNi—"(k)/(k p+—iE) = i g-""—

k.k
(k —p +lE), (2.9)

where

k=(O, k) . (2.10)

For future reference, we shall list the various
components of N below:

N++ =N = —k+k lk
N+ =N +=(—2ki +k+k )/( —k ),

(2.11)
N'J=g'1+k'kj/k, ij =1,2,
N+ '=N' +=-+(k+ —-k )k'/2k, i =1,2 .

III. ANALYSIS OF FEYNMAN GRAPHS:
POWER COUNTING

In this section we shall study the contribution to
the Feynman integrals, contributing to the ampli-
tudes under consideration, from different regions of
integration in the loop momentum space, and identi-
fy the important regions of integration that contri-
bute to the amplitude in the s~ ao, t-fixed limit, in
the leading power in s. We follow a method
developed by Sterman. " We scale all the masses
and momenta involved in this problem by Vs, so
that in the s —+ op limit, the problem reduces to the
scattering of finite-energy massless particles at zero
momentum transfer but finite c.m. energy. The
powers of lns will now appear as powers of ln(1/M),
M being some mass of the order of the masses of the
particles involved, scaled by vs. The analysis then
reduces to the investigation of the singular structure
of the integral in the m, p, ,

~
q ~

~0 limit.
The singularities of a Feynman integral come

from those regions of integration in the loop
momentum space where the integ rand becomes
singular due to the vanishing of some of the denomi-
nators. However, in order that the integral becomes
singular, it is not enough to get a singular point of
the integrand. The variables of integration must
also be trapped at the singular point. Otherwise by

p
A

4k4~
A C 4k

Pb A'

(a)
C "b Pb~ A

(b)
kb~

FIG. 3. Two types of reduced diagrams which may
contribute to the amplitude. Here the blob marked plus
contains lines moving parallel to p„ the blob marked
minus contains lines moving parallel to pb, and the lines

inside blob S, as well the gluons coming out of it, carry
soft momenta. Also in (a), the exchange fermion line BB'
carries soft momenta.

I

deforming the contours of integration in the com-
plex plane, we may move away from the singular
point. Singular points, where the integration vari-
ables are trapped, will be called the pinch singular
points of the integral. The pinch singular points of
a Feynman integral may be found out by standard
analysis. "' Following Ref. 11 we define the fol-
lowing regions of integration in the momentum
space.

(1) A momentum k is called collinear to p, if
k+-p,+, kg-A, ' p,+, and k -Ap,+, k bei g a
number small compared to unity.

(2) A momentum k is called collinear to pb, if
k -pb k~-A, pb and k -Apb ~

(3) A momentum k is called soft if k&-A, Ws for
every p,

(4) A momentum k is called hard if k"-~s for
every p.

With every singular point, we may associate a re-
duced diagram, which is obtained by contracting all
the hard lines at the particular singular point. As
was shown in Ref. 14, and generalized for massless
particles in Ref. 11, the reduced diagram for a pinch
singular point must describe a real physical process,
each vertex of the reduced diagram describing a real
space-time point. According to this result, the two
types of reduced diagrams that may contribute to
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P ~ k &P-I k *k
FI a f F3 F)

kF

the process we are considering are as shown in Fig.
3. The blobs marked plus and minus contain lines
that are collinear to p, and pb, respectively. We
shall call these blobs positive and negative jets,
respectively. The blob marked S, as well as the lines
coming out of S, are soft lines. For a real physical
process, two oppositely moving jets may interact
only through the exchange of soft lines [Fig. 3(a)],
or they may actually meet at a single point in
space-time, besides exchanging soft quanta [Fig.
3(b)]

The soft-loop momenta are usually pinched by the
double poles in the soft denominators
(k p+—ie) ' [(k m+i—e) ' for a soft-fermion
line]. However, the soft-loop momenta may also be
pinched by the singularities of the jet lines (jet lines
have the same meaning as collinear lines). For ex-

ample, in Fig. 4, consider the region where kz&, k+2,
kF3, and kF4 belong to the positive jet, pb+l, be-
longs to the negative jet, and l, and q —i, are soft.
lF is a jet loop momentum and ls is a soft-loop
momentum. The denominators of the lines kF4 and
k+3 give rise to singularities in the ls plane at

(kF2+ is q)z +m —ir-
is = —kF2,

(kF2+ is )+
(3.1)

(kF& —l s)q +m le-
+kF J(k„—t, )+

ls =—

respectively. In the region considered, (kF &)j,
(kF2)q, lg, k~~, kpq, m, and q are small (when scaled
by vs), and kg~ and k/2 are finite and positive.
Thus ls is pinched at the origin between these two
poles. In an exactly similar way, the plus com-
ponent of the soft lines, attached to the jet collinear
to pb, may be pinched between the two jet lines.
The importance of these extra pinches will become
clear later. It will allow different components of
soft momenta to scale differently, e.g., instead of
having

~

k"
~

-A,~s, we may have
~

k+ ~,

)
k j (

—cr~s and
[
k

j
—A,v s, where A, &&cr && 1.

Now that we have found the pinch singular points
of the Feynman graphs under consideration, we
shall use a power-counting method, developed in
Ref. 11, to estimate the degree of divergence of the

b b+ ~a kb

FIG. 4. Illustration of the pinching of soft-loop mo-
menta by the jet lines. kF s are finite momentum lines, l,
and (q —l, ) are soft lines. lF is a finite loop momentum,

l, is a soft loop momentum.

integral near a pinch singular point. We shall brief-

ly point out the main ideas that go behind this
development; for more details the reader is referred
to the original paper. Let us consider a line carrying
momentum k, which is a part of the positive jet. In
the massless limit, its Feynman denominator is
given by k+k —kz +is. Since the jet line is mass-
less, and moving close to the +Z direction, we have
kj-0, and k =0. Since the denominator depends
linearly on k and kj, we expect to obtain max-
imum divergence when k and kj scale to zero at
the same rate. Let us call k the common scale of all
the minus components and the square of the trans-
verse components of the positive jet momenta. Then
for each jet line we get a factor of A, '. The integra-
tion volume for each jet loop scales as A, (one factor
of A, due to the minus-momentum integration and
one due to the transverse-moments integrations).
The fermion numerators as well as the N""(k) fac-
tors from the gluon propagators may give rise to
some extra powers of A, in the numerator. As was
shown in Ref. 11, for each three-point jet-gluon-jet
fermion vertex, we get at least a factor of i(,

'~ .
Let us ignore the presence of the soft lines for the

time being and estimate the degree of divergence
from the jet lines and jet loops only. We can esti-

mate the degree of divergence from the positive jet
and the negative jet separately. We shall concentrate
on the positive jet only, power counting for the neg-

ative jet may be carried out in an exactly similar
way. We first identify three special points on the jet
in Fig. 3, the point 3, where the external fermion
breaks up into two or more jet lines, the point C,
where two or more jet lines meet to produce the
external gluon, and the point B, where either the soft
exchange fermion line leaves the jet [for reduced dia-

grams (RD's) of type Fig. 3(a)], or the positive jet
meets the negative jet [for RD's of type Fig. 3(b)].
Let y, 5, and e be the number of positive jet lines at-

tached to the contracted vertices A, C, and 8, respec-

tively; j and i be the number of jet lines. and jet loops
in the positive jet, respectively; and x~ be the num-

ber of internal vertices of the positive jet with a jet
lines attached to it (vertices A, B, and C are excluded
in counting x ).

As we have seen before, j jet denominators contri-
bute a factor of (A, ') 1, while i jet loops contribute a
factor of (A, ) . Let us define the number nz(nc)
such that nz(nc) is —, if 3 (C) is a three-point vertex

and is zero otherwise. Total suppression from the
numerator factors then goes at least as

(A,
'

)
" '. The total power d of A,

' in the in-

tegral then satisfies the inequality

d &j—2l —(nq +nc+x3) 1'2 . (3.2)

Now,
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j = —, Q ax + —,(e+y+5) .
a&3

(3.3)

The total number of vertices v in the positive jet
(including A, 8, and Q is

U=gx +3.
a&3

Euler's identity tells us that

l=j —v+1 .

Using (3.3) to (3.5) we may write (3.2) as

(3.4)

(3.5)

d (— —, g (a—4)x + 2 e+ , y+nz-
a&5

1
—,Sync —4 (3.6)

Now, if y=2, nz ———,. If y~2, n&
——0. Thus,

( , y+n—„)&—, .

Similarly,

( —,5+nc)) —, .

Also,

g (a —4)x~ &0 .
a&5

Hence,

d&0

(3.7)

(3.8)

(3.9)

(3.10)

which shows that the contribution from the positive
jet is at most logarithmically divergent. The equali-

ty sign in (3.10) is satisfied only if (1) x~=0 for
a &4, (2) y, 5=2 or 3, and (3) @=2. Also we must
choose the numerator factors in such a way that
they do not have more than nz+nc+x3 powers of

This means that we have to choose as many
p+y terms from the fermion numerators and as
many yi terms from the gluon-fermion vertices as
possible. This is because if we look at the expres-
sions (2.11) for Ni'"(k), we see that N+, N++, and
N -A, , N '-A, '~, and N'J--l (i,j=1,2) if k is a
collinear momentum. Hence for each y+ or y at
the gluon-fermion vertex, we get a suppression fac-
tor of A,

'~ from the gluon propagator. Amongst
many things, this implies that in the chain of y ma-
trices on the fermion line inside the positive jet, the
leftmost longitudinal y matrix (longitudinal plus or
minus) must be a y . There may of course be trans-
verse y matrices to the left of this y

' matrix, but
there is no y+ to the left of this y matrix.

Let us now compare the contribution from the
RD's of the type shown in Figs. 3(a) and 3(b), ig-

noring the presence of soft lines, except for the sin-
gle fermion exchange line in Fig. 3(a). In both the
figures, the two jets give logarithmic divergence
(d=O). However, in Fig. 3(a), we have an extra
soft-fermion line which gives a contribution of
i/(g —m). Such terms are not present in RD's of
the type shown in Fig. 3(b), i.e., the i/(g —m) factor
is replaced by a factor of order I/v s. Thus, since
we are interested only in terms contributing in the
leading power of s, RD's of the type shown in Fig.
3(a) are the only ones we shall be interested in. This
conclusion does not change even after we attach
soft-gluon lines to the jets, since, as we shall see, the
presence of soft gluons does not increase the degree
of divergence of the integral.

Let us now consider the effect of attaching soft
lines to the reduced diagram. First, let us ignore the
pinching of soft momenta by jet lines (as was illus-
trated in Fig. 4). Then all components of soft mo-
menta scale together for maximum divergence. Let
us call this scale o. Let us now consider the effect
of attaching one end of a soft-gluon line to a jet and
the other end to a soft-fermion line (say). The gluon
propagator gives a factor of o, the extra soft-
fermion denominator gives a factor of 0 '. If
0. &A, , then the extra jet denominator gives a factor
of A, '. The soft-loop integration volume gives a
factor of cr . Thus the net extra factor goes as
o A, '0 -o./A, , which gives a suppression unless
O-A, . If, on the other hand, cr&A, , then all the jet
denominators, through which this soft momentum
flows, scale as 0 ' instead of A, ', and there is again
an extra suppression. The only way we can avoid
the extra suppression is to keep 0-A, . A similar re-
sult also holds for soft-gluon lines exchanged be-
tween the two jets. In order to avoid any extra
suppression factor from the jet numerator due to the
attachment of the soft lines, the soft-gluon lines
must attach to the positive jet through a three-point
y+ vertex and the negative jet through a three-point

y vertex. Also, not more than one soft gluon
should be connected to the jet at a point (in a re-
duced diagram, we can, in principle, have many
lines attached to the same vertex), otherwise we lose
some jet denominators that we could have gotten by
attaching them to different points of the jet. Final-
ly, one can see by simple dimensional analysis that
soft fermions attached to jet lines produce extra
suppression factors", hence we do not have any oth-
er soft-fermion line attached to the positive or the
negative jet, except the soft exchange fermion line.

At this point, one may ask the following question:
How small should the momenta of the soft lines be?
To answer this, let us note that when soft exchange
lines are present, the factor I/(g —m) from the ex-
change fermion line is replaced by some term of or-
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der I/ovs. Thus, in order to get a contribution in
the leading power in s, we must keep the mornenta
(cri/s ) of the exchange lines to be of order q. Other
soft lines, which are attached solely to the positive
jet or solely to the negative jet, may have their mo-
menta lying anywhere between rn and v s.

Let us now consider the effect of pinching the
soft momenta from the jet lines. As we have seen
before, if a soft line of momentum k is attached to
the upper jet, then k may be pinched between the
two jet denominators and scale as A, , while the other
components of k may be larger (-0 say). If we now
again consider the effect of attaching one end of
such a soft line to a jet line, and the other end to a
soft fermion line, the extra contribution due to the
extra soft denominators goes as 0, while the extra
jet denominator gives a factor of k '. The integra-
tion volume due to the extra soft-loop integration
goes as cr ATh, u. s there is no extra suppression fac-
tor. A similar result holds when the two ends of the
soft line are attached to the two jets. This result
holds as long as the transverse components of the
soft momenta are less than the transverse com-
ponents of the jet momenta, i.e., o &A, '~ . As before,
for the exchange lines 0 must be of order q/vs.
This shows that the minus components of the mo-
menta of the exchange lines, attached to the positive

I

Po
G

kn' n'

q
—Pk

l(i( '-i *
I

~(
p b

(a) (b)

FIG. 5. The Green's functions G'"' and F(" '.

jet, , and the plus components of the momenta of the
exchange lines attached to the negative jet, may go
down to Ws Xq /s-rn /v s, without changing the
degree of divergence of the integral, while the trans-
verse components of the momenta must be of order
q.

The above analysis gives us the regions of integra-
tion which contribute to the amplitude in the lead-

ing power in s. Let us now define by
G'"'(p„q, e„k,, . . . , k„) and F'" '(pi„q, &I„
ki, . . . , k„' ) the Green's functions shown in Figs.
5(a) and 5(b), respectively. Here, q, ki, . . . , k„, and
k i, . . . , k„' are all soft momenta. G'"' and F'" ' are
one-particle irreducible in the external soft-gluon
and the soft-fermion lines. In G'"', the external soft
gluons carry polarization —,(1,0,0, —1); in F'" ', the
external soft gluons carry polarization —,(1,0,0, 1).
Then the contribution from an RD of the type
shown in Fig. 3(a) may be written in the form

J d I i d 1„F'"'(pi„q, ei„k'i, . . . , k(„))S(q, I i, . . . , I„)G'"'(p„q,eg, k„.. . , k„) (3.11)

p p

Pb~
(0)

kb~ Pb~

FIG. 6. Two typical RD's contributing to the ampli-

tude. The broken lines are soft lines.

if the momenta inside the positive and the negative
jets in Fig. 3(a) are fully integrated over. In (3.1 1),
li, . . . , l„are the n, independent soft-loop momen-

S

ta, k &, . . . , k„' are the rnornenta of the n' soft lines
attached to the negative jet, k&, . . . , k„are the mo-
menta of the n soft lines attached to the positive jet
(k s and k 's are linear combinations of the 1 s),
and S is the total contribution from the soft numera-
tor and the denominator factors. Now, by fully in-

tegrating over the internal loop rnornenta of F and
G, we include some extra contribution in (3.11). For
example, if we take the RD of Fig. 6(a) and fully in-

tegrate over the internal loop momenta of the posi-

I

tive and the negative jets, we also include the contri-
bution from the RD of Fig. 6(b). However, these ex-

tra contributions may also be expressed as an in-

tegral of the form (3.11). As a result, the sum of all

the Feynman diagrams in the leading power in s
may be expressed as a sum of expressions like (3.11).
A prescription for systematically expressing the full
amplitude in terms of integrals of the form (3.11) is

given in Appendix A using the "tulip-garden" for-
malism of Collins and Soper. ' In each of these in-

tegrals, the integrations over the I s lie only in the
soft region.

In general, we gain two powers of lns for each

loop integration in a Feynman diagram, one due to
the collinear divergence, and the other due to the
soft divergence. Thus, from an r-loop graph, we can

get a maximum of 2r powers of lns. The nonfactor-
ized diagrams, however, lose some of the logarithms,
since, according to Fig. 3(a), there must be one soft-
loop momentum, which is constrained to be of order

q, and hence, cannot produce a lns term after in-

tegration. Only the factorized diagrams of the form
shown in Fig. 2 do not need to have any soft-gluon
exchange and can have 2r powers of lns in r-loop or-
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der. But as already mentioned in the Introduction,
explicit calculations " in low orders in perturbation
theory show that, when we sum the contribution
from all the Feynman graphs, all the double loga-
rithms cancel, and the largest term in the r-loop or-
der is proportional to ln's. Hence we should define
the leading-logarithm approximation as the sum of
terms with not less than r logarithms of s in r-loop
order. Then we must consider the contribution from
the factorized as well as the nonfactorized diagrams,
even in the leading-logarithm approximation.

In (3.11), if we first integrate over the internal
loop momenta of G'"' and F'" ', and look at the in-
tegrand as a function of I s and the external mo-

I

menta, the potential sources of the 1n(s/m ) in the
final integral are the following. There will be expli-
cit logarithms of (p,+/m) from G'"' and (pb /m)
from F'" '. Besides these logarithms, since the in-
tegral receives contribution from small-k; and
small-k + regions, there may be logarithms of
m lk; and m lk + present in G'"' and F'" ' respec-
tively, which are converted to logarithms of p,+/m
and pb lm, respectively, after the k; and k + in-
tegrals are done. Thus the analysis of the loga-
rithms seems to be a complicated multivariable
problem. However, we shall show in Sec. V that ex-
pression (3.11) may be expressed as a sum of in-
tegrals of the form

g f1 kii d k„id k'ii d k„'iC'" '(pb„, q, eb, k'ii, . . . , „'i)
n, n'

xS'" " '(q, k„, . . . , k„„k'„,. . . , k„', )r'"'(p. ,q, ~.,k„, . . . , k„,), (3.12)

where

(n)(p. ,q, a&kll& kgb)

~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

M M
dk i f dk„G'"'(p„q, e„ki, . . . , k„,kii, . . . , k„i,k i+ ——0, . . . , k„+=0)

and

(pb&'q&~b&k il& ~ & k&&'i )
M M=f dk', + f dk„'+F'" '(pb&q, eb, kI+, . . . , k„'+,k', i, . . . , k„'i,k'i ——0, . . . , k„' =0),

(3.13)

(3.14)

where M is any arbitrary parameter of order m. The
final result is independent of the choice of M, al-
though, in (3.12), O'" ', S, and I'"' may individually
depend on M. In (3.13) and (3.14), instead of cutting
off the k; and k&'+ integrals sharply at M, we could
also have defined I'"'s and 4'" 's as integrals of
6'"'s and F'" 's with a smooth cutoff on the k;
and k + integrals. S is a calculable function of its
arguments. After we prove (3.12), the analysis of
the s dependence of the full amplitude will essential-
ly reduce to the analysis of the p,+ and pb depen-
dence of I'"' and C&'" ', respectively.

IV. STUDY OF G'"'

We have seen in Sec. III that the study of the
fermion-antifermion annihilation amplitude in the
Regge limit reduces to the analysis of the Green's
functions G'"' and F'" '. For definiteness, we shall
limit ourselves to the study of 6'"', since F'" ' may
be studied exactly in the same way. In Sec. IV A we
shall study the behavior of 6'"' when the minus
component of the momentum of one of the external
soft gluons is of order m. In Sec. IV B we shall find
the change in G'"' under an infinitesimal boost
along the Z axis. This will later be useful to us to

I

derive a differential equation involving the Green's
functions. In Sec. IV C, we shall analyze the depen-
dence of 6'"' on the plus components of the external
soft momenta.

A. Behavior of G'"' when the minus component
of one of its external soft momenta

is of order m

K (k)=p, k /(p, k iE), —

6 i»( k) g
Ao ~i cr( k)

(4.2)

(4 3)

The E gluon carries a polarization proportional to
k&. Hence, when we sum over all insertions of the
K gluon to G'"', the E gluon decouples from the rest

Let us consider the Green's function
6'"'(p„q,e„ki, . . . , k„), and let us assume for de-
finiteness, that k„ is of order m. Following a tech-
nique due to Grammer and Yennie, ' we decompose
the y+ vertex, at which the nth gluon is attached to
the jet line, as

igy+/2—= ig[6+ (k„)+E—+ (k„)]y l2,
(4.1)

where
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1'0

FIG. 7. Sum over all insertions of the K part of the nth
gluon.

FIG. 8. Regions of integration contributing to the 6
part of the nth gluon. All the lines inside the blob S, as
we11 as the gluon lines coming out of it, are soft.

of the diagram due to the Ward identity, and the
contribution has the form

G'" "(p„q,e„k&, . . . , k„&) (4.4)k„—ie

k'+ =yk+(1+P),
k' =yk (1—P),
kq ——kq,

(4.5)

which is graphically represented as in Fig. 7. The
circled vertex in Fig. 7 carries a factor of
—g/(k„i e)—

For the 6 part, we see that 6+ is identically
zero . Hence we cannot get a y+ term at the vertex
where the 6 gluon is attached inside 6'"'. From the
analysis of Sec. III, we know that the soft gluon
must attach to the jet gluons through a y+ vertex.
Thus the fermion line to which the G gluon is at-
tached cannot be a jet line; hence it must be soft.
Thus, if k„ is of order m, and we consider the con-
tribution from the G part of the nth gluon, the re-
gion of integration, which will contribute to the am-
plitude in the leading power in s, looks like Fig. 8.
The crossed vertex represents a 6 vertex. This pic-
ture, however, is not valid if

~
k„~ &&m, since then

the large factor k~/k in G+ may compensate for
the suppression due to the attachment of the G part
to a jet line through a yz vertex.

B. Variation of 6'"' under an infinitesimal
boost along the Z axis

Let us consider an infinitesimal boost along the Z
axis, which changes a momentum k to k' as

where

y=(1 —P') ' '=1+0(P'} . (4.6)

Let us write the transformation (4.5) as

k'"=A" k" .P (4.5')

Any tensor T ' " then transforms to
'I n

T'I 1'''I
n p&i . . . pI n TI'j. '''I

n

In
(4.7)

Let S be the representation of this Lorentz
transformation in Dirac space such that

Sk-yS '=k' y .

Then,

SQ(P )=Q(P' ) .

(4.g)

(4.9)

The total contribution to 6'"' in s-loop order
from all the Feynman diagrams may be expressed
abstractly as

G'"'(p„q, e„ki, . . . , k„)

d4I;=g I g P& . . . & . . .„(k, . . . , k„,l„.. . , I„p,q, e, )[Z2(p, )] ~2(p —m)Q(p )
F i=1

X gN ' '(qj) (q @+i')— (4.10)

where g~ denotes the sum over all Feynman diagrams, including self-energy insertions on the external fer-
mion p, . l~, . . . , l, are the independent loop momenta, [Z2(p, )] '~ is the fermion wave-function renormali-
zation constant, N ' '(qj )/(qj iJ, +is) are the g—luon propagators of the r internal gluons present in the dia-
gram (qj's are linear combinations of the l s), and Pz . . . & „.. . „ is the contribution to the Feynman in-

@1 p'rv1 ' ' ' vr

tegrand from all the fermion loops and lines. Hence ~ is a matrix in the Dirac space. The wave-function re-
normalization constant of the external gluon k, is included in ~. ~ has a Lorentz-covariant expression in
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terms of its arguments, except for the presence of the n y+ matrices at the vertices where the n external soft
gluons attach to the fermion line. Noting that

sy+s '=-(1 p)—y++o(p'),

we may write
T

T

Sw„.. .„„.. . „(k;,lj,p„q, &, )s ' gN ' '(q, )
j=l

(4.11)

=M& . . .
& „.. . „(k,l'J,p,', q, e, )(1—P)" gN ' '(qj), (4.12)

j=1

where N' is related to N by the tensor transformation law (4.7). Thus we may write

SG'"'(p„q, e„k&, . . . , k„)(1—P)
s d j".

=gf g, a„,. . . „v, . . . v (ki, . kn Ii In pa q ea)S[Z2(pa)] '~'S '(p,' —m)u(p')F; ) (2m. )

1'

X P[N ' '(q )/(q' @+i—e)] (4.13)
j=1

using the facts d I; =d li' and qj =qj' .
G'"' at p,', k1, . . . , k„' may be evaluated by replacing the external variables by the corresponding primed

variables on the right-hand side of (4.10). For the internal variables, we can change the variable name from 1;
and qj to l and qJ; qj 's are then the same linear combinations of l 's as q~'s are of / s. Thus we have

(n) I
(pa tq ea t k ]~. . . , kn i

s
= g f g 4 ~iai . . p, vi . v(ki» kniri . ~ ln ipa ~qiea)[Z2(pa )] +(po' )F; ) (2m)

Xg[N ''(qj )/(q, ' ~2+&e)]. (4.14)
j=1

Now, [Z2(p,')] '~ and S[Zq(p, )] '~ S ' differ from each other by a term of order p. Also N"'(q') and
N'I'"(q) differ from each other by a term of order p. Let us define

PS""(q')=N""(q') N'""(q) . —

Then, up to terms of order p, the difference between (4.13) and (4.14) may be written as

(4.15)

G'"'(p,',q, e„ki, . . . , k„')—(1 P) "SG'"—'(p„q, e„k~, . . . , k„)
s d 1.'

=gf g ' ~„.. .„„.. . „(k,l',p,',q, e, ) I[Zz(p,')] ' —S[Z2(p, )] ' S 'I(2)4+i ''iv)'''v ii jt ai i a

N ' '(q')
X (P,

' —m )u (p,
'

) g
j 1 qj —P +l6

d4l,'
+g f P W„, . . .„„,. . .„( kl', p,',q, E, )[Z ( 2'p)1 '"(p.' —m)u(p, ')

(2 )4 I
'''Ii '''" ' ' J '

N ' '(q')
&2 2

ig
—P +lE'

Ps''(q )
X

P+&&J�=-tj�
+o(p ) . (4.16)
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a
(q-g k ) y-m

4 I

P0 &o - S I'o-L- k k 4

g-k

+
(, -1}

I

(a) (b)
FIG. 10. Flow of an external soft momentum inside a

diagram.

(c) (d)

FIG. 9. Sum over all insertions of the S gluon.
implies sum over all choices of the set

[j~,. . . ,jr I out of 1, . . , n .Th.e propagators marked S are
proportional to S"(k)/(k —p +i@),p being the Lorentz
index carried by the uncircled end. The circled vertex just
gives a factor of g.

The second term on the right-hand side of the
above equation may be interpreted in the following
way. Let us define by S gluon a gluon with propa-
gator S""(q)/(q p+—ie) Then. this term is the
sum of all Feynman diagrams where one of the
gluons is an S gluon, the rest being ordinary
Coulomb gauge gluons. It is straightforward to cal-
culate S""using Eqs. (4.15). It has the form

Sl'"(k) =Sl'(k)k "+S"(k)ki',

where

S'(q)=(q ql'+q'q'q )/(q }'

S (q)=( —q+qt +q q+q )/(q )

SJ(q)= —q q q~/(q ), j=1,2.

(4.17)

(4.18)

Since the S gluon carries polarization proportional
to its momentum, in order to sum over all possible
S-gluon insertions in a given Feynman diagram, we

may use the Ward identity. If we take into account
the fact that G'"' includes only those diagrams
which are one-particle irreducible in the soft-
fermion line, the sum over all insertions of the S
gluon will be given by the diagrams of Fig. 9 (ignor-

ing terms which do not have poles at p, =rn). Of
these, Fig. 9(a) may be shown to give a contribution,
exactly opposite to the first term on the right-hand
side of Eq. (4.16),' and these two contributions can-

I

cel. Thus we are left with the contributions from
Figs. 9(b)—9(d). Note that the circled vertices
marked S carry a factor of g, as opposed to the cir-
cled vertices coming from the E gluon which carry a
factor of —g/(k i e}—

To analyze the contribution from these diagrams,
we need to know some properties of the S gluon.

Suppose the S gluon is a part of the jet, so that its
negative momentum scales as A., and transverse mo-

menta scale as A,
' . Then, we can see from Eq.

(4.18) that S, S+-)i, and S~-A, '~. Thus the S
gluon carries extra suppression factor compared to
the ordinary Coulomb gauge gluons in the jetlike re-

gion. This shows that the S gluon cannot be the

part of a jet. In Figs. 9(b) and (9d), it cannot be
hard either, since S"(k}has three powers of k in the
denominator, as opposed to N""(k), which has only

two powers of k in the denominator. Thus it must

be soft.
We shall use these results in our later analysis.

C. Analysis of BG'")/Bk;+

In this subsection we shall analyze the quantity
k;+t}G'"'/t}k;+ (the factor of k;+ makes the quantity
have the same dimension as G'"'). For a given

graph in G "', we may label the internal loop mo-
menta in such a way that k; flows along a particular
path inside the graph (e.g., in Fig. 10, a possible
choice of the flow of the momentum k; is indicated

by the shaded lines). Then, if we take the t}/t}k;+
operator inside the integral, it will act on the shaded
lines only. Let us denote the operation of k~+t}/r)k, +

on any part of the path of k;+ by a cross on that
part. If P+k; is the momentum flowing through
this part (P is a linear combination of the other
external momenta and the loop momenta), then

k,+
(P+k;).y+m

Bk;+ (P+ k; ) m+i e—k+(P +k; ) k+ p+y-
, [(P+k,. ) y+m]+, , (4.19)

[(P+k; )2 m+ ie]— P+ (P+k; ) m+i e—
Since the denominator is ) (P++k;+)(P +k; ),

we see that on the right-hand side of (4.19), each
term is suppressed relative to the original undif-
ferentiated term by a factor of k;+/P+. This is ex-
pected, since k;+ always appears in the combination

I

k;++P+ in the propagator of the line P+k;, and
the dependence of the propagator on k;+ will be
negligible unless k;+ is of order P+. This analysis
shows that in order to get a nonsuppressed contribu-
tion to k;+BG'"'/Bk;+, the crossed line must carry
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positive momentum of order k;+, i.e., it must be
soft.

A more careful analysis shows that it is not
enough to have only the crossed line to be soft. For
example, if both ends of the crossed line are at-
tached to jet lines, then, we can first replace the
8/Bk;+ operation on the line carrying momentum
P+k; by 8/BP+ operation, and then integrate the
P+ integral by parts, so that the 8/BP+ operator
now acts on the rest of the integrand. Such a contri-
bution is suppressed, since the contribution from the
jet lines will be insensitive to P+. Similar suppres-
sion occurs from any region of integration where the
crossed line cannot be continuously connected to the
point where the momentum k; enters the graph, or
the point where the soft-fermion line, carrying
momentum q —gk~, leaves the graph, by a set of
soft lines. Figures 11(a) and 11(b) show us typical
regions of integration which give nonsuppressed
contribution to BG'"'/Bk;+. All the lines, shown ex-

plicitly in these graphs, are constrained to carry soft
momenta. These look like soft-loop integrals of
some G'"' 's which have less number of loops than
the original G'"'. We must, however, be careful
about counting the graphs. In Appendix 8 we have
shown how to systematically express the contribu-
tion to k;+BG'"'/Bk;+ in the form

g ff'+''(k, , . . . , k„,k'i, . . . , k„' )

n'

XG'"'(p„q,e„k', , . . . , k'. )d k', d k'

(4.20)

where f'+ ' is a function which goes down sufficient-

ly rapidly as k ~so so as to restrict the k in-

tegrals in (4.20) in the soft region. The Green's
I

(a) (b)
FIG. 11. Typical contributions to k;+BG("'/Bk;+. All

the lines outside the blob, shown explicitly in these fig-
ures, are constrained to be soft.

functions G'" ' have less number of loops than the
original function G'"'. The function f'+ ' may con-
tain factors of 6(ki' —kJ ), which set some of the ki
in G'" ' to be equal to some of the kj's.

V. EXPRESSING THE FULL AMPLITUDE
IN TERMS OF I'"'s AND 4'"'s

In Appendix A we show that the full amplitude
may be expressed as a sum of terms of the form
given in Eq. (3.11). In this section, we shall show
that a term of the form (3.11) may be expressed as a
sum of the integrals given in Eq. (3.12). To do this,
let us first look at the k; integrals involving the
G'"'s in (3.11). The integral may be written as

f gdk, -f(k;, . . . , k„-, . . . )

&& G'"'(p„q, e„ki, . . . , k„), (5 1)

where the ellipsis in the argument of f denotes vari-
ous other momenta and mass parameters, on which
the function f may depend. f has a smooth limit as
k; —+0, i.e., f is independent of k; if Ik; I

«m.
We shall show that (5.1) may be expressed complete-
ly in terms of the functions I'"'. We first express f
as

f(k, , . . . , k„)=f(k, =0, . . . , k„=O)P8(M —Ik;
I

)

+g[f(k, , . . . , k;,k;+i ——0, . . . , k„=0)

—f(k, , k;:,k; =o, , k. =0)()(M—Ik; I)1 ff @M—Ik
j=i+1

The first term on the right-hand side of (5.2), when substituted in (5.1), gives

(5.2)

M M
f(ki ——0, . . . , k„=O)f dki . f dk„G'"'(p„q, e„ki, . . . , k„), (5 3)

which is almost in the form of the right-hand side of (3.13), except for the fact that in (3.13), the G'"'s are
evaluated at k;+ =0, whereas in (5.3) they are still evaluated at finite k;+. We shall show late-. . how (5.3) may be
reduced to the form (3.13). The i =1 term on the right-hand side of (5.2) vanishes in the limit

I
ki

I
«M.

Thus, if we substitute this term in (5.1), the k, integral will receive contribution only from the
I

k i I

-m re-
gion. En this region we may apply the Grammer-Yennie decomposition to the k1 gluon. The K part factorizes
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and the integral looks like

fdki [f(ki,kz ——0, . . . , k„=0)—8(M —ski )f(ki =0, . . . , k„=0)]
k1 —l 6'

M M
dkp . f dk„G'" "(p„q,e„kz, . . . , k„) . (5.4)

For the G part of the k ~ gluon, the contribution comes from the regions of integration shown in Fig. 8. This
can again be expressed in terms of integrals of the form (5.1), involving some G'" ' with less number of loops.
We can then repeat the whole procedure mentioned so far in this section with this new integral. The successive
terms in the summation in (5.2) may be analyzed in the same way, and we may finally express (5.1) in terms of
the integrals

f dl )
. f dl„G'" '(p„q, E„l„.. . , I„,) . (5.5)

Next we must show how (5.5) may be expressed in terms of integrals of G'" 's at l;+ =0. To do this, we ex-

press G'" ' in (5.5) as

G'" '(p„q, e„l&, . . . , l„,l&z, . . . , 1„&,l ~+ =0, . . . , t+ =0)
n' l.+

+ g dl + G'"'(p„q, e„l~j, . . . , l„j,l&, . . . , l„,l~+, . . . , l~+ &, I +, l~++&
——0, . . . , I„+=0) . (5.6)

al,'+

The first term in (5.6), when substituted into (5.5),
has the desired form (3.13). As shown in Appendix
B, contribution to the other terms in (5.5) may be
expressed as soft-loop integrals of G'"'s with less
number of loops. If we substitute this in (5.5), we

may express the contribution in terms of integrals of
the form (5.1). We now repeat all the steps, men-
tioned so far in this section, with these new in-

tegrals. Proceeding in this manner, we may finally
express (S.l) in terms of integrals of I'"'s defined in
(3.13).

We can similarly look at the k + integrals in
(3.11), and express it in terms of 4'" ' defined in
(3.14). The full amplitude may then be expressed as
a sum of terms of the form given in (3.12). The
function S is obtained by integrating over all the
soft-loop momenta in (3.11) and also those which

appear during the reduction of (3.11) into the form
(3.12), except the momenta k ~z, . . . , k„l,
k I 7 I

1l~ ' ~ +n'l'

VI. COUNTING THE NUMBER
OF LOGARITHMS IN I'"' AND 4'" '

In this section we shall count the number of loga-
rithms of p,+/m in I'"', in a given loop order. The
number of logarithms of pb /m in 4'" ' may be
counted in an exactly similar way; hence we shall
not carry out the counting for 4'" ' explicitly. We
shall show that in r-loop order, I'"' has at most r
logarithms of p,+/m; similarly, in r'-loop order,
4'" ' has at most r' logarithms of pb /m. Then if
we consider the expression (3.12), the maximum
number of logarithms of s in this from an l-loop

I

graph will be given by I —n„n, being the minimum
number of soft exchange loops that the graph must
have. This shows that in the leading-logarithm ap-
proximation, only the factorized diagrams contri-
bute to the amplitude, since they are the only dia-

grams for which n, =O. In the next-to-the-leading-
logarithm approximation, the contribution comes
from the factorized diagrams, as well as the dia-

grams which have a one-gluon —one-fermion inter-
mediate state in the t channel, and so on.

The result mentioned in the previous paragraph is
a nontrivial result, since, as we have mentioned be-

fore, each individual diagram contributing to G'"'
will contribute 2r logarithms of p,+/m to I'"' in r
loop order. To prove the above result, we shall use
the method of induction. First, following Ref. 5, let

us break up I'"' as

I'"'= I'"'u (p, ) + (y+/2) I'"'u (p, ), (6.1)

where I z"' and I '+' are products of transverse y ma-

trices only. To see how such a decomposition is

possible, let us note that, given a string of y+- and yj
matrices from the internal fermion numerators and

the gluon-fermion vertices in a given graph contri-
buting to 6'"', we can always bring it into a sum of
terms with the y matrices at the extreme right and

the y+ matrices at the extreme left, with the trans-

verse y matrices in the middle, using Eqs. (2.7). y
acting on u (p, ) may always be expressed in terms of
p, ~ y and p, y+ acting on u (p, ), by using the Dirac
equation. This new y+ may again be commuted to
the extreme left through the transverse y matrices,
using (2.7). We are then left with terms which are
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G(m

(o) (b)
FIG. 12. Contribution to G'+'. The lines inside the

blob S, as well as all the gluon lines coming out of the
blob S, carry soft momenta.

either products of transverse y matrices only, or
products of transverse y matrices, multiplied by a
y+ at the left. There cannot be more than one y+ at
the left, since (y+) =0. This way I'"' can be
brought into the form (6.1).

We shall show that, in r-loop order, (1) I'j"' does
not have more than r logarithms of p,+/m for any n,
and (2) I'+' does not have more than (r —1) loga-
rithms ofp,+/m for any n

We shall assume that the above result is valid up
to (r —1)-loop order, and then show that it is valid
up to r-loop order. We shall start with r+'. To

analyze this, we draw the reader's attention to the
discussion after Eq. (3.10), where we showed that if
all lines in 6'"' carry jetlike momenta, the left-most
longitudinal y matrix in the correspondin~ Feynman
integrand must be a y' . Hence only Gz"' receives
contribution from such a configuration. So, the left-
most y+ matrix in (y+/2)G'+' must come from the
numerator of a soft-fermion line, or a soft-
fermion —soft-gluon vertex. Thus G'+' must receive
contribution from a configuration of the form
shown in Fig. 12. These contributions, however, are
soft-loop integrals of GI"'s with less than r loops,
and hence, using the method of Sec. V, may be ex-
pressed as transverse-momentum integrals of I ~~"'s

with less than r-loops. This, by assumption, has less
than r logarithms. Hence, in r-loop order, I'+' has
less than r logarithms.

There is an important consequence of the results
obtained in the previous paragraph. Since I'+' may
be expressed as transverse-momentum integrals of

I

I I 's (and similarly 4'" ' as transverse-momentum
integrals of 4I 's), we may reexpress (3.12) as

f Id'k„d'k», d'kIg d'k„'g@j" '(ps q Es k, J, . . . , k„'~)

XS(q,k», . . . , k„~,k', ~, . . . , k„'~)l I"'(p„q,e„k», . . . , k„,), (6.2)

where S is some new function of k;z and k z.
Next, let us turn towards counting the number of logarithms in I"z"' in r-loop order. We start with the defi-

nition (3.13) and make a change of variables from k; to k according to (4.5). Thus, we may write

M(1 —P) n

I'"'(p„q, „k, , . . . , k„)= gdk (1 P) "G'"'(p—,q, E„k;,k;,k;+=0) .
k =—M(1 —P)

(6.3)

On the other hand, we have

M n

I'"'(p,', q, e„k, , . . . , k„)=f, gdk G'"'(p,',q, e„k;,k, k +=0),
k,

' =—M
(6.4)

which is obtained from (6.2) by changing p, to p,
'

on both sides, and changing the name of the integration vari-
able from k; to k . Taking the difference between (6.4) and (6.3), and keeping only up to first-order terms in

p, we get

pp.+ar',"'/ap.+

pdk [pMGj (pa ~q~~a&k»~k! +=Okl, . . . , kj ),kj' =M~kj+I ' k»
i=1,
i+j

( PM)GI. (pa q ea k( gk,
'

O', k& p, kq &kj' &kq M, kj'+'&p, k» )]

M 8

+f gdk [G',"'(p,',q, e„k;„k,k + =0)—(1—P) "G,'"'(p„q,e„k;„k;-,k;+ =0)] . (6.5)
k = —M
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Let us first consider the first term on the right-
hand side of the above equation. In the jth term in
the summation, Gq"' has to be evaluated at kj:M
and —M. Hence we may apply the Grammer-
Yennie technique to analyze the contribution. The
contribution from the E terms cancels between the
two terms. The contributions from the G terms
come from the regions of integration shown in Fig.
8. They are soft-loop integrals of G'"'s with less
than r loops, and, following the procedure men-
tioned in Sec. V, may be expressed as transverse in-

tegrals of I'"'s with less than r loops. Hence these
terms have at most (r —1) logarithms of p,+/m.

We now turn to the second term in (6.5). If from
(4.16), we project out the term proportional to the
product of the transverse y matrices on both sides,
the left-hand side reduces to

[Gi"'(pa q &a ki

—(1 P) "G—i"'(p„q,e„k„.. . , k„)]u(p,')

(6.6)

since S commutes with the transverse y matrices.
This, according to (4.16), is given by the sum of the
diagrams shown in Figs. 9(b)—9(d). When substitut-
ed into the second term on the right-hand side of
(6.5), each of these terms becomes a soft-loop in-

tegral of some G'" ' with less than r loops, and hence
may be expressed as transverse-momentum integral
of I'" 's with less than r loops. Hence these terms
have less than r logarithms of p,+/m.

Thus p,+BI q"'/Bp,+ has less than r logarithms of
p,+/m in r-loop order. This shows that I q"' has at
most r logarithms of p,+/m in the r-loop order.
This completes our proof by induction. Since at the
tree level, I z"' does not have any logarithm of
p,+/m [this is easy to verify by considering the sum
of tree-graph contributions to Gi"', which is propor-
tional to g,". i(k; i e) ', an—d integrating over the
minus components of its external momenta], we can
conclude that I q"' does not have more than r loga-
rithms in r-loop order, for any r.

(7.1)

In order to find the amplitude in the kth non-
leading-logarithm approximation, we need to know
I'i"' in the (k —n)th non-leading-logarithm approxi-
mation, i.e., we need to know aJ""'s for

r+n —k&j&r . (7.2)

First we shall prove the following result. Suppose
we are trying to evaluate the contribution to the am-
plitude in the kth-non-leading-logarithm approxima-
tion, and we know the relevant aJ"''s for r'&r.
Then, we shall show that the equations derived in
Sec. VI are sufficient to determine the required
aj("'"'s for all n and j, satisfying (7.2), except for

j=0.
Equation (7.1) gives

8I'~"'"'/8 lnp,+ = gjaj'"'"'( q, e„k;i )

j=0

+
)( lnJ—

m
(7.3)

This is given by the right-hand side of (6.5). As was
shown in Sec. VI, the first term on the right-hand
side of (6.5) may be analyzed by using Grammer-
Yennie decomposition. The E-gluon contribution
vanishes, while the G-gluon contribution is given by
contributions of the form shown in Fig. 8. These
contributions are soft-loop integrals of G'" ' 's with
n'+r'& n +r and r'&r, and by using the procedure
given in Sec. V, may be expressed as a sum of
transverse-momentum integrals of I q" ' 's with
n'+r'&n+r and r'&r. Thus we know the coeffi-
cient of lnj (p,+ /m ) in the contribution to
BI'"'/8 lnp,+ from these terms for

expressed in terms of I'i"' and 4i" '.] The result of
Sec. VI shows that I z""may be expressed as

+
r'," '(p,+ /m, q, e„k; i) = g aj'" "'(q,E„k;i)lnj

j &n +r —k (7.4)
VII. EVOLUTION OF THE I'"'S

In Sec. VI we saw that in the r-loop order, I'"'s
do not have more than r logarithms. In this section,
we shall show that the equations derived in Sec. VI
are also sufficient to find out the asymptotic
behavior of the I'"'s as functions of p,+, including
the leading, as well as the nonleading logarithms.
We shall first define some new quantities. Let I &"'"'

be the total contribution to I i"' in r-loop order. [We
shall not analyze I'+' separately, since, according to
(6.2), the total contribution to the amplitude may be

Then, comparing (7.3) with this expression, we
can find the contribution to aJ"'"'s from these terms
for

j—1 & n'+r' —k . (7.5)

Since n'+r'&n+r, we know the contribution to
a ' 's forJ

j&n+r —k (7.6)

except for j =0.
Let us now try to analyze the contribution from
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(q -Pk. ) ~ y -rn

$

y+ $+y
2

FIG. 13. Regions of integration contributing to Fig.
12(b) when we choose the S~ y+ —S+y term from the S1

gluon. All the internal lines of the blob marked S, as well

the lines coming out of it, carry soft momenta.

the second term in the right-hand side of (6.5). As
shown in Sec. VI, these contributions are given by
the sum of the diagrams shown in Figs. 9(b)—9(d).
Of these, the contribution from the diagrams in
Figs. 9(c) and 9(d) may be expressed as soft-loop in-
tegrals of G'" '" 's with n'+r'&n +r and r'& r, and
hence their contribution to a~"'"' is known for

I

j& n + r —k. Analysis of the contribution from Fig.
9(b), however, is slightly more tricky. Apparently,
this involves a soft-loop integral of G'"'' with
n'=n+1 and r'=r —1. Hence n'+r'=n+r, and
our previous argument to show that the contribution
to a'" "' is known for j)n +r k—breaks down.

A more careful analysis of the contribution from
Fig. 9(b) shows that there is actually no problem.
First, note that, if we choose the Sz y or the S+y
term from the S gluon propagator, it constrains the
ferrnion line, to which it is attached, to be soft. The
contribution then comes from the regions of integra-
tion shown in Fig. 13, which are all soft-loop in-
tegrals of G'"''s with n'+r'&n+r. Hence their
contribution to aj"'"'s are known for j)n+r —k.
The contribution to (6.5) from the S y+ term in
Fig. 9(b) may be written as

n

q —gk; .y i q —k —gk; y+m
i=1

'2

q —k —g k; m2+—ie

&G'"+" "(p„q,e„k„.. .,k„,k) +
1
~ ~ ~

k„+=0

(7.7)

First, let us consider the contribution to the above
integral from the region where either k or at least
one of the k; 's is of order m. Then we can decom-
pose the gluon, carrying the order-m minus momen-
tum, into G and E parts. The E-part contribution
will involve integrals of G'"'" ",and hence the con-
tribution from this term to aj"" can be found for
j& n+r —k. The contribution from the G part will
involve soft-loop integrals of G'" '" ' with
n'+r'&n+r and r'&r, and hence this contribution
is also known for j& n+r k Thus the o—nly . trou-
blesome contribution comes from the region where
all the

~
k; ~'sand ~k

~

are small compared tom.
In this region, the fermion denominator carrying
momentum q —k —g k; and the gluon denomina-
tor (k p+iE) are —independent of k+. If we
choose the perpendicular component of G'"+"
then we are forced to choose the
(q —k —g k; )j.y+ m term from the fermion
numerator. Hence this is also independent of k+.
S (k), on the other hand, is an odd function of k+,
in the limit

~

k &&
~

k+ ~. Thus, if we ignore the
dependence of G "+" " on k+, the integrand of
(7.7) is an odd function of k+, and hence the k+ in-
tegral vanishes by symmetry.

Thus, in order to get a nonsuppressed contribu-

I

tion to (7.7) from the region
~
k;

~
&&m and

~

k
~

&&m, we must choose the G'++'"
term from G'"+'" ",or we must consider the k+-
dependent part of G'"+'" ". Contributions to both
the parts come from the region where some of the
internal loop momenta of G~"+'" ' are soft (Figs.
11 and 12). These are soft-loop integrals of G'" '" '

with n'+r'&n+r. Configurations shown in Fig.
14 are the only ones for which n'+r'=n+r. If,
however, the minus component of all these internal
soft-loop momenta 1; are small compared to m, then
we do not get any contribution to G'++'" " since,
in order to get a y+ somewhere on the fermion
numerator or the gluon-fermion vertex insideG'"+" ", we must have at least one power of the
minus component of some soft-loop momentum in
the numerator [note that N (l) cc I ]. We do not
get any k+-dependent part of G'"+" " either,

(q-$ p ) ~ y-m

FIG. 14. A potentially dangerous region of integration
contributing to (7.7). l~, . . ., l, are soft momenta.
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since all the new soft-fermion denominators in Fig.
14 are independent of k+. Thus the k+ integral
still vanishes by symmetry. If, on the other hand,
one of the internal soft-loop momenta the minus
component is of order m, it can be decomposed into
6 and K gluons, and the contribution from both the
parts may be expressed as soft-loop integrals of
6'" '" ' with n'+ r' & n +r and r' & r. Thus the con-
tribution from this term to aj'"'"' may be found for
J)n+r —k.

Hence we see that if we know the a'" '" 's forj') n'+r' —k for r'(r —1, we may find out the
a&""'s for j)n+r —k, except for j =0. We shall

now interpret this result from a somewhat different
angle. Equation (6.5) gives an expression for
Bl '"'/Blnp, +. The right-hand side is a sum of soft-
loop integrals of 6'" 's, and hence, using the
method of Sec. V, may be expressed as a sum of
terms of the form

g f A'" "'(q,k~j, . . . ,k„q, k~q, . . . ,k„'q)I q" '(p„q, e„kIq, . . .,k„' j )d k'~q d k„'q .
n'=0

(7.8)

The result of this section tells us that if we want to evaluate I'j"' in the (k —n)th-non-leading-logarithm ap-
proximation, then (7.8) may be evaluated by knowing I I" '

up to the (k —n')th-non-leading-logarithm approxi-
mation, for n'=0, 1,. . . , k. Thus it is enough to terminate the sum on the right-hand side of (7.8) at n'=k
The set of equations (7.8) will then read as

gl (n)

+ (pa tqt~tttklj t tknl)
8 lnp,+

k
= g f A '" " '(q, k „,. . .,k„„k)„. . . , k„', )I"I" '(p,+,q, e„k'„,. . . ,k„', )d'k '„ d'k„', (7.9)

n'=0

If we regard A as a generalized matrix in the product space of the transverse-momentum space and the n

space, and I I"' as a generalized vector in the same space, we may write (7.9) as

ar, ya l~.+ =A I,
with the solution

(7.10)

p
+

Ij——exp Aln Bz, (7.11)

where, in evaluating the exponential, we must use the notion of generalized product for evaluating the powers
of A. For example,

(A )'"'" '(qtk)jt. . .tkn~tk', ~t. . .tkn'~)

k
= g f d klan d kn'jA'"'" '(q, k~j, . . .,knj, k~'z, . . .,k„"z)A'" '" '(q, kl'z, . . ., kn" j,k'~z, . . ., kn' j ) . (7.12)

n'=0

In (7.11), B~ is an unknown p,+-independent vec-
tor in the product space of the transverse-
momentum space and the n space. These are the
constants of integration and correspond to the un-
determined coefficients ao""'s, mentioned before in
this section. These coefficients may be calculated by
doing some low-order calculations. For example, in
the leading-logarithm approximation, the only un-
determined coefficient is a0' ', which is trivially
determined from the tree diagram. In the next-to-
the-leading-logarithm approximation, the undeter-
mined coefficients are a0' ', a0'", and a0' '. Of
these, a0' and a0' are determined from the tree(0,0) (1,0))

diagrams; a0' may be calculated by a complete
(0, 1)

one-loop calculation of I '0'.

Equations (7.9) become extremely simple in the
leading-logarithm approximation. Here k =0, henceI' ' is the only relevant term. The equation is

ar',"ia lnp.+ =a(q)r',", (7.13)

where a(q) =A' ' '(q). This equation has the solu-
tion

I I '=exp a(q)ln BP (q, e, ),
m

(7.14)

which shows the Regge behavior (1.1). 4j"' has a
similar expression as I z"'. In Sec. VIII we shall ap-
ply the techniques, we have developed so far, to cal-
culate a(q). We shall also evaluate the complete



3014 ASHOKE SEN

~a~(n)~
n

q-Z k„.i.= I

Pb~~ kb~ Pb ~ kb ~
(a) (b)

FIG. 15. Diagrams contributing to the amplitude in
the leading- and the next-to-leading-logarithm approxima-
tion.

contribution in the next-to-the-leading-logarithm ap-
proximation, using these techniques.

VIII. CONTRIBUTION TO THE AMPLITUDE
IN THE LEADING-LOGARITHM

AND THE NEXT-TO-THE
LEADING-LOGARITHM APPROXIMATION

In this section we shall find out the contribution
to the amplitude in the leading-logarithm and the
next-to-the-leading-logarithm approximation. From
the discussion of the previous sections, it is clear
that in the leading-logarithm approximation, the
contribution comes from the factorized diagrams of
the form shown in Fig. 15(a), while the first non-

leading logarithms come from the factorized dia-

grams, as well as the diagrams which have a one-
gluon —one-fermion intermediate state in the t chan-
nel [Fig. 15(b)]. Before evaluating the contribution
from these diagrams, we shall isolate the contribu-
tion to the positive- and the negative-signature
channels. To do this, let us define
G'"'(p„q, e„ki, . . .k„) to be the analog of G'"' for
the backward Compton scattering amplitude (Fig.
16). There is a one-to-one correspondence between
the diagrams contributing to 6'"' and 6'"', which
may be related by a simple transformation of the
loop momenta (l+-~ —l+-, lz~ lz). The relation-
ship is

FIG. 16. Analog of 6'"' for the backward Cornpton
scattering amplitude.

k ] — k] p kiJ —k]J ~ (8.3)

Up to the next-to-leading-logarithm level, only
Gi(0) and Fi(" contribute to Fig. 15(a). This is be-
cause, if we choose the y+6'+' term from the upper
blob in Fig. 15(a), we must choose the F' 'y term
from the lower blob, in order to get a nonzero
answer. Such a term contains at most r —2 loga-
rithms in r-loop order, and hence may be ignored in
the next-to-the-leading-logarithm level. Equation
(8.1) then shows that the contribution from the fac-
torized diagrams to the negative-signature channel
vanishes in the next-to-the-leading-logarithm ap-
proximation.

In order to know the contribution from Fig. 15(b)
up to the next-to-the-leading-logarithm approxima-
tion, we need to know the contribution from G'"
and F"' in the leading-logarithm approximation.
Hence we may ignore the dependence of G'" and
F'" on k+ and k, respectively. Also, we must
choose the Gz" and Fz" terms. Thus the contribu-
tion to A+-from the one-gluon exchange diagrams
may be written as

(n)Gi (patqsea kil ~. rkn )

=(—I)"Gi" (p„q,e„ki, . . .,k„), (8.1)

(n)G+ (p„q,e„k&,. . .,k„)

=( —1)"+'G+ (p„q,e„k&,. . . ,k„), (8.2)

where

d4k (i) i[(q —kJ) y+m]
g Fi '(ps, q, es, k+, k =O,ki)

(2~) (q —k ) m+i e-
&& [Gi"(p„q,e„k+=O,k,ki)+GI '(p„q, e„k+=O,k, ki)]( i )N""(k)/—(k iJ, +is) . —

(8.4)

In the region where either k+, or k, or both are small compared to m, so that
~

k+k
~
((ki, the contri-

bution to A from the above integral vanishes, since the integrand changes sign under k ~ —k, according
to (8.1). Thus, the contribution comes only from the k+, k -m region. In this region, we may use the
Grammer-Yennie decomposition technique, and write the contribution from (8.4) to A+ as

2Fi (ps, q, eb) g, P (i) 2 2
N+ (k) Gi (p„q e ) .(0) p d "k 1 1 . (q kj. )"7+m ( i) +— (0)

(2~) k k++ie (q —k) —m +i@ k p+iE—
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(q - K -m)

(bl

(c) (~)
FIG. 17. Total contribution to BG& '/Blnp, + in the

next-to-the-leading-logarithm approximation.

The contribution from the factorized diagrams on
the other hand, may be expressed as a product of
F'i ', i/(q m—), and Gi '. Thus, up to the next-to-
the-leading-logarithm level, the amplitude A+ may
be factored into a product of three parts, a part
which depends on p~ but not on p„a part which is
independent of p, and pb, and a part which depends
on p, but not on p~. Then, according to an argu-
ment due to Mason, the amplitude must have an
exponential form in this approximation. We shall,
however, give a more direct proof of the exponentia-
tion, and also find out the trajec-
tory function a(q) up to order g .

BGi '/8 lnp,+ is given by the sum of the diagrams
in Figs. 9(b)—9(d), with n =0. Now, S+k, S k+,
and Si ki may be expressed in the form
(k+a/ak+ —k-a/ak )f, where f is a function of
k. Then, integrating over k+ and k by parts, we

may show that the contribution to Fig. 9(c) from the
one-loop graph vanishes for n =0. So does the two-

loop diagram, which is obtained by adding a vacu-
um polarization bubble to the one-loop contribution
to Fig. 9(c). The diagrams which contribute to
BGi '/Blnp, +

up to the next-to-leading-logarithm
I

level, are shown in Fig. 17. Of these, the effect of
Fig. 17(b) is to change the i—(q m—) factor in Fig.
17(a) to i—Sp '(q) H. ence we may concentrate on
Fig. 17(a), since Figs. 17(c) and 17(d) are already in
the form const&&GP'.

First, we shall limit ourselves to the leading-
logarithm approximation. In this approximation we

1

must choose the —,S y+ term from the vertex
where the S gluon is attached to the fermion line in-

1

side the blob, because, if we choose the —,S+y or
the Si y term, it will constrain the fermion line to
which it is attached, to be soft, and hence lose some
logarithms. The contribution to Fig. 17(a) in the
leading-logarithm approximation may then be writ-
ten as

dk „(
i (2~)4 k p+i e-

l[(q k)'7+m] (i)

(q k) —m+—ie
In the leading-logarithm approximation we must

choose the perpendicular component of G"'; thus
we must choose the (q —k)i y+m term from the
fermion numerator, in order to make (8.6) a product
of transverse y matrices only. Also, we may take
G"' to be independent of k+ in this approximation.
Then in the region

~

k
~

&&m, the integrand of
(8.6) becomes an antisymmetric function of k;+ and
the integral vanishes. This shows that in the
leading-logarithm approximation, the integral (8.6)
receives contribution only from the

~

k
~

-m re-
gion. In this region, we may make a Grammer-
Yennie decomposition of the S gluon. The G term
does not contribute in the leading-logarithm approx-
imation. The contribution from the K term may be
written as

d k ( —i) il(q ki) )'+~—~ (
'—1) (0)ig'(q —m) — S (k) z G, (p,+,q, e, )

(2n. ) k @+i' (q —k) m+—ie k —ie—
—:a' '(q)Gi '(p,+,q, e, ) . (8.7)

Thus,

BG' '/Blnp+=a' (q)G (p,+,q, e ),
the solution to which is

(8.8)

Gi (p~, q, e, )=exp a '(q)ln Bi (q, e, ),
m

(8.9)

where Bi ' is some constant, independent ofp,+. In the lowest order in g, BP' is equal to ( igE, ). —
In the next-to-the-leading-logarithm level, there are various extra contributions to BG' '/8 lnp,+. First, let us

find out the extra terms from (8.6). In the region
~

k
~

&&m, there are two effects which may destroy the an-
tisymmetry of the integrand under k+~ —k+. We may choose the y+G'+' term from G'" and the k+y
term from the soft-fermion numerator. Also, now 6"' can no longer be considered to be independent of k+.
G'+' receives contributions from the regions of integration in the loop momentum space shown in Fig. 12.
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(q ~ y- m) (q. y-m)

FIG. 18. Contribution to (8.6) from the 6'+' part and
the k+ dependent part of Gj" in the next-to-the-leading-
logarithm approximation. Here k and l are soft momenta.

FIG. 19. Sum of all insertions of the K part of the l
gluon in Fig. 18.

Also, as shown in Appendix 8, in order to get a nonsuppressed contribution to

G"'(p„q,e„k+,k,k, ) 6"'—(p„q,e„k+=O, k-, kz),

one of the internal loop momentum of G"' must be soft. Thus, if in (8.6) we express G'"(p„q,e„k) as

G& '(p„q, e„k+=O,k, k~ )+[G~"(p„q,e„k+,k, k~) G~" (p—„q,e„k+=O,k, k~) ]

+ —,y G+ (p„q,c„k,k,kz),(I) + (8.10)

then the second and the third terms will receive con-
tribution from the regions of integration shown in
Fig. 18. When we substitute the first term in place
of G'" in (8.6), the integral receives contributions
from the k -m region only, since the k+ integral
vanishes by symmetry in the

~

k
~

&&m region.
In Fig. 18, we must have an even number of y+

and y matrices on the soft-fermion line. As seen
in Sec. VII, in the region

~

I
~

&&m, ~k
~

&&m,
the integrand is antisymmetric under the transfor-
mation k+~ —k+, and hence the integral vanishes.
Thus, if

~

k
~

&&m, I must be of order m. But
then it may be factorized, using the Grammer-
Yennie technique. The G term does not contribute
in the next-to-the-leading-logarithm approximation;
the E term gives a contribution of the form shown
in Fig. 19. The integrand is antisymmetric under
the transformation 1

+—~ —I +—
, k+ —+ —k+, in the

~

k
~

&&m, l -m region, and hence the integral
vanishes. Thus the integral (8.6) receives contribu-
tion only from the k -m region in the next-to-
the-leading-logarithm approximation. In this re-
gion, we can decompose the S gluon into G and E
parts. The E-gluon contribution is identical to (8.7).
The G part constrains one of the internal loop mo-
menta l of G'" to be soft, and again, using the an-

(q. y-m) (

tisymmetry of the integrand under k-+—+ —k+-,
1+~ —l+ for

~

l
~

&&m, we may bring the contri-
bution in the form of Fig. 20(a).

There are some extra contributions from Fig.
17(a) in the next-to-the-leading-logarithm approxi-
mation, which is not included in (8.6). This is the
contribution where we choose the —,S+y +Sz y

1

term instead of the —,S y+ term from the vertex,
where the S gluon is attached to the fermion line in-
side the blob. This vertex constrains the fermion
line, to which the S gluon is attached, to be soft.
Using the symmetry property of the integrand, and
the Grammer-Yennie decomposition, we may bring
the contribution from this term into the form of
Fig. 20(b). Also, we must include the one-loop self-
energy diagrams for the soft gluon and the soft fer-
mion [Figs. 20(c) and 20(d)]. Figure 20 then gives
the net extra contribution to BGz '/Blnp, + in the
first-non-leading-logarithm approximation from
Fig. 17(a). As we have mentioned before, the effect
of Fig. 17(b) is to change the i(q —m) —factor in
Eq. (8.6) to iSF (q). T—hus, in the next-to-the-
leading-logarithm approximation,

aG,'"/9 Inp,+=[a' '(q)+a'"(q) JGz ', (8.11)

where a' '(q) is given by the sum of the contribu-
tions from Figs. 20(a)—20(d), Figs. 17(c) and 17(d),
and a one-loop self-energy diagram multiplied by
a' '(q) coming from Fig. 17(b). Thus,

~~X em

FIG. 20. Total extra contribution to BG& '/Blnp, +

from Fig. 9(b) in the next-to-the-leading-logarithm ap-
proximation.

(a) (b)

FIG. 21. Contribution from the first term on the
right-hand side of (6.5) to BI q"/8 lnp,+.
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(2m) k —p +is

+, , S„(k)(k'g" k"k—)i II(k')k' P'+—iE " k' 1.'—+ie

( —1)x iSpg(q —k)
k —ie

(2n) (2m) k @+i—e 1 p—+iE 1 ie—

l l
X ( —iy„)

(q k).y —m+i—e " (q —k —1).y —m+ie

(k) ( —,k+y +kg y) i[S—q(k) y+ —,S+(k)y ]—l6

X
(q —1) y —m+ie

4 d4k d4I

(2~) (2~)"
iS"(—k)y„( iy, )+—( i y„) — ( i)S —(k)y„"(q—k) y—m) ' "

(q —I) y —m

l l
X ( —iy~)

(q —k —1).y —m (q —k) y —m

~ve(1)
2 P2+lE' l2 P2+lE'

(8.12)

—4Ii y+Ii yr+r (8.13)

and we pick up only the ( —41&.y) term. All the
terms on the right-hand side of Eq. (8.12), except the
last term, have explicit factors of (q —m), and hence

where i II(k )(k g"" k"k") i—s the contribution
from the one-loop vacuum polarization bubble. In
writing the contribution to (8.12) from Fig. 20(c), we
have used some symmetry properties of the integral.
iSF~(q —k) is that part of the full one-loop fermion
self-energy, which is proportional to the identity
matrix or product of transverse y matrices only. [ ]q
means that in any of the terms enclosed in the
square brackets, we must commute all the y 's

through the other y matrices to the extreme right
using Eqs. (2.7), and, at the end of this process, keep
only those terms which contain products of trans-
verse y matrices only. For example, a term of the
form y lq yy+ is reduced to

vanish at g=m. It can be shown, using the Ward
identities, that the last term also has a factor of
(q —m), and hence vanishes at q =m. Thus the tra-
jectory function vanishes at q =m.

The solution to Eq. (8.11) is

GI '(p,+,q, e, )

p
+

=exp [a"'(q)+a"'(q)]ln ' 8,"'(q,e. ) .

(8.14)

Similar solutions may also be obtained for I'J
The total contribution to the positive-signature am-
plitude is obtained from the sum of the contribu-
tions from Fig 15(a), the .corresponding diagram for
the backward Compton scattering amplitude, and
expression (8.5). It is given by
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2+=28/'(q, es)exp [a( )(q)+a( '(q)]ln

(2n) k k++ie (q —k) —m +i@ k p—+i@

(8.15)

Next we shall turn to the negative-signature amplitude, which comes entirely from the graph in Fig. 15(b),
and the corresponding graph for the backward Compton scattering amplitude. We shall first express the con-
tribution in terms of I (i", I i ', 4i", and 4P', according to the prescription of Sec. V. We first define I'" as

Emr")= dk;G")(p. ,q, e. ,k;,k„,k+ =0), (8.16)

i.e., we take M in (3.13} to be equal to em. Here e is an arbitrarily small, but fixed number. The final result
must be independent of M, thus it is independent of e. Hence, if we consistently ignore all terms which vanish
as @~0, we shall get the correct final result. As we shall see, this causes a certain simplification in the inter-
mediate stages. We define 4'" in a similar way.

Now, it can be easily seen, using Eqs. (8.1), that the contribution to A, given in (8.4), from the region of in-

tegration where either k+ of k or both are of order m, vanishes by symmetry. Thus we may limit the k+-in-
tegrals in the region

~

k —
~

& em Negle.cting 0(e) terms, the integral (8.4) may be written as

2dk (, ) (q —k )y+ (, )
2g 4, (pb, q, ~&,k, ) I', (p„q,e„k,)(k, +p )

(2m) (q —ki) +m
(8.17)

Thus our remaining task is to find out 4q" and I z" in the leading-logarithm approximation. In order to
find I i ' we go back to Eq. (6.5). As was shown in Sec. VI, the first term on the right-hand side of (6.5) may
be analyzed by Grammer-Yennie decomposition. Contributions from the E parts cancel. The contributions
from the G parts are given by Fig. 21. The "soft" line 1 shown in this figure now carries the plus component of
-m/e, but we can still regard this as soft, since it does not carry momentum —v s. Contribution from these
figures may be written in the form

4

J 4 [f)(l,ki, k+=0,k =em) —f((l,ki, k+=0,k = —em))G("(p+, q, e„l),
(2n )

(8.18)

where fi is the contribution from the soft gluon and the fermion lines in Fig. 21. In the leading-logarithm ap-
proximation, we may ignore the dependence of G'" on 1+ and choose the Gi" term from G'". In the region
1 -m, we can factorize the 1 gluon from G'" by G Edecomposit—ion. The contribution from the G term is
nonleading, while the contribution from the E term vanishes, since the integrand is antisymmetric under the
transformation 1+-~ —1+-. Hence the integral receives contribution only from the

~

1
~

&&m region. We can
limit the 1 integration range to

~

1
~

& em. The contribution may be expressed as

f P(q, k, l )I'"(p,+,q, e„l )d 1 (8.19)

where

p(q, ki, li)= f [fi(l+,1 =O, li, ki, k =em}—fi(1+,1 =O, li ki k Qm)] .1 dl+
(2n. )

fi inay be read out from Fig. 21. Substituting this in (8.20) and carrying out the 1 integral we get

g 1 1 1
P(q, ki, li) =

&
(q y m} . — —[(q —ki) y—m]

(2m)~ 1 +p (q —li) y —m (q —ki —li) y —m

(8.20}

(8.21)

The contribution from the second term on the right-hand side of (6.5) is given by integrals of the graphs
shown in Figs. 9(b)—9(d), over k . Of these, Fig. 9(d) does not contribute if we are interested in the leading-
logarithm contribution to I' '. Contribution to Fig. (9c) vanishes in the region k+ =0,

~

k
~

&&m, due to the
same reason as the vanishing of the corresponding contribution to t}G' )/8 lnp,+. Thus we are left with the
contribution from Fig. 9(b). This may be analyzed in the same way as the corresponding contribution to
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()G( )/() lnp,+ in the leading-logarithm approximation. The result is

a' '(q —k) )I )("(p„q,e„k) ) .

Hence I z'" satisfies the equation

ar,"'/8 lnp,+ =a' '(q —k, )l,'"+ f l3(q, k„l,)I i"(p„q,&,,li)d'1)

f g(q, ki, li)1)"(p„q,e„l) )d 1),
where

P(q, k), l) ) =a' '(q —k) )5(k) 1) )+—P(q, k), l) ) .

The solution to (8.23) is

I ). (pa q &a k). )
(1) +

= f 5(k) —1) )+g(q, k), li)ln(p, +/m)

00

+ g d k)) d k(„)))f(q,k), k)) )p(q, k)),k2) ) li)(q, k( ()J l) )ln"(p,+/m)
2 nt

(8.22)

(8.23)

(8.24)

XB)"(q, E„l) )d 1), (8.25)

where B)"is an unknown constant to be determined from the boundary conditions. The term inside the square
brackets is the generalized exponential defined in Sec. VII. Now, at the tree level,

G) —— ( igE, ) . —
k —lE

Hence,

I I"= GI"dk =(—im. )( ig(s, )+O(g ) . —
—IN'

Comparing (8.27) with (8.25), we get

B) '(q, e„l) )=(—im)( igE, )+—O(g') .

We may similarly find the expression for (I)I '. It is given by

(8.26)

(8.27)

(8.28)

4)"(Ps,q, eb, k) )=( igloo)(im) f—d l). 5(l) —ki)+P(q, i),k) )ln
m

+ g d k)) ' ' ' d k( )))f(q 1) k)))z

n 'I

X p(q, k», k») . g(q, k( ()J k) )ln"(pb /m)

(8.29)

g being the analog of P for 4"). In fact, it can be shown that g is obtained from g by using the relation

4(q i). k). ) =r'0+(q ki 4))" (8.30)

Equations (8.17), together with Eqs. (8.25) and (8.29) give us the total contribution to the negative-signature
channel. However, we may further simplify the result by claiming that the final result should be Lorentz in-
variant. Then the result may be expressed as a power series in lns. Since

r

lt Pg p +
(1~)"= g ln" ' ln'"-"' (8.31)

m mT
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the coefficient of ln"s must be equal to the coefficient of in"(p,+/m ) in (8.17). Thus we get

d ki 1 (q —ki) y+m= —2m-~g gb
(2m) ki +p (q —ki) +m

00 ] s1+ g ln"
z

d lii d l„gk(q, ki, lii)g(q, lii, lqi) ll(q, li„ iii, li)
) yg 1

(8.32)

IX. CONCLUSION

In this paper we have calculated, without using
any tranverse-momentum cutoff, the contribution to
the fermion exchange reactions in the Regge limit in
the leading- and the next-to-the-leading-logarithm
approximation. We have also developed a systemat-
ic way to calculate the higher-order corrections. We
have separated the contribution to the positive- and
the negative-signature channels. Up to the next-to-
the-leading-logarithm approximation, the contribu-
tion to the positive-signature channel is given by a
single Regge-pole term. The contribution is given in
Eq. (8.15), with a' '(q)+a' '(q) defined in (8.12).
Bi' ' and Bi' ' are two constants, independent of s.
The quantities S"(k), which appear in the definition
of a, are given in Eq. (4.18).

The total contribution to the negative-signature
channel is given in Eq. (8.32), with il&(q, ki, li) de-
fined in Eqs. (8.24) and (8.21).

If we take only the a' '(q —ki)5(ki —li) term
from 11, (8.32) reduces to

d kg S—2m. g fb exp[a(q —ki)ln ]
(2ir} N1

(q —ki) y+m
X . . . , w. (9.1)

(q —ki) +m ki +p

which corresponds to a contribution from the Reg-
geized fermion-gluon exchange diagram. The term
P, on the other hand, represents the four-point reg-
geon vertex for external gluons carrying momentum
ki and li, and the external Reggeized fermions car-

rying momenta (q —ki } and (q —li), respectively.
Our result for a' '(q} agrees with the standard ex-

pression that exists in the literature, ' ' after the in-
tegrations over the plus and the minus components
of momenta are performed in (8.12}. The imaginary
part of the contribution to the positive-signature
amplitude agrees with the results of McCoy and
Wu. We have also expanded our result for A up
to four-loop order and found that they agree with
the results of explicit calculation of McCoy and Wu.
We, however, also find the real part of the first
non-leading-logarithm contribution, which gives the
0(g ) correction to the exponent a(q) and shows
that the positive-signature amplitude Reggeizes in
the next-to-the-leading-logarithm approximation.
This is a completely new result.

We have also investigated the contribution to the
amplitude beyond the next-to-the-leading-logarithm
approximation. It turns out that in the vth non-
leading-logarithm approximation (v=0~ leading
logarithm), the amplitude may be expressed as

V V

g f d kii d k„id kii . d k„'i@i" '(ps &q&es&kii». . . k„'i)
n =On'=0

XS'"'" '(q, k», . . .,k„i,kii, . . .,k„' )I &" (p+, q, e,kii, . . .k„i) . (9.2)

S ' is a calculable function of its arguments and has a well-defined perturbation expansion. The functions
(n, n') ~

I z" are givenby

(n) +f J. (pa q ~a, kii, . . .k„J )

V
(

I

X I (pa &q& IJ»' ' kni&k lj.& ~ &k&&'I }Bi (q&.&»&k ii»~ ~ ~ k&I i }d k'ii ' d k' i, (9.3)
n'=0
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where

(n, n') + I IE '
V7a &q&k]J. &

~ ' k&nJ. k&»»kn'J. }

=S„„.P gk, ,—k,', }+~'""'(q,k „,.
1n"(p,+ /m )

+ rt&=2' n, =1n, =1 n

+
I Pa

~ &knx&k &x& kn'x)ln
m

V r —1

f g (d'k", ,'d'k,", . d'k„", )~'" ""(q,k„,. . . , k„„k",,', . . .,k„",')

(1) (1) (2) {2)XA (q, k)q, . . .,k„~,k)~, . . .,k„~) ~

1 . 2

"r-l " ) (r —1) (r —1) I
XA (q,k)j, . . . ,k„~,k,~, . . .,k„,j ) . (9 4)

I

The functions Bj" ' are undetermined constants of integration, independent of p+. ~e have we]j-defined
Prescriptions for calculating the functions A'"'" ' in perturbation theory. The p,+ independent functions B~" 's
may b«ound, up to the required accuracy, by doing a complete explicit calculation of f',"'s up to the (v —p )

loop order and then comparing the result with expression (9.3).
Similarly, 4z"' is given by

(n)
Vb q&b

where

= g f Bj (q, &b, k'», . . . ,k„', )E'" "'(pb, q, k'», . . .,k„' „k»,. . . , k„,)d'k'„d'k„', , (9.5)
n'=0

(n, n') I I 0 (n, n')~ I 0E '
(x&q&k]z». . . k»'J&k~j&. . .&k»z)=7' E ' (x&q&klj&' '

'&knl&klan.

&
~ ~ &kz'j )p (9.6)

Equations (9.2)—(9.6) give us the asymptotic form of the amplitude under consideration. ~e can, however,
state the final result in a simpler form by using the fact that the result must be Lorentz covariant, and hence
must be a function of the product s=p,+pb, rather than of p,+ and pb individually. The coefficient o
ln"(s/m ) in an expansion in powers of ln(s/m ) must then be given by the coefficient of
»"(P, /m)» (Pb /m) [more generally, the coefficient of („")ln" "(p,+/m)ln'(pb /m), for any r]. Thus the full
amplitude is given by

v

g fd k» . d k„gd kIg. d k„'kg"'(q, Eb, k», . . . , key)
n =On'=0

XE'"" '(s/m, q ku, . . . , k„~,k', j, . . . , k„' j)Bg" '(q, e„kIg, . . . , k„'g), (9.7)

M( n) I

Bz" (q,Eb&k»». kni)= g d k ]j ' ' ' d k„' gBy" (q, eb&kIg, . . . , k„' g)S "'" (q, k&g, . . . , k»g&k']z, . . . , k„' z) .
n'=0

(9.8)

Thus, in Eq. (9.7},BI" and Bz" ' are constants, in-

dependent of s. The s dependence is contained solely
in the function

E'"'" (s/m&q&ku». . . k„q&k )q». . . k„' j ) &

whose functional dependence on s/m may be ob-
tained from Eq. (9.4). For the vth non-leading-
logarithm approximation, we need to keep at most
terms up to order g in the expansion of A. Hence

(9.4} combined with (9.7), gives us the coefficient of
any arbitrary power of ln(s/m ) in the vth non-

leading-logarithm approximation, after we calculate
A to order g using the prescription given in the
text.

%e have also applied the method, used in the text,
to calculate the fermion-fermion scattering. The re-
sults are given in Appendix C. In the leading-
logarithm approximation, the contribution to the
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7
I

73% 72

G= g ( —1) +'S(Ti) S(T~)G+Gg,
inequivalent

gardens

(Al)

FIG. 22. Examples of tulips and gardens.

odd-C-parity amplitude, in which we have an odd
number of gluon exchange in the t channel, is given

by Eq. (C9), while the contribution to the even-C-

parity amplitude, in which we have an even number
of gluon exchange in the r channel, is given in Eq.
(C10). The functions cr and g, which appear in these
equations, are defined with the help of Eqs.
(C6)—(C8) and Fig. 29.
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APPENDIX A: EXPRESSING THE AMPLITUDE
AS A CONVOLUTION OF O'"', S, AND F'" '

In this appendix we shall show how the total am-
plitude may be described as a sum of terms of the
form (3.11). We shall follow an analysis by Collins
and Soper. ' For a given Feynman graph G, we de-
fine a "tulip" to be a subdiagram T, such that the
full diagram may be topologically decomposed into
the form shown in Fig. 3(a}, with the subdiagram T
as its central soft exchange part. T„T2, and T, are
the possible tulips in Fig. 22. We also define a "gar-
den" to be a nested set of tulips I Ti, . . ., T„j such
that TJ C TJ+& for&=1, . . .,n —l. Thus, in Fig. 22,
the sets ITi j, I T2j, f T3j, ITi, T3 j, and IT2, T3j
are possible examples of gardens. For any tulip T,
we define an operation S(T), which we call soft ap-
proximation, which multiplies each of the propaga-
tors of the gluons coming out of T by
M, /(M, + k ), where k is the momentum carried
by the gluon and M, is some large but fixed mass
parameter (M, »m ). The operation S( T) also
picks up only the negative polarizations for the
gluons attached to the upper jet, and positive polari-
zations for the gluons attached to the lower jet. The
operation of S(T) on a Feynman graph constrains
the lines coming out of T (and hence also the lines
within T) to be soft (

~

k
~
(M, }. These soft lines

attach to the upper and the lower blob through y+
and y vertices, respectively. Hence the contribu-
tion to S(T)G may be expressed in the form (3.11).

Following Ref. 15, we shall express the total con-
tribution to a given Feynman graph 6 as

where the symbol S(Ti ) S(T„)G has the follow-
ing meaning. First make soft approximation for the
lines coming out of the largest tulip T„,belonging to
the garden. Then, for T„&, if some of the lines
coming out of T„) are identical to those coming
out of T„, we leave them untouched, but for the rest
of the lines, we again make the soft approximation,
and so on. Two gardens are said to be equivalent if
the soft approximation is identical for both of them;
this happens if they have identical sets of boun-
daries. N is the maximum number of tulips in a
garden. Gz is defined by Eq. (Al). Owing to the
presence of the soft subtraction terms, the contribu-
tion to Gx from an RD of the form Fig. 3(a) comes
from the regions of integration where

~

k
~

& M, for
all the gluons coming out of the blob S. As a result,
the contribution to Gz is suppressed by a power of
m/M, . Since M, is an arbitrary parameter, and the
final result must be independent of M„we can con-
sistently ignore all terms, carrying a power of
m/M„ in our calculation. Hence the contribution
from Gii may be ignored.

The first term on the right-hand side of (Al) may
be expressed as

T inequivalent
gardens with

T =T
n (A2)

S(T)G may be expressed in the form (3.11). The
factor g( —1) + S(Ti). S(T„) makes internal
subtractions inside the tulip T, i.e., they modify the
function S in (3.11), but they do not affect the form
of (3.11). Hence we can see that the total contribu-
tion to the amplitude may be expressed as a sum of
terms of the form (3.11).

APPENDIX B: ANALYSIS OF k;+as("'yak, +

17

FIG. 23. Subdiagrams Tl and T2 in a typical graph
contributing to G'"'.

In this appendix, we shall show that the contribu-
tion to BG'"'/Bk;+ may be expressed in the form
given in (4.20). To do this we use somewhat similar
techniques as used in Appendix A. For a given
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graph G contributing to G'"', let T~ be the vertex at
which the soft-fermion line carrying momentum

q —g k; leaves O'"'. If the gluon line k; is attached
to a fermion loop, then let T2 be the fermion loop to
which the gluon is attached (see Fig. 23}. We define
the soft approximation S(Ti }G by multiplying the
Feynman integrand by M, I(M, + l i ), where li is
the momentum of the gluon line attached to Ti, and
M, is a fixed mass, large compared to m. Similarly
S(T2)G is defined by multiplying the Feynman in-
tegrand by g~ i [M, /(M, + 1 j )], 1'i, . . ., lz

being the momenta of the gluon lines coming out of
Tz. S(T, )S(Tz)G is defined by multiplying the in-
tegrand by a factor of

g [M, '/(M, '+ l,. )][M,'/(M, '+l, ')] .
j=1

We express the contribution from the graph G as

S(Ti)G+Ga (81)

or

M, ~ M,

M'2+l12 J 1 M'2+lJ

+, 2, ,2, (84)
M, +l i i=i M, +lj

respectively. Expression (83) receives contribution
from'the region l i &M, , whereas (84) receives
contribution from the region l i &M, and at least
oneof the l 1 &M, .

But we have seen from the analysis of Sec. IV that
k;+BG/Bk;+ receives contribution from the region
where either li or all the momenta lj are soft.
Hence the contributions to k;+BGz /Bk;+ and
k;+BGa IBk;+ are suppressed by a power of (m IM, )

and may be ignored. The contribution to G'"' from
the other terms, containing soft approximation, may
be written as a sum of terms of the form

If(k i, . . . , k„,k'i, . . .,k„' )

XG'" '(p„q, e„k'i, . . .,k„' }d k'i . d4k„',

(85)

where the function f denotes the contribution from

S(T, )G+S(T2)G S(Ti )S(—T2)G+Gg (82)

depending on whether k; is attached to the open fer-
mion line or a fermion loop. Gq and Gz in Eqs.
(81) and (82) have their integrands multiplied by

1 —M, /(M, +li ) (83)

and

the soft lines. f may contain factors of
5(g.,„kj—g.,skj' ), A and B being two subsets of
momenta k1 ~kn and k &, . . .,kn'~ respectively.
For example, the contribution from the term
S(Ti )G in Fig. 23 has the form

Ifi(ki, li)5(k', —ki )G' (p„q,e„l„k', )

Xd lid k', , (86)

whereas the contribution from the term S(T2)G in
Fig. 23 has a form

f f2«i li l2 l3} ( i —'i —
2
—i)

XG"'(p„q,e„li,l&, l3)d l'id l2d"l', . (87)

fi and f2 in (86) and (87) are the contributions
from those lines in S(Ti)G and S(T2)G, respective-
ly, which are constrained to carry momenta (M„
due to the presence of the soft approximation fac-
tors. If we now take the general expression (85) and
differentiate with respect to k;+, we get

ay (k i, . . .,k„,k'i, . . .,k„' )
ak,-+

XG'" '(p„q, e„ki, . . . ,k„' )d k', d k„'

(88)

If f does not contain a 5 function involving k;,
the above expression has the form given in (4.20).
If, however, f has a 5(g ,&kj —.g ,skj') factor. ,
where the set A contains the momentum k;, then be-
sides getting terms of the form (4.20), we also get a
5'(g,& kj —gj,s kJ ) factor in the integral. One of
the kJ integrals may then be integrated by parts, and
the integral may be expressed as integrals of

BG'" '(p„q, e„ki, . . .,k„')/Bk + .

The G'" 's which appear in (88), however, have less
number of loops than the original O'"'. We may
analyze the contribution to BG'" '/Bk + in the same
way as before. We may iterate the process; at each
stage we encounter integrals of the form (4.20) and
integrals of BG'" '/Bk +, with less number of loops
than the previous stage. Proceeding this way, we
shall finally reach the tree-level contribution to G'"',
for which BG'"'/Bk + vanishes. Hence the total

p

p

FIG. 24. Regions of integration contributing to the
fermion-fermion scattering amplitude.
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contribution to BG'"'/Bk;+ may be expressed com-
pletely in terms of integrals of the form (4.20).

APPENDIX C: GLUON EXCHANGE
PROCESSES

ka~

~ ~

k F{

(b)
{ ')

FIG. 25. Green's functions 6 and F
In this appendix, we shall show how we can use

the formalism, developed in this paper, to study the
gluon exchange processes in the Regge limit; for ex-
ample, the near-forward scattering of two fermions.
If we work in the Coulomb gauge, we may conclude
from power counting that the contribution to the

I

amplitude comes from the regions of integration
shown in Fig. 24. We define the functions
G "(p„q,k~, . . .,k„) and F "'(pb, q, k~, . . .,k„) as the
Green's functions shown in Fig. 25. We define

M M
I'"'(p. ,q, k», . . . ,k„,)=f dk, f dk„G'"'(p„q, k, , . . .,k„,k~+ =O, . . . , k+=O, k„,. . . , k„,)

(C 1)

and the correspondin~ function 4" as integrals of F ". Following the procedure of Sec. VI, we may decom-
(n) ~ (n)

pose the amplitude I "' as

(n) f (n) (n)+ + (C2)

where I +,I "' and I z" are products of transverse y matrices only. Only the (y+/2)I + term contributes in
the leading power in s. Following the procedure of Sec. V, we may now express the full amplitude as

(n') (n, n') —(n)
(Pb&q k&»»' ' 'k&&'l) ('q kll& ~ &knl &kll»kn'i)l + (Pa q &k»&~»~ k»i)

Xd k')j d k„'jd k, j d k„~. (C3)

Bl'+'/8 lnp,+ is given by an equation of the form
(6.5). The second term in (6.5), which is given by
Figs. 9(b)—9(d), has no counterpart in the expression
for Bl'"'/Blnp, +. This is because the only external
off-shell lines in G'"' are the external soft gluons. In
Abelian gauge theory, the sum of all insertions of
the S gluon with propagator (S"k'+S"k~)/
(k @+ie),—to such a graph, is the graphs analo-
gous to Fig. 9(a), which are canceled by the change
in the wave-function renormalization constants for
the external fermions. Thus we are left with the
first term on the right-hand side of (6.5). This may
be analyzed by Grammer- Yennie decomposition.
The K term vanishes when we sum over all inser-
tions. The G part of the ith gluon, when attached to
the fermion line, makes that part soft. Power count-
ing indicates that in the case of fermion-fermion
scattering, the open fermion lines must always carry
collinear momenta, thus soft-fermion lines can come

I

onl from the fermion loops. The contribution to
BI + /8 lnp,+ then comes from diagrams of the form
shown in Fig. 26. This shows that Bl' '/B lnp,+ =0,
i.e., I' ' does not have any logarithm of p,+. (We
remind the reader that I ' ' is the two-
fermion —one-gluon vertex. )

Before proceeding further, we shall make the fol-
lowing classification of diagrams. The sum of all
the diagrams, in which the two fermion lines ex-
change an odd number of gluons (carrying charge
parity —1) in the t channel, will be denoted by A
whereas the sum of diagrams where the two fer-
mions exchange a charge parity of + 1 (even num-
ber of gluons) will be denoted by 3 +.

In the case of the fermion exchange amplitude,
the one-particle exchange amplitude gave the
leading-logarithm contribution. Here, however, the
one-gluon exchange amplitude does not give any
logarithm, since al "'/a lnp,+ =0. We thus have to

M

f 7&'&d&kt [ M

-M

g,
- {-M J'dk-, [M

k =M
I

{-M )

k =-M
I

-k-k2
I

=0

FIG. 26. Contribution to BI + /8 1np,+. FIG. 27. A typical contribution to BI + /8 1np,+.
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-kI

t l, w-lg
i

g+

+ Permutations of the positions of
the vertices I, 2, i, 2 .

kI -"&M

FIG. 28. A typical contribution to BI + /8 lnp,+. FIG. 29. The Green's function A, .

turn to I' ' and 4' ' in order to get the leading-
logarithm contribution to 3 . In the leading-
logarithm approximation, we must try to get as few
soft loops in Bl' '/Blnp, + as ossible. As a result,
typical contributions to BI /Blnp, + come from
graphs of the form shown in Fig. 27. Similarly the
leading-logarithm contribution to A+ comes fromI'" and O'". Bl' '/8 lnp,+ may be analyzed in an

I

exactly similar way and is given by the contribution
from the graphs of the form shown in Fig. 28 in the
leading-logarithm approximation.

The analysis of the contributions from Figs. 27
and 28 may be carried out exactly in the same way
as for the fermion-exchange amplitude. The results
are

Bl'+'(p,+,q, kJJ, k2J )/Blnp, += f d O'JJd k'210'(q kl J k2J k1J k2J )I + (p,+,q, k'1 J k2J ),
I (1)

8 lnp,+
(p,+,q, k, )= f d k', g(q, k, ,k', )I'"(p,+,q, k', ),

where

(C4)

(C5)

cJ(qyk 1J pk2g, k'JJ, k2J ) = I ( —1 )/[( k JJ +JM )( k2J + tu )] ] (M/2)
(2lr)

dk'+
X f [&(M,k'+, kll, k2J, kI J,k2J )+r(M, k'+, k JJ,q klJ k2J, k'lJ k2J )

+r(M, k'+, k2J. ,q —k JJ k2J. )kI J. , kz—J. )],
1 ( —1) M dk'+

Pq klJ k 1J ) g 2, d k2J r(M, k'+, klJ, q —k JJ,kIJ, k2J ), (C7)
(2n) (k,J+p )[(q —kI~) +.JM2]

where M is an arbitrary mass —m and

r(M, x, k JJ,k2J, k'JJ, k2J )

[~(k 1 k2 Ork 1 2 ™rklJrk2J~k1 k2 ~k 1 2 +rkJJrk2J)

+~(k 1 k 2 Or k I k 2 M r k I Jrk 2J. r k 1 k 2 . Or k 1 k 2 + r k 1J. r k 2J. ) 1

X5 (k 1J +k2J —klJ k2J ), (C8)

ll, being the truncated four-photon Green s function shown in Fig. 29. g and o may easily be seen to be in-
dependent of M, by rescaling the positive and the negative momenta by M and M ', respectively.

Equations (C4) and (C5) may be solved to obtain a series expansion for I + and I +, respectively, exactly in(2) (1)

the way we solved Eq. (7.9). Similar solutions may be obtained for 5 and 4 . Putting together all the re-(1) (2)

suits, we find the following expressions for the contribution to the odd- and the even-charge- parity amplitudes
respectively,

A~d= ——, (2m) g u(k, )y+u(p, )u(kb)y u(pb)
1 'i

2 2
2 2 —1 2 2 —1X, (k» +JM ) (k» +JM ) [(q —k» —k») +p, ]-

(2m ) (2n )

r 00 S n

1+ g ln" f g (d 11'Id 12'I )o'(q, kJJ, k2J, lJI', 12I )
n —1

' ~ i=1

X %(qrllJ rl2J, l1, , 12J ). . . cr(q, lJJ,l2J, l JJ,12J )
(1) (1) (2) (2) (n —1) (n —1) (n) (n) (C9)



3026 ASHOKE SEN 27
\

A,„,„=—rr g u(k, )y+u(p, )u(ks)y u(ps)

2

ky +P q —kj +P
(2n )

&& 1+ g, ln" f d lI" d l'"'g(q, kq, lI")
n! m2

(C10)

Corrections to Eqs. (C9) and (C10) due to the nonleading logarithms may be evaluated exactly in the same
way as for the fermion exchange amplitude. Hence we shall not discuss them here. Also, if we want to be con-
sistent, we should add to the expression (C9) for A the one-gluon exchange amplitude, which does not have
any logarithm of s, but which still contributes in the leading power in s. It has the form

f(q)u(k, )y+u(p, )u(kb)y u(pb) .

f(q) is a function of q, but is independent of s.
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