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Complex-time path integrals beyond the stationary-phase approximation:
Decay of metastable states and quantum statistical metastability
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The complex-time path-integral expression for Tr(E —H) ' is reexamined and applied to
barrier-penetration effects in quantum mechanics and field theory. Shortcomings of the
conventional method for low-lying states are analyzed and resolved. This is achieved by an

appropriate treatment of quasisymmetry modes occurring in the path integral and by com-

puting certain contributions to the Fourier transform of the path integral without a
stationary-phase approximation. We obtain agreement with the results of the instanton

method for the ground state. For growing quantum numbers our results smoothly approach
those of the standard WKB approximation. We also consider a scalar field theory with a
false vacuum and compute the decay rates I „of n-meson states built thereon. Final em-

phasis is placed on the quantum-statistical metastability of a grand canonical ensemble of
these mesons at temperature P

I. INTRODUCTION G (E)=Tr(H E)—
In the last decade there has been considerable ef-

fort devoted to the calculation of the energy spec-
trum in quantum mechanics and quantum field
theory by functional-integral methods. Dashen,
Hasslacher, and Neveu' computed the energy spec-
trum of various models in the semiclassical approxi-
mation by considering a complete set of classical
periodic solutions. However, since their procedure
was restricted to real-time (Minkowski) solutions, it
could not account for barrier-penetration effects in
the spectrum. A few years later Polyakov proposed
to evaluate the imaginary-time (Euclidean) version
of the functional integral. This computational
method (instanton method) was applied with great
success to the ground-state splitting of the double-
well potential ' and to the spontaneous decay of the
false vacuum due to quantum tunneling. '

Recently, Patrascioiu has discussed in detail that
in general neither real- nor imaginary-time solutions
are sufficient because, at a given energy, they extend
only over a restricted region of the potential. How-
ever, certain quantum effects, e.g., the level split-
tings or decay rates of excited states, are influenced
by the global structure of the potential. To obtain
the correct description of such processes one must
use complex-time classical solutions which can
probe the total relevant region of the potential at a
given energy.

A very convenient starting point to compute the
energy spectrum is the Fourier transform of the
trace of the Minkowskian kernel

The virtue of this expression is that one never has to
construct a wave function which is of great advan-
tage in field theory. When a functional-integral rep-
resentation of the kernel is inserted, classical period-
ic solutions with complex time arise completely
naturally through the stationary-phase approxima-
tion of the time integral in Eq. (1.1). This way of
computing G(E) leads to the standard WKB ap-
proximation both for the level splittings and for the
decay rates of metastable states by barrier penetra-
tion. This result, however, is not correct for low-
lying states. In particular, the results for the ground
state do not agree with those obtained by the instan-
ton method.

In this paper we analyze the functional-integral
expression of G (E) more thoroughly and show how
to derive the correct semiclassical approximation of
barrier-penetration effects, which is also valid for
low-lying states. This progress is achieved by taking
into account the following two reasons. (1) The
correct semiclassical kernel is written as a certain
convolution of standard semiclassical kernels. This
is nothing but a convenient method to handle vari-
ous approximate zero modes being inherent in the
problem. (2) Various pieces of the times integral in
Eq. (1.1) must be computed without a stationary-
phase approximation.
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This procedure is carried out in S II dec. an ap-

p ie o the bound-state spectrum of the quantum-
mechanical double-well potential. In S
corn ute thepu e e decay rates of a false ground state and

Bo tzm
o excited states built thereon W 1n. e a so consider the

o tzmann average of these decay rates and com-
pare our findings with a recent work of Affl k.r o ec.

n ec. IV, these methods are extended to a scalar
field theory with a false vacuum and with n-

a es mesons) built on the false vacuum. These

lem o
the excited states in the quantum-meehan' b-
em of Sec. III. The decay rate of the false vacuum

tiona
I o is t e spontaneous decay rate, whereas th dd'-ea

na „' y e mere pres-na decay rates I „are induced b th
ence o n mesons. An expression for the induced
vacuum decay is derived in terms of the

a are required to compute the spontaneous decay.
Some explicit results are obtained in the limit of
vanishing energy density difference between th t

e false vacuum. We finally compute the vacu-
n e rue

um decay induced by the presence of an ideal gas of
mesons at a given temperature.

II. BOUND-STATE SPECTRUM
OF THE DOUBLE WELL

I i)/(xj

Xo X X+ X3 X

FIG. l. The double-well potential for a quantum-
mechanics theory with minima at da x an x+ and a max-
imum at x . The intercepts x x0, x&, x2, and x3 are the
turning points of the classical motion in the Mi kin e in owskian

g' ns and III and in the Euclidean II,i ean region II, respec-

K, (x/, tg, x; )

2
1/2

=( 2iriR) —' x, (0)x,(tI)c f

the functional integral (2.2) gives the well-known
semiclassical kernel'

We consider a particle of unit mass in a symme-
trical double-well potential of the form depicted in

ig. 1,
X exp(iS, /i'), (2.5)

2
1 dxH= — +V(x) . (2.1)

We want to compute the level splittings of the
ground state and of excited states by functional-
integral methods. Our fundamental tool will be a
unctional-integral representation of the Minkowski-

an kernel (x/
~
exp( iHt/Ih)

~

x; )—,

Kx t xxf ff x' ) —J &x (t) exp(iS/ii), (2.2

fS(xf ff x; ) = dt [—,x —V(x)]

The action S is calculated along an arbitrary trajec-
tory x(t) which satisfies the boundary conditions
x (0)=x; and x (tI ) =xI.

In the semiclassical limit (Pi~0) the functional
integral (2.2) is da . is ominated by the stationary points
(and almost stationary points) of S, which we denote

yx, t,

(2 3)

6S = —x, —V'(x, ) =0 .
xc

(2.4)

Let us first assume the case of only one t t'y one s ationary

p
'

. en, the stationary-phase approximation of

xI
W = I dx [2(z —V)]'~2

X ~

(2.6)

whereS =8' —z—tI is the classical action and z is the
energy associated with the classical ath x

When di
also hav

'scussing barrier-penetration bl
a so have to consider trajectories in the classically
forbidden x range, where z & V(x). The

o x, / i —V'(x, ) =0 and describe the
motion x, (r ) of a particle in the potential
U(x)—:—V(x). HU:— . ere, ~ is the Euclidean time being
obtained from the Minkowski t' bows ian time t by a formal
analytic continuation ~=it. In that ran e
venientl y use the Euclidean action which is d f'

n a range we con-

as —i times t
ic is e ined

es the analytic continuation of the Min-
kowskian action,

S,= r+z~, (2.7)

Xg
IV= I dx[2(V —z)]'

t

(2.8)

Let us now tackle a specific problem in the
evaluation of the functional inte ral wh

e c assica path in the Euclidean range of the
potential, where
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= [2( V —z)]
d'T

(2.9)
where GJ(E) (j =I,II,III) is determined by trajec-
tories which begin and end in region j of Fig. 1. Let
us first calculate Gi(E),

Assuming z=0(fico), the particle will stay for a
large Euclidean time close to its classical turning
points xi and x2 (see Fig. 1) and it will move quick-
ly through the valley of the potential —V(x). Thus,
each traverse of the Euclidean region is a kinklike
trajectory. Its action has an approximate time-
translation symmetry. There results an approximate
zero eigenvalue Ao(x, ) of the second variation opera-
tor L(x, )=5 S, /5x, , so that the approximation
(2.5) breaks down.

The standard way to proceed in such a situation is
to treat the kink position as a collective time coordi-
nate which serves to eliminate the quasisymmetry
mode. Calculating Det[L(x, )) and A,ii(x, ) in a
reasonable approximation, it turns out that

Det[L(x, )]/Ao(x, ) o: Det[L(x, &)] Det[L(x,z)],
(2.10)

where x, i and x, 2 are the two sections of the kink

x, . After all, an improved semiclassical kernel is
obtained in the form of a convolution of standard
semiclassical kernels"

tf
Kig(xf rf x;)= dtK, (xf tf t;x~ )

Gi(E)= —f dx; f dt e' ' "K;,(x;,t;x;) .

xl
Wi(z) =2 f dx [2(z —V)]'~ (2.1 5)

where T&(z) is the period of the orbit of energy z in
region I. As far as only periodic orbits in region I
are considered, no dangerous quasisymmetry modes
are present and we may insert K;, =K, in Eq. (2.13).
Further, the time integral may be evaluated in the
stationary-phase approximation at the stationary-
phase point z(t)=E. Thus, one periodic orbit in re-
gion I gives the following contribution to Gi(E):

(2.13)

For closed orbits in region I E;, depends on the
starting point only by a factor I2[z —V(x;)]I
Thus, the freedom of the starting point to be any-
where along the orbit in region I leads to a factor

a W, (z}f dx; I2[z —V(x;)]) ' = =Ti(z),

(2.14)

&&x,(t)K, (x~, t;x; ) . (2.11)
Ati(E) =—Ti(E)Ui(E), (2.16)

G (E)=Gt(E)+ Gu(E)+ Giu(E) (2.12)

This expression is appropriate when x; and xf lie in
the opposite Minkowskian regions I and III and
when a single traversal of the Euclidean region II is
taken into account. The position x is chosen
somewhere in the Euclidean region II, only in due
distance from the turning points xi and x2. Howev-
er, for the symmetrical double well it is convenient
to choose x~ lying at the maximum of the barrier
V'(x ) =0. It should be mentioned that computing
the convolution by the method of steepest descent
would only reveal a semiclassical propagator of the
form (2.5). Thus it is substantial to evaluate the
convolution by different methods whenever a
quasisymmetry is involved in the problem.

We demonstrate in the Appendix that the one-
instanton contribution to the Euclidean kernel
(x

~
exp( —IIT/A')

~
x+ ) is easily obtained from a

convolution of the form (2.11).
We now evaluate Eq. (1.1) in the semiclassical ap-

proximation. As far as the algebra of the various
path contributions is concerned, we closely follow
Refs. 1 and 8. The trace operation, which appears
as a periodicity condition in the path space, leads to
the following contributions:

Ui (E)= —exp[i Wi (E)/fi], (2.17)

where the minus sign in Eq. (2.17) is twice the phase
factor exp(im /2), which is introduced by each turn-
ing point. ' Considering multiple traverses of the
basic orbit we are led to a geometrical series in
Ui(E),

00 Ui(E)
a,(E)= g a,„=—r, (E)

fi 1 —Ui(E)
(2.18)

W, (E„)=(2n +1)n.fi . (2.19)

For a single-well potential, Eq. (2.18) is the correct
semiclassical result G (E)=A i(E).

Let us next consider a path with starting point x;
somewhere in region I which enters the Euclidean
region at x&, returns at the point x2, and attains the
starting point after a detour via the turning point xo
(see Fig. 1). According to our previous discussion
two quasisymmetry modes are present in the corre-
sponding functional-integral expression. Thus the
appropriate semiclassical approximation is given by
a convolution of three standard semiclassical kernels
(2.5) being joined together at x

This expression has poles with unit residue
&i(E=E„)= I/(E„E), where—
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1

(x t'x ) = —2V(x ) dt~ dt2Ks(x t —t»xp', xm)Ks(xm~t~ t2'sx2ixm )Ks( m ~ &s i } t (2.20)

where the additional parameters xo and x2 are to
remind us of the turning points of the path con-

sidered. In Eq. (2.20) both velocity factors at the
junction x are approximated by [2V(x ) ]'~
Xexp(im/2) A. fter insertion of Eq. (2.20) into Eq.
(2.13), we obtain a contribution to Gt(E), denoted by
Bt~(E}, being expressed in the form of a threefold
time integral. The contours of the time integrals are
to be deformed in the complex t plane to pass
through all the stationary points of this expression.

By a shift of the integration variables a convolution
of the first with the third kernel in Eq. (2.20) can be
isolated. This convolution, however, can be evaluat-

ed by a stationary-phase approximation since it
lacks the quasisymmetry problem

f dt'Ks(xm t"—t'xt)Ks(x, t', xp', xm }

=K,(x, t";xp ,x ) {2'[z(t")—V(x;)] j

(2.21)

Now observe that the freedom of the starting point
to be anywhere in region I is again given by Eq.

I

l
Bt( (E)= — T, U) Y—) Y2, (2.22)

where Y~ (j =1,2) is the contribution of half a cycle
in region II with turning point xj,

YJ(E)=[2V(xm)]'

a
(2.23)

Again, a is the integration contour suitably de-
formed as discussed above. Note that the factoriza-
tion Y& Y2 in Eq. (2.22) arises from the two
quasisymmetry modes being taken into account.
Next we insert Eq. (2.5) and the appropriate turning
point factors and change over to the Euclidean time
variable ~ =it. There results

(2.14). Further, the remaining t" integral has contri
butions both from the Minkowskian region I and
Euclidean region II. The former contribution, how-

ever, can be evaluated by a stationary-phase approxi-
mation. Thus we obtain

' —1/2

Y2(E)——t (2sr&) ' '
J dr

2 exp{ —[IV&(z)+(z —E)r]/pj

x2
IV2(z)=2 f dx[2(V —z)]' 2,

"m

(2.24)

(2.25)

i
Bt(E)= T, R, —

1 —Ui

R=- Y) Y2

(1—Ui)(1 —U3)
'

(2.26)

where U3 is the contribution of one cycle in region
III and is defined analogously to Eq. (2.17). Bt(E)
comprises only one cycle in region II. Summing up

and an analogous expression for Y&(E). Here, the
running energy z =z(r) is determined by resolving
the relation r= —BW3(z)/Bz. The saddle point of
the integrand in Eq. (2.24) is on the positive real axis
of the complex r plane at rs

—=r(E) and the direction
of steepest descent is perpendicular to the real axis.

Prior to the further evaluation of the integral
(2.24) we now first complete the sum over the vari-
ous path contributions to G (E).

We have to attach an arbitrary number of cycles
in the Minkowskian regions I and III to the basic
trajectory which has led us to Eq. (2.22} and have to
sum over all of them. Thus we obtain

I

multiple cycles in region II generates a geometrical
series in R. Thus we arrive at

(2.27)

An analogous expression is obtained for G&«(E).
Further, it turns out that G«(E) is suppressed by an
extra factor exp[ —IV2(E)/A'] as compared to G&

and G«t and therefore may be neglected. Thus the
semiclassical approximation of G(E) assumes the
form

; [T) U) (1—U3)+ T3 U3(1 —U, )]
G(E)=-

Pi (1—U))(1 —U3)+ Y( Y2

(2.28)

which holds for a general double-well potential. In
the case of a symmetrical double well we have

T] ——T3, U~ ——U3, and Y~ ——Y2.
Assuming that Y2 is small we may find the poles

of Eq. (2.28) iteratively. For E=E„, where E„ is
determined by Eq. (2.19), there results from Eq.
(2.28)
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1

E„+hE„/2 E—

1

E„h—E„/2 E—'

where EE„ is splitting of the nth excited state

AE„= Y2(E„) .2A

Ti (E„)

(2.29)

(2.30)

!V(x) (

Equation (2.30) is the semiclassical result of the level

splitting in a symmetrical double well by barrier
penetration.

Let us now return to the further evaluation of
Y2(E„). In recent papers, ' the Euclidean time in-
tegrations are done by the method of steepest des-
cent. Assuming that this is correct we obtain

Yz(E„)= Y2'(E„)=exp[ —IV2(E„)/iii] . (2.31)

Thus we arrive at the standard WKB approximation

bE„"= exp[ —W2(E„)/R] .
Ti (E„)

(2.32)

It is well known that Eq. (2.32) is not correct for
low-lying states E=O(fico), where co =V"(x+).
We wish to emphasize, however, that our result
(2.30) is more general and also holds in that energy
range, where Eq. (2.32) fails. Rather it is the
saddle-point approximation of the integral in Eq.
(2.24) which breaks down for E=0(flu). In this
case considerable contributions to the integral come
from those z values for which the smoothness as-
sumption of c} W2/c)z is not valid.

In order to obtain explicit results we now solve
Eq. (2.24) in a reasonable approximation. With the
method of the Appendix [see Eq. (A8)], we obtain

Z Z
W2(z) =So——+—ln

N CO

2z

A
(2.33)

(2.34)

where we have restricted ourselves to the harmonic
approximation in the wells, E„=fico(n + —, ).

However, it is possible to evaluate the integral
(2.24) exactly when Eq. (2.33) is inserted. Changing
over to the integration variable u =(A /2ficu)
Xexp( cur ), we arrive at th—e expression

where So ——W2(0) and the constant 2 is determined
by the asymptotic behavior (A7) of the instanton
trajectory x(r)=x+ —(A/2') exp( —cur). Insertion
of Eq. (2.33) in Eq. (2.32) gives

n +1/2

exp( So/fi), —
fico(2n + 1)

Xo X X) Xm)

FIG. 2. The potential for a quantum-mechanics theory
with a metastable ground state.

' E/Ace

Y2(E)=v'2n. A

2%co

X exp( —So/i') . f du u 'e",
2m.i P

(2.35)

where v=E/fico+ —,. Since v)1, the integration
contour P can be continuously deformed to encircle
the negative real axis of the complex u plane in the
counterclockwise sense. The integral in Eq. (2.35)
thus obtained is Hankel's contour integral of the in-
verse I function 1/I (v). Thus we obtain from Eq.
(2.30)

1hE„= AEp,n! (2.36)

V (x)=V,(x)+3 V
X+

(2.37)

where the splitting of the ground state b,Eo is 'given

by Eq. (All). For n =0 our result (2.36) is identical
to the result of the instanton method Eq. (All). For
n »1, we may approximate n! in Eq. (2.36) by the
asymptotic Stirling formula. Just in this way the
standard WKB result (2.34) is obtained from Eq.
(2.36).

Summarizing, there are three basic ingredients in
our derivation of the final result (2.36): first, convo-
lutions of semiclassical propagators in order to deal
with the quasisymmetry modes; second the sum over
multiple traverses of the basic orbits in the regions I,
and II, and III; and third a treatment of the Euclide-
an time integrals without resort to a saddle-point ap-
proximation.

Let us at the end of this section shortly discuss a
slightly asymmetric double-well potential. We add
to the symmetrical potential V, (x) of Fig. 1 a linear
term
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and wish to consider AV small compared to fico.

The case of 6V large is the problem of the false vac-
uum decay and will be discussed in Sec. III. Ac-
cording to our choice b, V «%co, we may further as-
sume Y& ——Y2 in Eq. (2.28). By the insertion of

Since the Hamiltonian is Hermitian, G(E) can
have poles only on the real axis. It is therefore im-
possible to obtain the decay rates directly from
G(E). It has been stressed in the literature, s that
one should rather consider the smoothed density of
states'

U((E=E„)=1+ T)—(E E„——b, V),
(2.38} pr(E) =—ImG (E +iy ) .

1
(3.1)

U, (E=E„)= 1+ T, (E— E„+—6 V),

E =E„+[, EE„+—bV ]' (2.39)

where bE„ is given by Eq. (2.30). For n =0 the
same result has been obtained in a recent work by
Levine. ' This author used instanton methods and
exploited an analogy with an Ising model in an
external field.

in Eq. (2.28} we immediately obtain the poles of
G(E) at

Here, the discrete states in the box are smoothed
with a Lorentzian width y which must be chosen (i)

large compared to the level spacing 5 in the
quasicontinuum and (ii) small compared to the
widths of the unstable states. Under the first condi-
tion periodic trajectories in region III contribute
negligibly to pr(E), since there holds

U3 (E +iy )
~

=exp( ~1 /5 ). The second condi-
tion guarantees that the imaginary part y is still
negligible in the corresponding expressions for re-
gions I and II. Thus we obtain, with Eq. (2.28),

III. DECAY WIDTHS OF UNSTABLE STATES
AND QUANTUM-STATISTICAL METASTABILITY

T] U)
pr(E) = Re

1 —U] +X2
(3.2)

In this section we demonstrate how to apply the
above methods to a system with a false ground state
and with excited states built thereon. We calculate
the individual decay rates of these quantum states.
Also the Boltzmann average of these decay rates is
considered.

We again consider a problem which is described
by the Hamiltonian (2.1), where now the potential
has a form as depicted in Fig. 2. Such a system has
well-localized quantum states in the well around
x =x with finite escape probabilities through the
barrier. It is convenient to assume a large normali-
zation box with an infinite well at x =L in region
III and to consider the limit of L going to infinity.
Then, complex time periodic so!utions exist in re-
gions I, II, and III completely analogous to the
problem in Sec. II and G(E) is again given by Eq.
(2.28).

where Xz(E) is the contribution of one periodic orbit
in region II to pr(E). The expression Xz(E) differs
from Y& Y'2 in Eq. (2.28) by two subtleties.

(1) Since a periodic orbit in region II bounces off
the turning point x2, only one quasisymmetry mode
is associated with that trajectory. Thus, Eq. (2.20)
can be replaced by an expression which involves
only one convolution of semiclassical propagators.
Most conveniently these propagators are joined to-
gether at x =x2.

(2) It is well known that there is one fluctuation
mode about the bounce trajectory which has a large
negative eigenvalue. It has been discussed in detail
in the literature ' that this behavior gives rise to an
additional factor —, in the semiclassical propagator.
Thus, X2(E) assumes the form

—1/2

X2(E)= ——(2n fi) '
J dr

2 ~ ()z

Wq(z) =2 I dx [2( V —z)]'i',
1

exp{ —[W2(z)+(z —E)w]/fi], (3.3)

(3.4)

W)(E„)=(2n + 1)n.R, (3.5)

where r = —BW2(z)/Bz, and a is again a contour
which passes through the saddle point in the direc-
tion of steepest descent.

For 8'2 &&A, the smoothed density of states,
Eq.

'

(3.2), has poles at complex energies
z„=E„—iA'r„/2, such that

r„= X, E„.2

»(E. )
(3.6)

Equation (3.6) is the semiclassical result for the de-
cay width of the quantum state n. The further dis-
cussion of our result (3.6) is much the same as in the
preceding section below Eq. (2.30). Evaluating Eq.
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(3.3) by the method of steepest descent gives
Xz(E}=Xz,(E), where

Z= g exp( PE—„) .
n=0

(3.14)

Xz,(E)—:exp[ —Wz(E) /&]/2

Thus we arrive at the standard %KB result

I „"= exp[ —Wz(E„)/A'] .
Ti (E„)

(3.7)

At temperatures P ' small compared to fico the par-
ticle is mainly in the low-lying metastable states, so

1that we may insert E„=(n+—, )fico and our result
(3.11) for I „. Then we can perform the sums in
Eqs. (3.13) and (3.14) explicitly and obtain

Further, in the approximation analogous to Eq. (A8)
we have r=(1—e ~ )exp e ~~ I

A

2W
(3.15)

E E 2E
W (E)=Sb ——+—ln

CO 67
(3.8)

where Sb ——Wz(0) is the action of the bounce x(r)
and 3 is a characteristic constant occurring in the
asymptotic behavior of x(r ), having bounced off the
turning point x2 at 7 =0,

which exhibits a rapidly growing decay probability
when the temperature is raised.

We conclude this section with some remarks on a
recent treatment of the same problem by Affleck.
This work has three basic ingredients.

(i) The sum in Eq. (3.13) is replaced by an in-
tegral,

x(r) =x + exp( —cor) .
2N

By insertion of Eq. (3.8) in Eq. (3.7), we obtain

(3.9} I=Z ' EpEI E exp —E

(ii) The standard WKB result

(3.16)

s
2

2' (2n + 1)fico

n +1/2

exp( Sb /fi), —

(3.10)

where we have confined ourselves to the harmonic
approximation E„=(n + , )fico—

Like in the problem of Sec. II, the standard WKB
result (3.7) or (3.10) is not correct for low-lying
states. Again, this failure is caused by a breakdown
of the saddle-point approximation of Eq. (3.3),
which has led us to Eq. (3.7). However, by use of
Eq. (3.8) we can evaluate Eq. (3.3) exactly and arrive
at the correct semiclassical result

r(E) = exp[ —Wz(E)/iii]2' (3.17)

Pfi= c}W /c}E=—T(E) . (3.18)

The result is
—1/2

r=Z-' 2~f exp[ —( W, +ET)/e] .
aE

(3.19)

is inserted in Eq. (3.16).
(iii) At low temperature the integral is dominated

by energies close to a stationary point,

1~n=
nt Ip,

1/2

2
—exp( —Sb /fi) .

(3.1 1)

(3.12)

In order to compare Affleck's result (3.19) with our
result (3.15), we have to use the expression (3.8) for
Wz(E). The stationary point is at

E =E,= exp( 13fico ) . —
S (3.20)

I =Z ' g I „exp( —PE„),
n=0

(3.13)

For n =0 and n =1 our result is identical to the
findings of Affleck and De Luccia, ' who evaluated
the functional integral of the Euclidean propagator.
For n »1, one may insert the asymptotic Stirlin~
formula for n! in Eq. (3.11), thus returning to I'„'
again.

Let us next apply our result (3.11}to the decay of
a system at a finite temperature. The equilibrium
decay rate at temperature P ' is determined by tak-
ing a Boltzmann average of I „,

Es )) (3.21)

Affleck's approximations are justified exactly under
this condition. The interesting point, however, is
that the resulting expressions (3.19) or (3.15) are still
valid in the limit f3fao~ oo. This property has been
already mentioned by Affleck.

We find that the resulting expression for I is identi-
cal with Eq. (3.15). Thus, to leading order in A' the
same value of I is obtained by both methods.

Finally, it should be mentioned that Affleck's cal-
culation is valid in the semiclassical limit A~O with
Pfico held fixed. In this limit we have
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IV. INDUCED VACUUM DECAY
IN FIELD THEORY

In the preceding section we explained how to use
complex-time functional integrals to study the decay
rates of a quantum-mechanics problem. In this sec-
tion we will apply these methods to a scalar field
theory with a false vacuum.

We consider the theory of a single scalar field in
v-dimensional space-time with dynamics defined by
the Lagrangian density

W=-,' a„ya~y —V(y) (4.1)

This is the equation for a particle of position P at
time r in the potential —V with a time-dependent
damping force. In the limit eA, /co &&1, explicit ex-
pressions for the bounce are available. The particle
must start with zero velocity very close to P, stays
close to P for some very large time r =R, then
quickly moves through the valley with negligible
friction and comes to rest at P+ at time infinity.
Thus, the bounce looks like a large v-dimensional
spherical bubble of true vacuum separated by a thin
wall from the false vacuum without. The bubble
wall is a solution of Eq. (4.4) for v = 1,

with a potential V(P ) as depicted in Fig. 3,
2

co v A, co

8 A, 2N

(4.2)

P(r=R)=P+ tanh
co(r —R)

2
(4.5)

In the thin-wall approximation, the action Sb has a
contribution from the bubble volume and a contri-
bution from the bubble wall

In fact, this is the only renormalizable theory in
v =4 dimensions. The false vacuum P =P+—:c0/v A, differs from the true vacuum state p =p
—:—co/v A, by an amount of energy density b V =E.
The mesons built on the false vacuum have mass
m =%co The .state P=P+ is a stable classical
equilibrium. However, in the quantum theory it is
unstable by barrier penetration.

We now first consider the bounce P ( x ), a solution
in v-dimensional Euclidean space of

2 N
s) ——I dr[ —,P

' +V(P)]=—
00 3

We obtain R by minimizing Sb, dSb ldR =0,
sI

R =(v —1)—,

(4.7)

(4.8)

v/2 v/2
Sb= — R "e+ R~ 's (46)

vl (v/2} I'(v/2)

where s~ is the one-dimensional action

t) /= V'(P) (4 3) v 1
v/2

Sb= R (4.9)
with P(x)~P+ as

~

x
~

=r~ao. The bounce of
lowest action is spherically symmetric, ' The bounce P approaches P+ according to

q + Q(r)= V'(P) .
d (v —1) d

(4.4)

P (r) P+ ——AF„(r), —
f~ao

(4.10)

where F„(r) is a solution in v-dimensional Euclidean
space of

( —t) +co )F„(r)=5"(x) . (4.11)

The constant A is chosen in accordance with Ref.
10. The solution of Eq. (4.11}is

Kq(d'or)
Fy(r) =

(2n )'~ (d'or)l'
(4.12)

where K& is a modified Bessel function with index
p—:v/2 —1. Thus we obtain

' (v —1)/2
Q)

P (r) P+ ——
+r~~ 2' 2mr

e
—NP

FIG. 3. The potential for a field theory with a meta-
stable ground state. The intercepts P& and Pz denote the
boundary values of the distorted bounce solution con-
sidered in Eq. (4.15).

(4.13)

The constant 2 can be evaluated in the thin-wall ap-
proximation. There results from matching Eq.
(4.13) to Eq. (4.5) just outside the wall,
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3—v

A =4 (2moR)(v —1)/2emR (4.14)
Moving on now to the abbreviated action

W(z) =Sb+Si(r) —zr, (4.23)

Let us next consider the following superposition
of widely separated bounces lying on a string orien-
tated in some distinct direction e~ in the v-

dimensional Euclidean space:

P(x) =W(r) —n( I
x —y I

) —n( I
x+ y I »

(4.15)
W(z) =Sh-

e

2zV
Q7 ~ g2

aw
az

there results from Eq. (4.21)

(4.24)

(4.25)

n( I
x+ y I

)=0+ 4( I

x—+ y I
) (4.16)

—CO
2

z= e
2V (4.26)

=Ss+Si(y), (4.17)

where we have decomposed x into vectors parallel
and perpendicular to y, x = x

~
~+ xz. Expanding to

second order in i) we obtain, with Eqs. (4.15) and
(4.3),

Since P —P is only important in the harmonic range
of the potential, V(P)=co P /2, P(x) is an approxi-
mate solution of Eq. (4.3) with the property grad
P(x=+y/2)=0. Thus, P(x) is a slightly distorted
bounce which for x =0 bounces off the boundary of
the Euclidean region at P~ ——P(0) near P and
reaches for a finite value of x, x = + y/2, the boun-

dary of the Euclidean region near P+,Pz ——P(+ y/2)
(see Fig. 3). Thus, P( x ) is analogous to a solution of
Eq. (2.9) for z &0.

The Euclidean action of P(x) is given by
y/t'2

S(y)= J d" 'x J dx~~[ —,(BP) +V(P))

Thus we have obtained an "effective" abbreviated
action which is identical in form with the corre-
sponding expression (3.8) of the quantum-
mechanical problem. Observe the subtlety that the
dimensionless constant A in Eq. (3.8) has been re-
placed in Eq. (4.25) by the dimensionless constant
A /V of the field-theoretical problem.

Before tackling the general problem of the in-
duced vacuum decay with the methods of the
preceding section, we briefly state the results ob-
tained from the functional integral of the Euclidean
kernel,

(y~ ~

exp( HT/fi)
~
y+—)

= J &P(x) exp[ —S(P)/R] . (4.27)

After saturating the functional integral by a dilute
gas of bounces, one obtains for the spontaneous de-
cay rate of the false vacuum per unit volume, ' '

S&(y) =2 fd" 'xzP xi,xii =—
2 r=s'"

V 2mB

—1/2
Det'[ —8'+ V"(P ) ]

Det[ —8 +co ]
X tP xg, x~~

=
dxii 2

A'F, (
I y I

) .

(4.18)

(4.19)

Xexp( Sb Ifi), — (4.28)

(4.20)

where V is the volume of the (v —1)-dimensional
coordinate space. By use of Eq. (4.11), the Fourier
integration can be performed, thus obtaining

S,(r)= — exp( —co r),
2 Vcoq

q

( 2+ ~q2)1/2 (4.22)

(4.21)

By means of a Fourier transform with respect to the
v —1 space coordinates s an expression merely de-

pending on the Euclidean time ~ is obtained,

dv —l~& i q ~ sp [( 2+~2)1/2]
V

where Det' denotes the determinant with the v
translational zero modes omitted. The singularity
structure of the functional determinant in Eq. (4.28)
for e—+0 has been considered in the literature. '

The one-meson decay rate I
&

has been computed
by Affleck and De Luccia' by evaluating the func-
tional integral of the Euclidean propagator

This method yields

I)
V

~o

2Ei V V
(4.30)

D ( s, T)= (0
~ [P ( s ) —((} ] exp( HTIA)—

Xld(0) —0, ] l» . (4.29)
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where A is the constant occurring above in Eq. (4.13)
and E) ——i)i(co + k )'i is the energy of a meson with
momentum Ak.

In order to compute the general induced vacuum
decay, we follow our approach developed in Sec. III.
It is obvious that now the number of quasisymmetry
modes is higher by a factor v as compared to the
quantum-mechanical case. Furthermore, if we were
ambitious to compute the absolute numbers of the
decay rates I „, we would have to master all those
difficulties which are connected with the computa-
tion of the functional determinant in Eq. (4.28) for
I 0/V. ' However, this can be avoided if one is only
interested in the enhancement of the induced decay
over the spontaneous decay. In the following, the
enhancement factors (x„=r„/rp are easily obtained
by exploiting some analogy with the quantum-
mechanical case in Sec, III,

Our starting point is the quantum-mechanical re-
sult

r(E) X2(E)

r(E fico ) X2 (—E —))icp )

%co

2%co E —fun/2
' (4.31)

(4.32)

where E'"' is the total energy of an n-meson state
and the zero-point energy has been subtracted,

n nE'"'= g E = g fi(co +k )' (4.33)

For n = 1 the decay rate of the one-meson state is
obtained from Eq. (4.32),

which follows from Eqs. (3.6) and (3.11), where the
last expression is obtained by use of Eq. (3.8). Now
observe that the "effective" action W(z) in Eq.
(4.25) is identical in form with the quantuin-
mechanical action W2(z) in Eq. (3.8). Furthermore,
W'(z) enters into an expression X(E) which is de-
fined analogous to Eq. (3.3). All additional factors
of the functional determinant being omitted in X(E)
cancel if the ratio of decay rates is considered. Thus
we obtain, for our field-theoretical model,

(E(n)) &2 E,
(E(n) E ) 2E. V' E(n)

r,(E'")=— r, (E, )
r (E"))

2 I )(E()

r (E(2))
+ r((E2) (4.35)

and insert Eq. (4.32) for I 2/I ) and Eq. (4.34) for
I &. There results

1

2 2E) V 2E2V
(4.36)

The n-particle decay rate is obtained by induction,

r„(E'"')
I „(E("')=-

n,.
( r„(E'"' E,. )

xr„,(E'"'—E, ), (4.37)

where I „/I „(is given by Eq. (4.32) and I „)has
been obtained in the preceding step. There results
the simple expression

r„(E'"')/v =
n

g2 n

2v II ' r /v. (4.38)

n

1I =Z ' g e~)'n&nl
yg t

(4.39)

(4.40)

Equation (4.38) is our final result for the decay rate
per unit volume of the false vacuum induced by the
presence of n noninteracting mesons with total ener-

gy E'n'. It contains the correct time dilatation fac-
tors 1/E; associated with the motion of the mesons.
The expression (4.38) is renormalized by replacing
I 0 by its renormalized expression and by writing A
and E; in terms of the renormalized parameters coR

and kg.
Let us finally apply our result (4.38) to the decay

of the false vacuum in the presence of an ideal gas
of mesons being in contact with a particle reservoir
and with a heat bath of temperature I/P. In the fol-
lowing, we confine ourselves to a (3 + 1)-
dimensional Minkowskian space. The equilibrium
decay rate at temperature I/P is determined by the
expression

r)(E()= I p,2Ei V
(4.34)

which is identical with the result of Affleck and De
Luccia, ' Eq. (4.30).

For the computation of the two-particle decay
rate I 2, we first symmetrize I 2(E' ') with respect to
the single-particle energies E' '=Ei +E2,

where m =fuu is the energy of one meson at rest, p,
is the chemical potential, and p is the single-meson
density

(4.41)p(E) = E(E2 m 2)1/2e PE—V

2n. A'
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By use of the factorization property of the n-particle
partition function,

1Qn=, Qi"

Qi ——J dEp(E),

the grand partition function Z assumes the form

(4.42)

(4.43)

Z = g ep""Q„=exp(e~"Qi) .
n=0

(4.44)

(4.45)

where K„(z) is a modified Bessel function. At low
temperatures, Pm ))1, this expression becomes

I — AN Io—=exp( —N) exp
V 2Vm V

' (4.46)

After computing the integrals in Eqs. (4.40) and
(4.43) and eliminating p in favor of the mean parti-
cle number N, we finally obtain

r — a'N Ki(Pm) ro

in the semiclassical limit and for large T. Since now
we are completely restricted to the Euclidean
domain, the tilde above the Euclidean quantities is
omitted. The stationary points of the corresponding
functional-integral expression are solutions of Eq.
(2.9), where now z—:—u & 0 is required,

dXc = [2(V+ u)]'i
d7.

(A 1)

)=[2V(x )]' '

&( dr K,(x+,r;x )
0

&&K,(x~, T —r;x ), (A2)

8 8'
—1/2

K,(, ;x ) =(277fi) 'i x, (0)x, (1 )

in order to satisfy the boundary conditions
x, (0)=x and x, (T)=x+. According to our dis-
cussion in Sec. II, the one-instanton contribution to
the kernel requires one convolution of standard
semiclassical kernels,

and at temperatures much higher than the mass,
Pm «1,

&(exp[ —( W —ur )/R],
(A3)

r — a'N Pm ro—=exp( N) exp—
V 2Vm 2

(4.47)
W(u) = I dx [2( V+ u)]'i, (A4)

Thus, for fixed X, the decay probability decreases
when the temperature is raised. This somewhat
peculiar behavior is explained by the time dilatation
factors 1/E; in Eq. (4.38) and by the increase of the
mean particle energy. However, at high tempera-
tures particle-creation processes induced by the non-
linear terms of the potential are important. These
processes cause an increase of N and finally also an
increase of the decay probability when the tempera-
ture is raised.

where r =8 W/Bu. For u « V(x ), we can evaluate
Eq. {A4) in a reasonable approximation. Let us de-
fine a quantity EW(u)—:W(u) —Ws(u), where Ws
is given by Eq. (A4) with V replaced by the harmon-
ic potential Vs

——co {x—x+) /2, co = V"(x+).
Now observe that the expansion of 6W in powers of
u will rapidly converge. Thus we obtain in a reason-
able approximation

W(u) = Wp(u)+ W(0) —Ws(0)
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APPENDIX

We briefly consider the functional integral of the
Wick-rotated Euclidean kernel

K:(x+ i
exp( HT/A) ix )— —

An explicit result is obtained by use of the instan-
ton trajectory x(r),

dx 2 V
—i(2 (A6)

and of its asymptotic behavior,

x(r)=x+ — e
2N

(A7)

where the constant A is chosen in accordance with
Ref. 10. There results
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1 Q
W(u) = —,So+ 1+ln

2co 2Q
(A8)

1/2

(x T.x ) e mr—/2N ~Ep

2g

where So ——2W(0). On substituting W(u) into Eq.
(A3), we find

' I/2

K,(x+,r;x ) = [2V(x )] '~ e
2m

' 1/2

A exp( —So~A') .

(A 10)

(Al 1)

g exp
~o —2NT

2 4'
(A9)

An analogous expression is obtained for
K,(x,T r;x )—. Now observe that in the limit
T~ ~ the convolution integral in Eq. (A2) gives a
factor T up to exponentially small corrections. Thus
the one-instanton contribution to the kernel is given
by

K(x+,T x )=
' 1/2

AEp
e " sinh T

2A'

(A12)

verifying that the ground-state splitting is given by
Eq. (Al 1).

The generalization to multiple traversals of the val-

ley of the potential —V(x) is obvious. Summing up
all configurations which satisfy the boundary condi-
tions, we obtain
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