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Derivation of the Planck radiation spectrum as an interpolation formula
in classical electrodynamics with classical electromagnetic zero-point radiation
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A closely argued derivation of Planck's spectrum for blackbody radiation is presented

within classical electrodynamics with classical electromagnetic zero-point radiation. The
presence of temperature-independent random classical radiation invalidates the ideas of
traditional classical statistical mechanics which become valid only in the low-frequency or
high-temperature limit where they lead to the Rayleigh-Jeans law for the thermal spectrum.
The assumption of Lorentz invariance for the zero-point radiation determines the high-

frequency part of the classical random radiation spectrum. The blackbody problem of clas-
sical physics with classical zero-point radiation as considered here is the derivation of an in-

terpolation formula between these high- and low-frequency limits. Here we take advantage
of the surprising diamagnetic behavior of a classical free point charge in zero-point radia-
tion. This diamagnetic behavior is compared with the paramagnetic behavior of a magnetic

dipole rotor of large moment of inertia, which behavior is derived from the low-frequency

form of the radiation spectrum. If one requires the natural simple condition that the di-

amagnetic behavior as a function of temperature should differ only in the sign of the mag-

netic moment from the paramagnetic behavior as a function of temperature, then one is led

uniquely to the Planck spectrum including zero-point radiation as the equilibrium spectrum
for classical random radiation.

I. INTRODUCTION

The explanation of the blackbody radiation spec-
trum is regarded as a crucial milestone in the history
of physics' because some new element beyond tradi-
tional classical physics seems to be required for an
understanding of the spectrum. Physicists at the
present time regard the idea of discrete elements, of
quanta, as the required new element. However, it
has been suggested that the missing element in trad-
itional classical physics is the presence of
temperature-independent random classical radiation,
classical zero-point radiation. The theory of classi-
cal electrodynamics including classical electromag-
netic zero-point radiation is termed random electro-
dynamics or stochastic electrodynamics. The theory
has already been applied to the blackbody problem
from two different approaches, one involving
Brownian motion and one involving entropy-related
fluctuations; in both cases the Planck spectrum in-

cluding zero-point radiation is obtained. In the
present work we again consider the blackbody prob-
lem within classical theory with classical elec-
tromagnetic zero-point radiation, this time from the
point of view of magnetic systems. Here we derive
the Planck spectrum as the interpolation formula
providing the simplest thermodynamic behavior for

some classical magnetic systems in classical elec-
tromagnetic zero-point radiation.

The analysis reported here assumes that the
thermal radiation spectrum takes the Rayleigh-Jeans
form in the low-frequency limit and becomes the
zero-point radiation spectrum in the high-frequency
limit. The problem to be solved is the discovery of a
natural interpolation formula between these two lim-
its. Now the author has had this interpolation prob-
lem in mind for over a decade but has rarely found
any argument which seemed to single out a pre-
ferred interpolation function. The present analysis
provides just such a preferred function. And the
preferred function gives exactly the Planck spectrum
including zero-point radiation. The analysis seems
to the author both natural and compelling.

The argument considers systems in thermal radia-
tion including zero-point radiation and involves a
comparison between the diamagnetic behavior of a
free charged particle and the paramagnetic behavior
of a free magnetic dipole rotator of very large mo-
ment of inertia. If one requires that the diamagnetic
behavior as a function of temperature should differ
only in the sign of the average magnetic moment
from the paramagnetic behavior as a function of
temperature, then one is led uniquely to the Planck
spectrum including zero-point radiation as the
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equilibrium spectrum for classical random radiation.
The analysis is made possible by the following ob-

servations. The paramagnetic behavior is known as
a function of temperature because the large moment
of inertia brings the rotator system in interaction
with only the low-frequency part of the thermal
spectrum where the Rayleigh-Jeans law holds. The
diamagnetic behavior depends on the specific spec-
trum of thermal radiation. In the high-field (low-
temperature} limit the diamagnetic behavior depends
only upon the high-frequency part of the random ra-
diation spectrum where the zero-point spectrum
holds and gives a constant average magnetic mo-
ment. We can choose the magnitude of the
paramagnetic moment at zero temperature to be the
negative of the diamagnetic moment in zero-point
radiation. Then the thermodynamic system consist-
ing of the noninteracting diamagnetic and paramag-
netic systems taken together will have zero magnetic
moment at low temperature and at high tempera-
ture. If we choose the simplest interpolation be-
tween these limits, corresponding to zero-magnetic
moment for the combined system at all tempera-
tures, then we are led uniquely to the Planck spec-
trum including zero-point radiation for the equilibri-
um spectrum of random classical radiation

ZERO-POINT RADIATION

The fundamental departure of our work from
traditional classical theory is the introduction of
temperature-independent random classical radiation
with a I.orentz-invariant spectrum, classical elec-
trornagnetic zero-point radiation, as a boundary con-
dition on the homogeneous solution of Maxwell's
equations. In earlier work it has been shown that
the requirement of Lorentz invariance leads to a
spectrum for the zero-point radiation of the form

pp(co}=const Xco

THERMAL RADIATION

The equilibrium spectrum p(co, T) of random clas-
sical electromagnetic radiation at finite temperature
thus contains two parts, the zero-point radiation
pp(co) and a thermal part pT(co, T) defined by

pr(co, T) =p(co, T) pp(c—o) . (3)

HIGH- AND LOW-FREQUENCY LIMITS
FOR THE RANDOM RADIATION SPECTRUM

The high-frequency limit of the random radiation
spectrum follows immediately from Eq. (5). Since
the thermal spectrum pT(co, T) has a finite integral
in co, it must decrease at high frequency. Hence we
expect at high frequencies that the equilibrium spec-
trum of random radiation will go over to the zero-
point spectrum,

Wien's arguments involving thermodynamics and
reflections from moving mirrors show that the
equilibrium radiation spectrum is determined in
terms of an unknown function f (co/T), as

p(co) = (co'/~'c') f(co/T),

with the total energy density ic (T} for the thermal
part given by the Stefan-Boltzmann law

ic(T)= f dcopr(co, T)=crT (5)

We note that the required functional form (4) is tak-
en by each of the three functions: the total spec-
trum p(co, T), the thermal part pT(co, T}, and the
zero-point spectrum pp(co}. It turns out that the
zero-point radiation spectrum is invariant in form
under an adiabatic compression; also zero-point ra-
diation is assumed to exist throughout space so that
Boltzmann's derivation of Stefan's law goes through
unchanged despite the presence of zero-point radia-
tion.

p(co, T)~po(co) as co~a) .

The function f (co/T) in Eq. (4) then becomes

f(co, T)=g(co, T)/co~Pi/2 as co/T~oo .

In the opposite limit of low frequency the zero-
point radiation vanishes, gp(co) =

&
F0~0 as co~0,

and accordingly we expect the zero-point radiation
to play no role. But then we expect to recover tradi-
tional classical statistical mechanics in the behavior
of systems taken to the low-frequency limit.

The blackbody spectrum within traditional classi-
cal statistical mechanics can be determined from
consideration of a charged harmonic dipole oscilla-
tor, which we may think of as a point particle of

po(co}= ~, go(co}=
77 C 7T C

(2)

Planck's constant is introduced into the theory at
this point and nowhere else. Every subsequent ap-
pearance of Planck's constant is derived from its
role setting the scale of the zero-point radiation
spectrum.

where the constant is a parameter of the theory to be
determined by experiment. It turns out that experi-
rnental agreement requires the constant take the
value A'/2m c, where fi is Planck's constant. The
expression may be more easily recognizable if we
separate the number of modes per unit frequency in-

1

terval and the zero-point energy gp(co)= , fico per-
normal mode. Then we have
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=p(cop)/(cop /m c')+O(e ), (8)

where g (cop) is the average energy per normal mode
in the radiation field at the natural frequency
cpp —v K/m of the oscillator. If we apply tradition-
al classical statistical mechanics to the oscillator,
then we find it has an average energy U =kT, and
this average energy is unchanged as we take the
low-frequency limit cop~0. This suggests that Eq.
(8) gives the low-frequency limit to the blackbody
spectrum,

p(co, T)~(co /rr c )kT as co~0,

which is the Rayleigh-Jeans law. The function
f(co/T) in Eq. (4) must behave as

charge e and mass m at the end of a spring of con-
stant E =met)p . The charge interacts with the ran-
dom radiation, being forced into random oscillation
by electric forces from the random radiation and be-
ing damped by radiation reaction. This dipole oscil-
lator comes into equilibrium with the radiation with
an average energy U = ( —,mu + —,map x ),2 ' 2 2

U=g(~p)+0(e')

where 0 is the angle between the magnetic moment

p and the magnetic field B.
In the presence of random electromagnetic radia-

tion the magnetic moment will be forced into rota-
tion by the random magnetic field and will be
damped by radiation reaction. This is a mechanical
system which can be analyzed using action-angle
variables, in the limit of small rates of energy pick-
up and loss using the perturbation analysis of van
Vleck. We now substitute the magnetic moment p
and magnetic field B for the electric dipole moment
e r and elastic field E in van Vleck's work. The lim-
it of large moment of inertia I~ oo decreases the os-
cillation frequency of the system indefinitely, thus
both decreasing indefinitely the rates of energy ex-
change with the random radiation, and also bringing
the system into interaction with only the lowest fre-
quencies of the radiation spectrum where the
Rayleigh-Jeans spectrum becomes appropriate. It
has been shown' that for such a multiply periodic
system in interaction with the Rayleigh-Jeans spec-
trum of random radiation, the equilibrium distribu-
tion P (J ) on phase space for the mechanical system
becomes

f(cp/T)=g(a), T)ho~kT/ar as co/T~O. P(J)=const && exp[ —H(i)/kT], (12)

(1O)

The problem of the blackbody spectrum within
classical physics with classical electromagnetic
zero-point radiation as considered here is the deter-
mination of the appropriate interpolation function

f (co/T) between the limits in Eqs. (7) and (10).

PARAMAGNETIC SYSTEM

In order to carry out the required interpolation we
compare the thermodynamics of two simple magnet-
ic systems. The first is a paramagnetic system con-
sisting of a magnetic dipole of fixed moment p. In
order to be specific we may think of this magnetic
moment incorporated into a planar rigid rotor of
very large moment of inertia I and placed in a mag-
netic field B in the plane of the rotor so that the
mechanical system has an energy

H = —,IO —pB cosa, (11)

where J=J/2m. with J the action variable of the
mechanical system. In other words the distribution
becomes the Boltzmann distribution of traditional
classical statistical mechanics. We emphasize that
this result is derived from purely classical elec-
tromagnetic arguments involving random classical
electromagnetic radiation where the radiation spec-
trum takes the Rayleigh-Jeans form at low frequen-
cy. Yet this result is precisely what we could obtain
if we applied traditional statistical mechanics to a
planar rigid magnetic dipole rotor in a magnetic
field B with a corresponding energy given by Eq.
(11).

The average values for the energy and magnetic
moment may be evaluated conveniently using the
canonical phase-space variables of angle t9 and angu-
lar momentum L =IO rather than the alternative
but more complicated action-angle variables J and w
which were preferred in the electromagnetic
analysis. ' For example, the average energy is

dL fp d8( , L /I pBc s0o)ex—p[ ( ,—L /I pBcos8—)/k—T]—
(H) =

f dL f dgexp[ —( , L /I pBcos8)/kT]——

= —,kT pB [coth(pB/kT) kT—/pB] . — (13)
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=p[coth(pB/kT) kT—!pB] . (14)

The average magnetic moment in the z direction
given by the magnetic field is found similarly,

(M, ) = (p cos8)

periodic system and interacts with the random radi-
ation only near the natural frequencies of the system
and not at any of the harmonics. The system in in-
teraction with random classical radiation can be
solved exactly' in the dipole approximation giving
the average values'

It is noteworthy that the value of the moment of in-
ertia I does not appear in the final values for (H )
and (M, ) so that the I~ co limit needed for the ap-
proximations above does not disturb these results.

If we look upon our magnetic dipole rotation as a
thermodynamic system dependent upon the magnet-
ic field B, then we note that the energy is

(H) = —(M, )B+ , kT— (15)

with the magnetic work done by the system

3

(H) = g g(co;, T),

g (co~, T) g (coq, T)
+

where

CO~ =CO&+COL, C02 =CO& —COL, C03 =NO

with

1

col =
~ cog =eB /2mc

(19)

(20)

(22)
The magnetic moment determined in Eq. (14) takes
the form of the magnetic moment p times a func-
tion of pB/kT with limiting values

and

CO& =(COp +Pi)L )

(M ) P, T/B~O
0, T/B~oo .

(17) In the limit of no binding coo~0 for fixed magnetic
field B, we find

DIAMAGNETIC SYSTEM

11~B~ 2=0 / B +
~ s~

p B (24)

The second system we will use for our interpola-
tion is a diamagnetic system consisting of a point
particle of mass m and charge e in random radia-
tion. Just as for the paramagnetic system we must
start with certain additional parameters at finite
values and then simplify our system by carrying
these parameters to limiting values. In the
paramagnetic case the moment of inertia I was
chosen as finite and then carried to the limiting
value I~ oo so that the system interacted with only
the lowest frequencies of radiation. The residual
behavior of the moment of inertia is still to be found
in the contribution of kinetic energy of amount —,kT
appearing in Eqs. (13) and (15). For our diamagnet-
ic system we start with our point particle bound in
an isotropic harmonic potential of natural frequency
Np=v K/m and also in the presence of a magnetic
field B=kB along the z axis. The free-particle limit
is obtained by taking the limit of no binding coo~0
for finite B.

This diamagnetic system was analyzed" in detail,
and the interested reader should consult the earlier
detailed description and analysis. The Hamiltonian
is given by

H =[p —(e/c)A] /2m + —,mcop r, (18)

where the vector potential may be chosen as
A= —, (iy jx)B.—The syste—m is a linear multiply

[g(~B T) —kT]+3kT (25)

(M, ) =-
2@le

g(~e, T)
1

COB

kT
1

COB

[g(~s, T) kT—]/B . — (26)

The harmonic binding parameter coo no longer ap-
pears in this limit but the residual effect can be
found in Eq. (25) in the contribution to 3kT to the
average energy.

The results of the electromagnetic analysis thus
give us a thermodynamic system where the average
energy can be written as

(H) = (M, )B+3kT, — (27)

and the work done by the system during a change of
the magnetic field B is

b, W=(M, )AB . (28)

If we could evaluate (H) or (M, ) in Eqs. (27) and

Also, we recall that g(co;, T)~kT as co;~0 for
i=2,3. Thus in the limit of a free point charge in a
magnetic field, we obtain from (19) and (20) the
average values

(H) =g(co~, T)+2kT
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Now we do know the high- and low-frequency
values for the radiation spectrum as recorded in Eqs.
(7) and (10). Substituting from these into Eq. (26)
and noting (22), we see that (M, ) takes the form

(M, ) = — f —k
T

(29)

which has e/mc multiply a function of cori/T with
the limiting values

T

efi/2mc, T—/B ~0
0, T/B~co .

(30)

But these forms except for a sign reversal are strik-
ingly reminiscent of the limits for (M, ) in Eq. (17)
for the paramagnetic system.

CHOOSING THE INTERPOLATION
FUNCTION

Indeed, suppose we were to choose a paramagnetic
system of magnetic moment p equal in magnitude
to efi/2mc,

p =eiil/2mc, (31)

and then combine the paramagnetic and diamagnet-
ic systems, separated far enough to have negligible
magnetostatic interaction, into a single thermo-
dynamic system. The total average energy (H«„&)
is given by the sum of the energies in Eqs. (15) and
(27), the total work done (b, W«„i ) by the system is
given by the sum of the work done in Eqs. (16) and
(28}, and the total magnetic moment (M„„&,) is

given by the sum of Eqs. (14) and (29),

(H,..., ) = —(M,...„)B+-,kT, (32}

. it=i&M«t.i.&~ (33}

equi i6Ng
(M,o„i,) = coth

2mc
2kT
ANg

mc

kT

eA

2mc
coth

%co~

2kT

(34)

What we would like to do is to evaluate the aver-

(26) as functions of temperature or of magnetic
field, then we would have g (cori, T) and hence the ra-
diation spectrum

p(cog, T) = (cop /ir c )g(cori, T) .

age magnetic moment (M«„i, ) for this thermo-
dynamic system. What we actually have available to
us from the present analysis is the functional depen-
dence given in Eq. (34) and the limiting forms ob-
tained from f (co+/T) in Eqs. (7) and (10) or taken
directly from Eqs. (17) and (30). We see that

(M,.„„) (3 )
0, T/B —+op .

hat can we suggest about (M«„~, ) as a function
of T/B? The interpolation choice with the least
possible structure corresponds to (Mto„~, ) =0 for
all values of T/B. Any other choice introduces un-

necessary structure into the thermodynamics of the
system. We therefore propose, from (34), that

f (co/T) = , fi coth—(fico/2k T), (36)

and that

p(co, T)=(co /ir c )f(co/T)

=(fico /2m. c )coth(fico/2kT)

%co 1 1 Acu+-
iric' exp(fico/kT) —1 2 iric3

(37)

which is exactly the Planck spectrum of thermal ra-
diation along with the zero-point radiation spec-
trum.

The choice (M«„i, ) =0 for all temperatures is
equivalent to requiring that diamagnetic behavior as
a function of temperature for a free particle should
differ only in the sign of the average magnetic mo-
ment from the paramagnetic behavior of a free mag-
netic dipole rotator. If one thinks of heuristic ideas
of information theory in which a magnetic moment
can have different spatial orientations, then symme-
try between diamagnetic and paramagnetic behavior
which involves only a sign reversal seems natural.
Also, this choice is natural for other combined sys-
tems; if one combines a paramagnetic rotator of any
size magnetic moment with a noninteracting free
point charge, then the diamagnetic behavior of the
point charge effectively diminishes the magnetic
moment of the paramagnetic rotator in just such a
way that a separation into distinct paramagnetic and
diamagnetic contributions is impossible from the
thermodynamics of the system. Thus the choice in
Eqs. (34) and (35) of (M«„~, ) =0 for all tempera-
tures seems natural from considerations of simplici-
ty, though it does not seem to follow from any more
general thermodynamic principle. It is, of course,
most interesting that the simplest natural choice
leads to Planck's spectrum, which agrees with exper-
iment.
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CONCLUDING REMARKS

The theoretical context for our present derivation
of Planck's spectrum is that provided by classical
electromagnetism in which one introduces classical
electromagnetic zero-point radiation. The theory is
sometimes termed random electrodynamics or sto-
chastic electrodynamics and gives some results in
agreement with quantum theory.

Now the Planck spectrum has been derived ' ear-
lier within classical physics with classical elec-
tromagnetic zero-point radiation. However, one
derivation' contains a loophole in its argument, and
the second' depends upon a suggestive but ad hoc
designation of the fluctuations to be associated with
thermodynamic entropy. Moreover, these deriva-
tions seem to be contradicted by several deriva-
tions' ' ' of the Rayleigh-Jeans spectrum within
classical physics using not traditional statistical
mechanics but rather perturbative expansions for
nonlinear systems in random classical radiation.

It is partly because of these contradictory con-
clusions within classical theory that we have
presented this interpolation derivation of the Planck
spectrum within classical physics with classical elec-
tromagnetic zero-point radiation. The present
derivation involves two classical mechanical systems
neither of which has harmonics, and hence each of

which comes to equilibrium in any isotropic spec-
trum of random radiation. The systems can not in-
dividually force any particular spectrum for the
equilibrium radiation. However, considered together
they lead to a natural interpolation between the
high- and low-frequency limits of thermal radiation
within classical electrodynamics with classical elec-
tromagnetic zero-point radiation. The analysis
given here is intended to be careful and to avoid du-
bious perturbative approximations. The interpola-
tion is intended to be unambiguous. If classical
physics with classical zero-point radiation has a con-
sistent thermodynamics, then we believe that this in-
terpolation derivation makes it extremely likely that
the equilibrium spectrum for classical thermal radia-
tion is the Planck spectrum including zero-point ra-
diation.
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