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The effective potential V( |$| ) of a general O(N)-symmetric scalar field theory is dis-
cussed. It is shown that the first and second derivatives of ¥( | | ) with respect to the mag-
nitude || of the classical field cannot be negative. These propertles imply that if spon-
taneous symmetry breaking occurs in such a model, then V(| | ) does not exist for a range
of |#|, and that at most one nontrivial minimum is present in the theory. This analysis
does not depend upon the spacetime dimensionality of the system or upon the particulars of
any perturbation series. The results of a Monte Carlo calculation of the derivative of the ef-
fective potential in a lattice version of the theory are also presented.

The concept of spontaneous symmetry breaking is
of crucial importance in elementary particle physics.
Our understanding of this phenomenon, however, is
based largely upon arguments couched within the
framework of perturbation theory. Unfortunately
one can never be entirely certain whether a perturba-
tion series reflects the fundamental nature of the
theory or whether it includes artifacts of the pertur-
bative method. A nonperturbative analysis of a
problem previously addressed only with perturbative
techniques in fact often leads to surprises.

One such surprise occurs in the study of a quanti-
ty known' % as the effective potential in scalar field
theories. The effective potentla] V(¢) is the energy
per unit volume in a state in which the expectation
values ¢ of field operators are constrained to equal
their (translationally invariant) classical values.®
When the effective potential of ¢* field theory is cal-
culated by means of the (perturbative) loop expan-
sion, the lowest-order-result exists for all ¢ and
equals the potential term U(¢) in the action of the
theory. If spontaneous symmetry breaking takes
place this lowest-order approximate result for V(¢)
possess a double-well (or “wine-bottle) shape.

Nonperturbative arguments,” however, indicate
that whenever spontaneous symmetry breaking
occurs in this theory the exact effective potential
does not exist for a range of ¢ In addition it has
been shown’ that a double-well shape for V()
violates certain positivity constraints and can there-
fore never occur. Thus the loop expansion in ot
theory must break down for a range of ¢ when spon-
taneous symmetry breaking occurs. These argu-
ments are independent of the spacetime dimen-
sionality of the system and are therefore not related
to the known®~!! triviality of continuum ¢* theory
in four and greater dimensions.
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In this paper the arguments developed previously
for single-component ¢* theory are generalized to
models containing an interacting field ¢ whose ac-
tion is O(N) symmetric. The major result of the
analysis of the single-component theory—the nonex-
istence of the effective potential V(| ¢ |) for a range
of |¢ | when spontaneous symmetry breaking
occurs—persists in this more general case. This re-
sult is independent of the presence of gauge fields.
The derivative of the effective potential is also cal-
culated for various values of N in a lattice version of
the theory.

At this point it is useful to review the effective-
potential formalism'~%12 for an N-component sca-
lar field ¢. The following remarks and their impli-
cations (as described above) do not depend on the re-

gulator used. However, since the numerical analysis
presented in the latter part of this paper is per-
formed using a Euclidean lattice version of the
theory, it is this lattice theory which is explicitly
discussed below.

It is first necessary to define the generating func-
tional W{J},

oW = f DpeS#L) (1a)

where ¢ and J are N-component fields defined on
each of the L lattice sites, and the action is given by
the sum

S{¢d}=7 (z) (i~ ;)
ij

+ U )+¢], (1b)
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[26=T11 [ dém -

The quantity U(|@|) is an unspecified O(N)-
symmetric potential term. The notation (ij) refers
to all nearest-neighbor pairs on the lattice (summed
once), and each component of the real {¢} ranges
from — o to + 0. . -

The expectation value ¢; in the presence of
sources {J} is givenby

A~ d
Qi5<<_ﬁ_i>1= g;{l} .

(2)

The effective action F@ } is equal to the Legendre
transform of W{J},

T3} =Wl — 2 (34 - @)

The right-hand side of Eq. (3) is rendered an explicit
function of the {¢} by using Eq. (2). The effective
potential is then determmed from the effective ac-
tion by setting all the |¢, | equal to some value

181,
VU3=7T(18 =131 @

Note, however, that if Eq. (2) cannot be inverted to
give J as a (real) function of ¢, the effective poten-
tial cannot rigorously be defined. This point is cen-
tral to the following analysis.

Equations (2) and (3) can be used to derive a result
which is Legendre dual to Eq. (2), namely,

_aLiﬁ_}'_—-li . (5)
a¢;

As the effective potential in an O(N)-symmetric
field theory must depend only on the magnitude
|¢| Eqgs. (4) and (5) yield

S a AVUBD)
81v=18175

Spontaneous symmetry breaking occurs whenever
the left-hand side of Eq. (6) approaches zero for
nonzero |¢|. Equation (6) is also used below to
determine "the derivative of the effective poten-
tial (with respect to |¢ | ) directly, given J and the
expectation values (¢ ).

For the case of a single-component ¢* theory (i.e.,
when N=1) a relation which crucially delimits the

—4J. 6)

—— 131

FIG. 1. (a) Qualitative form of the effective potential
V(| §| ) when spontaneous symmetry breaking does not
take place. (b) Qualitative form of the effective potential
4 |§] ) when spontaneous symmetry breaking takes
place. (c) Qualitative form of the classical approximation
to the effective potential ¥V ( | g}] ) when spontaneous sym-
metry breaking takes place.

form of the effective potential follows’ from Eq. (5),
namely,

V)
|4\’ §

When spontaneous symmetry breaking does not
occur, V' is always bounded away from zero for
nonzero ¢. In this case Eq. (7) places no real con-
straint on the form of the effective potential and it
is qualitatively much like its classical form [Fig.

(a)]. In the broken-symmetry case, however, the ef-
fective potential of single-component ¢* theory
looks’ qualitatively like the plot in Fig. 1(b). Note
two novel features of this plot: (i) The effective po-
tential is not defined when | é | is less than or equal
to the value ¢ at which W(| ¢ |) attains its
minimum,'® except for a single point at | ¢ | =0; (ii)
the effective potential evaluated at a nontrivial
minimum equals the effective potential at the origin,
where it is set equal to zero [compare the classical
picture, Fig. 1(c)].

Both of these features persist in the general O(N)
theory. In order to demonstrate this fact it is first
necessary to define the matrix

—3*wW(|J])
@ap=""3 7,37, (8a)

and its inverse

V'= M

o] vl )
Yab =L@ ab= " _~ A~ -

‘ 34085

In Egs. (8) the indices a and b refer to each of the N
vector components of a translationally invariant
current J and the corresponding expectation values
¢. The matrix » can be expressed in terms of expec-
tation values:

Wgp = (8¢a 8¢b >J ’ (9a)

3da=ds—(dg)s . (9b)
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The matrix o is positive semidefinite (that is,
none of its eigenvalues are negative). This positivity
condition may be derived by noting that if the clas-
sical potential energy of a particle at x* in N dimen-
sions is given by

Clx)=75((x-8¢7), , (10)

then the squared eigenfrequencies of the resulting
harmonic motion are given by the eigenvalues of the
matrix @. Since motion in the potential, Eq. (10), is
bounded or at most unconstrained, none of the
eigenvalues of  are negative.

When the inverse matrix y exists (i.e., when the
effective potential and its first two derivatives can
be defined), it too must therefore be positive semide-
finite. The matrices  and ¥ can then be written ex-
plicitly in terms of the effective potential,

9] 1 18]

©ap =8ap =5 v +eqep '17,7—7“ , (11a)
V'’ V'

Yab =8 —=—+ezep |[V'——=— |, (11b)

T et KA

where
€= 4&, ’ (11¢)
9]

and Eq. (11a) is understood to be written as a func-
tion of J.

The effect of the applied current J is to decrease
the average action of the system. The only term in
the action which is not explicitly O(N) symmetric is
the coupling of the ¢ field to the applied current J.
Thus when J is nonzero the N-component vector
{¢); always points in a direction such that the ex-
pectation value of the source term in the action is
minimized, i.e.,

Iy, =—1[J]I{¢),| <O, (12a)
and thus from Eq. (6),
=[J|>0. (12b)

Since ¥ is positive semidefinite its determinant can-
not be negative,

-1
Dety=V" K >0, (13a)
|9 |
and therefore
V>0, (13b)

provided V's£0. Of course the presence of spon-
taneous symmetry breaking requires that V' ap-

proach zero arbitrarily closely for some nonzero
| ¢ | . Note that the arguments used to derive the re-
lations (12b) and (13b) are independent of whether or
not gauge fields are present in the path integral.

Features (i) and (ii) of the single-component
theory are easily generalized to the O(N)-symmetric
theory by use of the relations (12b) and (13b). One
method of demonstrating these facts is to consider
the theory on a finite lattice, where spontaneous
symmetry breaking cannot strictly take place (and
V' is therefore strictly positive if |¢ | is nonzero).
All derivatives of W{J} are then analytic, so all
(positive) values of | ¢i are present and the effective
potential exists for all ¢.

If spontaneous symmetry breaking is to occur in
the infinite-system limit for a certain parameter set,
the effective potential for the corresponding finite
system has no minimum for nonzero |¢|. When
the infinite-system limit is taken, by assumption V'’
approaches zero at some nonzero value of |¢ [
denoted by {. The effective potential V'( I¢ | ) must
also approach zero at ¢ in this limit since V" is posi-
tive and V is set equal to zero at |¢| =0. As the
value of § is independent of the way J approaches
zero [the effective potential is O(N) symmetric], the
effective potential ceases to exist to the left of £ in
the infinite-system limit. Thus the effective poten-
tial in the broken-symmetry case must approach the
qualitative form [Fig. 1(b)].

Similar “finite-system” arguments can be used to
show that if a minimum of V exists for nonzero
| ¢ | it must be unique. Such a result is in contrast
to previous speculation® by Coleman, Jackiw, and
Politzer on the existence of multiple minima in the
large-N limit of the model.

Although feature (ii) implies that any nontrivial
minimum of ¥ must be a global minimum, neither it
nor any other part of the above analysis indicates
whether spontaneous symmetry breaking indeed
occurs. Rather, implications of the presence of a
nontrivial vacuum in the theory were discussed.
The following Monte Carlo results are intended to
provide some evidence for the existence of spontane-
ous symmetry breaking in a lattice O(N) model. The
above analysis only utilized the O(N) symmetry of
the potential term U( ]¢ |). For the following nu-
merical analysis, the site potential is specified as

=X ie 12—
U(IQ.I)—N(IQJ fr. (14)

An important feature of the Monte Carlo calcula-
tion is the method used to “update” the lattice in or-
der to bring it into equilibrium. Each component a
of the field ¢; at site i is updated by first generating
a new field ¢]'3’ by
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FIG. 2. (a) Plot of V' vs |$| for N=2, A=10, and
f=2. The open circles show the result of a Monte Carlo
calculation, while the solid line is a plot of the augmented
classical approximation. (b) Same as (a), but with f=—2.

ta=0i.+02r—1A, (15)

where r is a random number distributed uniformly
between zero and unity and A is a parameter chosen
empirically (A~1—10 in the present calculation).
Acceptance of the generated value ¢75 is governed
by the Metropolis algorithm.!* Undesirable correla-
tions are avoided by separating each of the measure-
ments of the expectation values (¢ ) by ten updates
of the entire lattice. The plotted values are the aver-
age of ten such separated measurements. Also, the
entire lattice is first allowed to equilibrate for 100
iterations before any measurements are taken. The
derivative V' is evaluated by measuring the expecta-
tion values (¢ ); and applying Eq. (6).

Figures 2 and 3 show the derivative V' of the un-
renormalized effective potential'® plotted as a func-
tion of its argument ]¢ | for N=2 and 10, re-
spectively, for a 4* lattice. Each pair (a) and (b) of
figures displays this derivative for sets of parameters
A and f for which spontaneous symmetry breaking
apparently does and does not take place, respective-
ly. The effective potential can be obtained from
these figures by integrating with respect to [¢|.
Note that in accord with the above discussion the ef-
fective potential apparently does not exist for a
range of |4 | when V'’ approaches zero for nonzero

11

FIG. 3. (a) Plot of ¥’ vs |$| for N=A=f=10. The
legend is as for Fig. 2(a). (b) Same as (a), but with
f=-10.

The solid line in these figures is constructed by
applying a graphical procedure similar to one used
in Ref. 7 for single-component ¢* theory. The
method is implemented by taking a perturbative for-
mula for the effective potential and removing those
regions where the positivity constraints, Eqgs. (12b)
and (13b), are violated. This prescription yields an
augmented perturbative formula which exhibits
several of the characteristics of the exact result lack-
ing in the perturbation series. This augmented for-
mula is a generalized ‘“Maxwell construction.” Note
that the usual thermodynamic Maxwell construction
is strictly valid only for finite systems.’

The classical (i.e., lowest-order loop expansion)
formula for the effective potential,

, P TP
Velassica](lgi )‘:Wtﬁé'(lQ'Z_f) ’ (16)

is used here as the input to the graphical procedure.
The result is an augmented classical approximation
for V(| ¢ | ) which is equal to

V;ug( |¢ | )ZVe]assical( |¢ | ), (17)

when | dz | is greater than f. The augmented classi-
cal approximation is undefined when |¢ |2 is less
than f. The agreement between this augmented
classical approximation and the Monte Carlo re-
sults'’ is excellent, as can be seen in Figs. 2 and 3.

What has the above nonperturbative analysis
taught us? First, we have learned that the effective
potential of a scalar field theory with O(N) symme-
try cannot have a multiple-well (wine-bottle) form
since its first and second derivatives are non-
negative. This restriction may be a bit surprising,
since the lowest-order term in a loop-expansion cal-
culation is equal to the potential term in the action,
which indeed can have such a structure when spon-
taneous symmetry breaking occurs.

The loop expansion for V(| ¢ | ) is not expected to
converge for small ]¢| however. Each additional
term in this perturbatlon series generally includes’
more powers of In | ¢ |, and so for suff1c1ently small
|¢| each higher term in the expansion is larger
than its previous term. In the broken-symmetry
case the enormous qualitative difference between the
nonperturbative result for the effective potential,
Fig. 1(b), and the leading term in the loop expan-
sion, Fig. 1(c), may be attributed to the breakdown
of this perturbation series.

In addition, the above nonperturbative analysis
yielded some facts about the nature of the effective
potential in O(N) theories. Since these facts do not
appear to be widely known, they are listed below.

(a) The effective potential in the O(N) model does
not exist for a range of |¢ | if spontaneous symme-
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try breaking occurs. This result is in accord with
the speculations and physical arguments given in
Ref. 5.

(b) At most one nontrivial minimum exists in this
quantity. This result is contrary to the speculations®
of Coleman, Jackiw, and Politzer.

(c) The effective potential is zero at a nontrivial
minimum. This occurrence is made possible by
the nonexistence of V for a range of | ¢ |, and made
necessary by Egs. (12b) and (13b) above. Note that
the effective potential is set equal to zero at

18] =o.

The above conclusions are quite different from
those one might have gleaned from a perturbative
analysis>!? of the problem. Perturbative methods
alone thus are not adequate for a complete treatment
of spontaneous symmetry breakdown. Perhaps the
most striking feature of the above nonperturbative
analysis—the nonexistence of the effective potential
for a range of |¢|—is, however, easy to under-
stand. Such a situation arises because it is in general
impossible to realize all values of the classical field
(¢); by the application of a translationally invari-
ant current J. Thus, there is a “forbidden region” of
metastable field configurations in the space of the
(¢);. An example of a similar phenomenon
occurs' ' in magnetic systems, where certain values
of the magnetization cannot be produced by any
constant applied magnetic field. The concept of me-
tastability is also very useful in thermodynamics.!®

It is often possible to perform an analytic con-
tinuation of the effective potential into unphysical
regions. The continuation typically possesses an im-
aginary part, which can be identified® with the decay
probability of the unstable field configuration per
unit space-time volume. Indeed, when the dynami-
cal evolution of field configurations is important the
concept of a complex generalization of the effective

potential may be relevant. This concept could be
used in an approximation scheme similar to time-
dependent perturbation theory, where transitions to
unstable excited configurations may be induced by a
non-Hermitian contribution to the Hamiltonian
(corresponding to complex J). '

A more correct analysis of the time evolution of a
“prepared state” might involve the use of a current
J(x,) which is not spacetime translationally invari-
ant. Such a current can be used to prepare a partic-
ular state at a given time, and the dynamical evolu-
tion of this state could then be studied via the effec-
tive action, Eq. (3).

Although much of the above analysis [in particu-
lar, the positivity constraints, Egs. (12b) and (13b)]
is independent of the presence of gauge fields, in-
teresting phenomena’ arise upon their inclusion.
Extensions of the above research to problems involv-
ing gauge fields (such as the Abelian Higgs model')
are therefore underway.

Note added in proof. Since this paper was submit-
ted several aspects of this problem have been dis-
cussed in detail.® It has also been suggested?! that a
microcanonical simulation? for a finite system may
be useful in resolving problems of metastability in
the effective potential.
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