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An infinite sum of integrals is performed to give the Atiyah-Ward two-monopole solution

explicitly in terms of roots of a certain quartic polynomial. The Higgs fields of the two-

monopole solution are given in the x-y plane and on the coordinate axes. In addition, this

solution is compared with the partial solution found in the Atiyah-Drinfeld-Hitchin-Manin
construction of Nahm and found to be identical up to a scale transformation.

I. INTRODUCTION

For all of the rapid progress in our understanding
of systems of monopoles in various gauge theories,
there is much to be done in the way of producing ex-
plicit solutions whose properties can be examined.
Only the single monopole has been so completely
solved.

Up to now the two-monopole system has been ex-
plicitly solved only in the Atiyah-Drinfeld-Hitchin-
Manin-Nahm (ADHMN) construction, ' and even
there only on the axis containing the monopoles.
The solution over all space is much more difficult to
obtain.

The Atiyah-Ward (AW) approach, on the other
hand, has had one computational difficulty which
has prevented any sort of explicit solution from be-

ing worked out. There is an infinite sum of in-

tegrals which has not been expressed in closed form.
In this paper, we present the closed form of the sum
of integrals and give explicit expressions for the
Higgs fields on the x —y plane and the coordinate
axes.

In the last section, we compare the results of our
work with the partial ADHMN solution of Ref. 1

and after determining the scaling properties of the
fields show that these solutions are the same, set-
tling the question (insofar as our solutions go at any
rate) of whether or not the two different construc-
tions describe different multimonopoles.

%e have attempted to keep the notation and
usages of Ref. 2 throughout this paper.

II. THE ATIYAH-WARD FORMALISM

0'f xk
g =A (x g) 0 ~

2 Ap(x, g), (2.l)
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Then

where
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It was found that ' for

e wu(g)/2+ m(g)/2f=
+6'

where

(2.4a)

y=z+ 2 (x+g —x

d2
e =l — (g —g '), x~ ——x+iy,

where A„(x,g) is regular at g= co, Ap(x, g) is regu-
lar at (=0, and f(x,g) is a function constrained in
such a way as to produce gauge fields of a specified
topological charge, ' in this case two, having the
I,aurent expansion

In the AW formalism the self-dual gauge po-
tentials are "coded" into a transition matrix g on a
specified vector bundle. The requirements of reality
and the existence of a gauge in which the potentials
are time independent imply that if

1 =gp(d)+g—+(g,d)+g (g,d),

u =(z++x+g)gp+ 2yg+, z~ z+it, ——

U =( —z +x g ')gp —2yg

(2.4b)
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P(g) =y'+e
d2= —,(x+' —d')g'+x+zg+ I+ +z'
2

(2.5a)

the most general two-monopole solution up to
translations and rotations is obtained.
O'Raifeartaigh et al. have found an explicit expres-
sion for the coefficients ht of f in terms of the roots
of the quartic polynomial,

III. FUNCTIONS g+(g} AND ming(j}/2

We begin with the evaluation of go.

1 d(1
8'o =

2ni

=—I d8(1+d sin 8)

This is recognized to be the complete elliptic in-
tegral of the first kind. With the definitions

1 1——,x+x —x zg '+ —,(x —d )g

=—„(x+ —d )g (g —a)(g —P)

(2.5b)

1k2= and k'2—:1 —k2=

we have

g(i(d) = k'E(k—) .
2

(3.1)

(3.2)

x g+ , g+
1 1

(2.5c)

(where a~ denotes the complex conjugate of a),
u(a), u(p), and their complex conjugates. The coef-
ficients themselves are

To evaluate g2„, it is useful to employ a different ap-
proach. Expressing the square root as the integra-
tion over a Gaussian, the resulting integral can be
found in Ref. 8 to be

2 ~ —(&+—d')x
2 2

2 [Ft(a 0)+Ft(P a)]4aP
X

(y &+I/ &~ ~+ j~2

F,(a,P) =
(I+

~

a
I
')(I+an')« —~)

(2.6)

I'(n + —, )
k'

I ( —, )I (n +1) 1+k

( y)1 —I —m[ii(a)]'/2

(I+
~

a
~

')(I+a*P)(a' l3*)—
i i (1—k')

+2~1 2 ~ 2 ~n+ & 4k' (3.3)

(2.7)

The evaluation of g+ and g has not been accom-
plished in closed form until now. It is to this that
we now turn.

First, we observe two facts. One, it is apparent
from the form of e in (2.4b) that g+ and g depend
only on g . Two, the Ward reality requirement im-
plies that

Now, taking n =0 and using the relationship be-
tween hypergeometric functions and elliptic in-
tegrals, we see that

gp= ~kK t
2, . 1—

2 k'

and therefore

1
g (P)=g+ —— K i, =Vk'I(. (k) .. 1 —k'

2 k' (3.4a)

Using these facts, we can write

g+(0)= g gz.k'"
n=1

(2.8)

1 dg 21
g2n 2

. ~g(=1 0 ~ (2.9)

Once we compute the function g+, the AW con-
struction is as explicitly complete as our knowledge
of the roots of P(g)

The analogous relationship for elliptic integrals of
the second kind is

E i, =,[E(k)+k IC(k)] .. 1 —k' 1

2 k' 2 k' (3.4b)

To perform the sum and obtain g+, we realized that

g+ is a generating function and used the same pro-
cedure to find it as is used to find the generating
function for Bessel functions. We define
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b=, &1 and c =b —1&0,
(1+k')'

4k'
' 1/2

2—=g b
g+ ————K(k) Z(u)+k' —dnu

1 cnu

snu
(3.7)

we proceed to integrate the differential equation
(truly a laborious process) to obtain

r(n+-,' )f~: r 1
zFi( —,, —,;n+1;c),I' n+1

G, = QPf„.
n=1

(3.5)
where

1snu=
k

and

2
2

1 —k'
(2

Then we have g+(g) =(k'/n)' G.+(g,c). Turning
the appropriate recursion relation for hyper-
geometric functions into one for the f„'s, multiply-
ing by P, and summing gives

g(1 g)(bg —c) — , (bg——c)G+—

=[(2b —1)fi —, cfog]g~ , c—fig. =(3.6)

According to Ref. 2, we are interested only in the re-
gion

1/2

fgf &1 or /g'/ &

It is evident that the sum diverges for

' 1/2
C

b

C

b

and therefore our solution will only be valid for
1/2

0&/& —or 0&( « — 1 .
b b

There may be a way to treat the remaining region,
but the present solution covers more than enough of
space to be interesting and will allow us to make
contact with the ADHMN solution. On that note

0&
i

snafu
i
&1, (3.8)

and Z(u) is the Jacobi g function.
Substituting (3.2) and (3.7) into (2.4b) and simpli-

fying, we find

—u(g)= —,E(k) (x+g+x g ')k'

—(2z +x+g —x g ')

Z (u) —dnu
snu

(3.9)

IV. TWO-MONOPOLE HIGGS FIELDS

Presented here are the results of our study on the
x-y plane and explicit expressions for the Higgs
fields on the axes.

A. The x-y plane

The reality condition of Ward implies that if g is
a root of P(g), then so is ( —g*) '. We used this
fact to choose the roots whose magnitudes were less
than 1 (at least in some region of space). Calling
these a and p after Ref. 2, we have

1/2
+y —X +2lXy

2+d —s +2(1+d —$ —d y )'
g

2 X 2 +y 2

(4.1)

(a ) '= —(p*) d +y —X +2lXy

2+d —s —2(1+d —s —d y )'~

1/2

(42)

In the regions we have chosen to explore it is true that a= —p. Then, in the x-y plane, Eq. (3.9) implies that

—u(a)= ——u( —a) .
2 2

This in turn implies that

(4.3)
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4x 1

d2 —x '
1 —IaI

cosh —u (a)+cosh —[E(a)]~
2 2

(4.4a)

a sinh —u(a)+(a~) sinh —[u(a)]*4a e

d' —x '
1 —IaI' 2

4IaI'
cos Im —u(a)+ sin Im —u(a)+sinh Re—u(a)

(1—
I
a I')' 2 (1+

I
a

I

'}' 2

(4.4b)

(4.4c)

Then, to compute the Higgs field, A4, decompose it
into fields as usual by

A4=$+O++P O +$2O3, (4.5)

where cr+ , (——o—1+io 2} and p+ f1+——i p2 Acc. ording

to (2.3a) and (2.3b), we have

d„D I„=BD I„=B,D I, =0. (4.10a)

and (4.10b)

Furthermore, Ap must have this same behavior.
From this it can be shown that

~x~1 I x=o ~x~—1 I x=o

D
0+ g ~+ Dp

(4.6a) ~„~1 I
y=o= —~y~ 11y=o .

D~
b,o D

D ~o

2ho D

(4.6b)

(4.6c)

The special dependence of the function f of (2.2) im-

plies relations between the hi summarized by

a, bI ——a+El

(d2 x 2)1/2

1+(1+d2 x2)1/2

k'
snu = x

k

(4.11a)

(4.11b}

These results imply that $2 and p2 vanish on the x
and y axes. Putting all of this together, we can spe-

cialize to the axes.
On the x axis the results are, for x &d,

a, bI ———a (4.7b)

2
(4.8)

Using all of this, P& can be rewritten entirely in
terms of derivatives in the x-y plane as follows:

r

a,~,-a ~,
hp

where 8—:—,(8„+iBz ) and 8, =——,(8,+i 8, ). It
should also be noted that this same dependence gives

—u(a) =K(k)Z(u),
2

2k'
coshEZ,

dnu

2k'
sin hEZ,

kcnu

D=hp

4k' dn u —k' cosh EZ
k dnQcnQ

1
k'

P1 ———,k'E—
dn~u —k' cosh EZ

(4.11c)

(4.11d}

(4.lie)

(4.11f)

~o'
+D '-~. —a+

6p
(4.9)

This completes the AW construction in the x-y
plane. By specializing to the coordinate axes expli-
cit expressions for the Higgs fields can be written
down.

Because of the D21, symmetry of these solutions2

the determinant, D, is a function of x, y, and z,
and consequently,

k' snu sinh2KZ & dZ
X +E

2 cnu dnu du

$2——$3=0 .

While on the y axis, we obtain for y & 1

(d2+y2}1/2

( 1 +d 2)1/2+ ( 1 y 2)1/2

iy

k (1—y')'/'

(4.11g}

(4.11h)

(4.12a)

(4.12b)
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2
k2 snu cnu sn u Z(2Q dnu cn u

a = —p= —[(1+d'—z')'~' —(1+z')'~'],
d:iK—(k)T(u), (4.12c) z

snu =
( 1+ 2)1/2

(4.16a)

(4.16b)

60——2k' dnu cosET,
2ik' dnu

SIIlKT,
k cnu

(4.13a)

(4.13b)

where the function T(u) is purely real. Then the
b,i's and fields are —u (a)= EZ—(u) — dnu

2 cnu

=—K(k)S(u) . (4.16c)

a=4k' dn u 1 — sin ETdn Q

k 2cn2Q
(4.13c) Now, however, Eq. (3.9) implies that

ik'dn u

k cn u —dn u sin ET

dnu snu(cn u —sn u) . 2ET dT
X sIn2ET+E

2cn Q dQ

2=$3=0

(4.13cl)

(4.13e)

B. Thezaxis

1
~.~2+

2
go~2

0
(4.14a)

On the z axis relations (4.6), (4.7), and (4.10) give

—u( —a)= —u(a) .
2 2

Combining this with (2.6) and (4.16) gives

2k'cn u coshES,
dnu

b, ,=a,=o,
2k'cn u

62 ——— cosh(ES+lna )
dnQ

A 1 ~24k —k'Esnu /cnu

k

2k'cn2u
2
——— cosh(KS —lna )

dnQ

(4.17a)

(4.17b)

(4.17c)

1

Ao

1
~2~O .

2~0

—~.~-2+—gO~ 22
(4.14b)

(4.14c)

A 1 &2
k'Esnu /cnu

k
e (4.17cl)

Substituting these results into the expressions (4.14),
we find the Higgs fields

Now we need the additional functions A2 and
They are easily computed by performing the

contour integral, as in Ref. 2:

b2 [F2(a,p) +——F2(p, a) ]
4ap

X

P~= —k K sn u —cn u+2 2 2dz
k2 du

k cnusnu2 3

2 =I
2 + tankKS

dn Q

(4.18a)

4 —(v/2)goz+
X+

4ap~—2 2 [F—2(a,P)+F 2(P,a)]
X

(4.15a)
2 22 2

X (dn u sn u —cn2u)
dnu

+
k' +dn u dZ

&2dnu du
(4.18b)

4 (m/2)goz++- -d: (4.15b)

where F2(a,P) and F 2(a,P) are as defined in (2.7).
On the z axis it is also true that a= —p, where

a,p are the roots of P(g) that are less than unity in
magnitude:

cilu silu (k,2 d 2
)

2dn Q

k'2+ k2cn4u cn2u dZ
dnu dnu du

(4.18c)
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V. COMPARISON WITH THE ADHMN
TWO-MONOPOLE SOLUTION

In Ref. 1, the two-monopole solution is found on
the axis containing the monopoles. It has been an
open question whether the A% and ADHMN solu-
tions describe the same monopole systems. Direct
comparison shows that they are indeed the same.

To compare the two solutions, we must ascertain
the relations between their coordinates and normali-
zation. In (2.4b) we see that u(g) is invariant under

This is precisely (4.11b) with the factor of 2 as in
(5.1). At this point it should be mentioned that the
k of this paper was defined the same way as in Ref.
1. Looking back to the scaling properties of P(g)
and e shows that k and k' are invariant under these
transformations even though, by necessity, the
parameter d scales as the x s. The presence of such
invariants is extremely convenient when comparing
the solutions.

Taking (6.11) of Ref. land substituting into (6.13)
leads, after much algebra, to

x —+x'=A, x and e~e'=A, e,
which implies that

1
go~go = go ~

(5.1a)

(5.1b)

l
("4)ti =24i,

where we used the P& of (4.11g) and identified snt
with snu subject to the scale change (5.1).

Since go is proportional to the normalization of the
Higgs fields at infinity, we see that

A4 —
gp, k, x =—~Ag(gp, x)

~

.1 1
(5.2)

It seems that the normalization of the Higgs field
fixes the scale of the coordinates.

Comparing (6.13) of Ref. 1 and (4.11g), we see
that the two Higgs normalizations differ by a factor

1

of —, . We therefore expect that

I
xAw

I

=2
I xADHMN

I

. (5.3)

2

4x2 —— sn t .2 k 2

k'
(5.4)

Aside from this scale factor, there is a rotation be-

tween the two sets of coordinates. The x axis of the
AW solution is the x2 or y axis of the ADHMN
solution. In both constructions the z or x3 axis is
the axis of symmetry when the separation parameter
vanishes.

Now to compare the two solutions we see that
(6.8) of Ref. 1 can be rewritten as

VI. CONCLUDING REMARKS

Two concluding remarks are in order.
The function g+ is a universal function for mul-

timonopole solutions with a single free parameter.
Accordingly, for the conditions of Ref. 10 all of
those solutions can now be explicitly obtained.

At this writing, Panagopoulos" has obtained the
ADHMN solution over all space. In a forthcoming
article his work will be presented. Comparisons be-
tween the two solutions show the same sort of agree-
ment that we have seen so far. In particular, both
solutions depend on the roots of P(g)
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