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Field-operator decomposition in the Lee model
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The decomposition of the meson field operator into internal and external parts is shown

to provide a new, relatively simple approximation scheme that gives approximate eigen-

values, eigenvectors, and scattering phase shifts in all sectors of the Lee model. The form of
the internal meson mode functions involves an energy parameter e that is determined in a
physical way that is peculiar to systems in which the ground-state expectation value of the

meson source current operator is required by the internal symmetry of the system to be zero.

I. INTRODUCTION

A simplified model for the interaction of charged
mesons with a source was proposed by Lee'; the
Lee-model Hamiltonian is

H =—ro+ f co( k)a (k)a ( k)dk
2 '

+r+ f p*(k)a (k)dk

+r f p(k)a (k)dk,
a (k) =A/(k)+aq(k), (4)

Q=2 subspace has been solved exactly, but the
solution is quite complicated. It is likely that Q sub-

spaces with higher values of Q can also be solved ex-

actly, but the solutions are undoubtedly so compli-
cated as to be unusable. This paper presents a gen-
eral approximation method that is relatively simple
and can be applied to all Q subspaces with discrete
ground states of the Lee model described by the
Hamiltonian of Eq. (1). The method is based on the
decomposition of the meson field operator a (k)
into two parts:

where

1 0 01 00
0 —1' + 10' 10

(2)

where P(k) is a normalized internal mode of the
meson field with associated annihilation operator 3
and az(k) is the external meson field; the external
field is orthogonal to the internal mode P(k):

f P*(k)a~(k)dk =0 . (5)

In this Hamiltonian the source has two states, an X
state

~
N) at —b/2 belonging to the eigenvalue —1

of ro and a V state
~

V) at b, /2 belonging to + 1.
When a meson is emitted the source changes from V
to X, and when it is absorbed the source changes
from N to V. Thus there is a conserved charge Q,

Q= —,(1+ro)+ f a (k)a(k)dk . (3)

The eigenvalues of Q are the non-negative integers,
and the Hilbert space of the system splits into sub-
spaces each of which belongs to a definite eigenvalue

Q of Q. The form factor p(k) describes the momen-
tum dependence of the meson emission and absorp-
tion. The dimension of the vector k is arbitrary. It
will be assumed in the following that the minimum
value of co(k) occurs at k=O, that is, co(0) will be
used to represent the minimum value of co(k).

In the Q=O subspace there is only the N state of
the source. The Q= 1 subspace is easily solved. The

The mode function P will be tailored to give the best
results for the particular value of Q under considera-
tion.

Section II discusses how the operator decomposi-
tion of Eq. (4) splits the Hamiltonian into various

pieces, some of which can be treated perturbatively.
The function P is chosen initially in Sec. II to sim-

plify the Hamiltonian; this criterion determines P to
within a single parameter e. Section III displays the
"unperturbed" Hamiltonian and describes its eigen-
states. Section IV considers various approximations
to the ground-state energy in the Q subspace and
corresponding choices of the parameter e.

Reference 3 gives a discussion of the one-meson
sector in general static models with discrete ground
states. This work shows that the considerations of
Ref. 3 are incomplete, in that an important categori-
zation of static meson fields was neglected there,
namely, the subdivision into fields that can and can-

27 2940 1983 The American Physical Society



27 FIELD-OPERATOR DECOMPOSITION IN THE LEE MODEL 2941

not have a ground-state expectation value (GSEV).
Note that this categorization also depends on the
particular ground state under consideration, that is,
a particular meson field can have a GSEV in some
subspaces and not in others. For example, the p-
wave pion field can have an expectation value in the
nucleon ground state, but not in the a-particle
ground state. In cases in which the meson field
under consideration can have a GSEV, Ref. 3 shows
that zero is the appropriate choice for the parameter
e; the remainder of Ref. 3 completes the discussion
of this case. When, as in the Lee model, the meson
field cannot have a GSEV, the form of the |I) func-
tion, in particular, the value of the parameter e,
must be determined from the considerations of this
paper.

II. APPLICATION OF FIELD-OPERATOR
DECOMPOSITION

Substitution of Eq. (4) into the Hamiltonian of
Eq. (1) gives

where G is both the normalization constant for P
and a dimensionless coupling constant given by

(12)
[co(k) —e]

With P given by Eq. (11) the parameters W and V

become

(13)

=[co(k)—W]P(k) . (15)

and the term HI in the Hamiltonian takes the form

HI ——(A +Gr+) f X*(k)ai(k)dk, (14

where the source function for the external meson
field is X(k):

1(k)=Xi(k) =(~p)i ———
Iui

1

6

H =Hg +Hg+Hl +HI,
H„=WA A + V(r A +r+A),

Hi= f co(k)ai(k)a|(k)dk,

Hi=r+ f p, *(k)aj(k)dk

+A" f co(k)$*(k)aj(k)dk,

(6)

The parameters W, V, and G and the function X(k)
all depend on e. Note that p and I are independent
of the strength of the coupling function p(k) and

depend only on its shape.

III. UNPERTURBED HAMILTONIAN

where the parameters 8'and V are given in terms of
the internal-mode function P by

W= f co(k)P*(k)$(k)dk,
(7)

V= f p, *(k)P(k)dk .

The parameter V has been made real by adjusting
the phase of the annihilation operator A. Owing to
Eq. (5) the term HI can also be written as

HI r+ f pi(k)——ai(k)dk

+A" f [co(k)P *(k)]iai(k)dk . (8)

This term takes its simplest form if the internal
mode is chosen so that

pi(k) ~ [co(k)P(k)]j

or, equivalently,

The idea now is to treat the terms Hz and Hz as
the unperturbed Hamiltonian H p.

HU ——Hg +HJ (16)

and HI and HI as the perturbation. The parameter
e is to be chosen so as to minimize the effects of the
perturbation term. Of course the full Hamiltonian
H is independent of the choice of the parameter e.

As in Refs. 3 and 5, the Q subspace of the Hilbert
space will be subdivided according to the number of
external field quanta present. Clearly H p commutes
with the operator for the number of external quanta

f az(k)ai(k)dk .

The n-external-meson subspace of the Q subspace
will be called the nEM~ subspace; n is restricted by
the condition

Iu, (k) =G [co(k) —e]P(k), (10) 0(n (Q in nEM~ . (17)
where e is an arbitrary parameter that is required to
be less than co(0). Thus,

p(k)
G [co(k)—c]

For Q=O there is only the single state IN); in the
following it is assumed that Q) 0. The OEM sub-

space is spanned by the two states
I Q, a and

I
Q»):
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i Q, a ) = (A t)~
i N),

(18)

it follows that

(Eg,g
E—g 1,g

—IV)(Q —l,g ~

& +«
i Q,g)

The states in the 1EM~ subspace are
a l(k)

i Q —l,a ) and a i(k)
i Q —l,b ); similar con-

structions give all the nEM~ subspaces. The nEM~
sector is defined as the union of the mEM~ sub-

spaces for m & n.
Obviously the first step is to diagonalize the

Hamiltonian within the OEM~ subspace, where H is
equivalent to Hq. The two eigenstates of Hz in the
OEM& subspace will be denoted

i Q,g) and
i Q, e ).

The Hamiltonian Hq of Eq. (6) is easily diagonal-
ized using the basis of (18); the resulting eigenvalues

E~s and E(2, of Hz are
1/2

1

Egs ——(Q ——, )W—

Eg, =(Q ——, ) IV+

+Q V2
2

'2 1/2

+QV2
8' —6

2

(19)

IV. APPROXIMATIONS AND e(Q}

The simplest approximate ground-state energy
value and state vector are obviously E@~ and

i Q,g ). At this level the only reasonable choice for
e(Q) is the value that minimizes E&s(e). The Q-
subspace approximate ground state is discrete if and
only if the minimizing value of e is less than co(0).

The 1EM~ states couple directly to the state

i Q,g ) with matrix elements proportional to
(Q —l,g iA+G7.

~ Q,g) and (Q —l, e iA
+Gr

i Q,g). The natural choice of e is the value
that prevents coupling to the lower states
az(k) i Q —l,g), that is, the value of e that makes
the corresponding matrix element vanish:

(Q —l,g iA+Gr iQg)=0.
From the commutator

(20)

[A,Hg ]= 8'A + Vr (21)

Note that the eigenvalues are functions of the
parameter e Each v.alue of E gives a full spectrum
consisting of two states for every value of Q.

In this representation that diagonalizes Hz, HU is
also diagonal. In the OEM& subspace its eigenvec-
tors are

i Q,g) and
i Q, e), with eigenvalues E@s

and E~„respectively, and in the 1EM~ subspace
there are a&(k)

i Q —l,g ) and ai(k}
i Q —1, e ) with

eigenvalues Eg i s+co( k) and E~ &
a+co(k},

respectively. Further eigenstates and eigenvalues of
HU can be constructed analogously.

so that the appropriate value of e is

(23)

This implicit equation is to be solved for e(Q) with

E@s given by Eq. (19) and with IV and V from Eqs.
(13). Again, Eq. (23) has a solution that is less than
co(0) if and only if the approximate ground state is
discrete.

The derived value of e(Q) given by Eq. (23) has
the advantage that e is a meaningful energy differ-
ence of eigenstates of Hz, a feature that is lacking in
the previously mentioned variational choice of e(Q).
With e chosen so that Eq. (20) is satisifed, the only
state that couples directly to

i Q,g) is the state

i Q —1,e ), so that a next approximation to the en-

ergy of the ground state in the Q subspace is the
solution of

O=E —Eg g

—
( (Q —l, e iA+Gr (Qg) (2

/X(k) J'
E —Eg i e —co(k)

(24)

For the special case Q= 1, there is no state

i Q —1, e ), and therefore no state that is coupled to
the state

~
Q,g) by the interaction Hamiltonian;

hence, for e(Q =1), chosen according to Eq. (23),
the ground-state energy in the Q= 1 subspace is ex-
actly Ei s of Eq. (19) with e set equal to e(1). It can
be verified that in this case the condition of Eq. (23)
is in fact equivalent to the standard simple expres-
sion for the ground-state energy; the details are left
to the interested reader. The phase of the right-
hand side of Eq. (24) for E )E~ i ~ +co(0) is an ap-
proximation to the phase shift for meson scattering
by the Q —1 excited state in the usual way. There is
no meson scattering by .the Q —1 ground state in
this approximation.

Finally, H can be diagonalized within the entire
1EM~ sector as in Ref. 3. In this case it is again ap-
propriate to use a value of e(Q) that minimizes the
resulting approximate ground-state energy, discrete-
ness of the approximate ground state is character-
ized as above. Again, an approximation to the
scattering phase shift is obtained; in this case there
is (weak) scattering by the Q —1 ground state, as
well as excitation of the Q —1 excited state.

Since, as was noted above, e is an artificial pararn-
eter, in that H does not depend on e, it seems most
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suitable to use the more physical value of e(Q) given

by Eq. (23) in preference to the variational values of
e(Q), whatever they may be.

V. SUMMARY

The decomposition of the meson field operator
into internal and external parts has been shown to
provide a new relatively simple approximation
scheme that gives approximate eigenvalues, eigen-
vectors, and scattering phase shifts in all sectors of
the Lee model. The form of the internal-meson-
mode functions involves an energy parameter e that

is determined in a physical way that is peculiar to
systems in which the ground-state expectation value
of the meson source current operator is required by
the internal symmetry of the system to be zero.
This parameter has previously been shown to be
zero in systems in which there is no internal symme-
try that constrains the ground-state expectation
value of this current operator.
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