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Schwinger model in curved space-time
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An exact solution to the Schwinger model in a two-dimensional Schmarzschild space-time
is found. The possibility that curvature could cause a confining theory to undergo a phase
transition to a nonconfining phase is also discussed.

I. INTRODUCTION

Recently there has been a good deal of interest in
interacting field theories in curved space-time. This
interest has been focused almost exclusively on the
ultraviolet behavior of the theories. However, the
infrared behavior of an interacting field theory in
curved space-time is also a subject of considerable
intrinsic interest.

For reasons which I will explain below, the curva-
ture of space-time should affect confinement. With
this in mind I have solved the Schwinger model in a
two-dimensional mock Schwarzschild space-time.

Since confinement and curvature are both long-
range phenomena which in some cases will operate
over the same length scale (around a 10' -g black
hole for instance) it is certainly possible that curva-
ture affects confinement.

It is believed that at high temperatures quantum
chromodynamics undergoes a phase transition from
a confining to a nonconfining phase' and it is well
known that in thermodynamics curvature plays the
role of a temperature. This raises the question of
whether curvature also plays a role similar to tern-

perature in confinement. There are several reasons
for thinking that it does.

At high temperatures QCD is believed to lose
confinement because thermal excitations produce a
plasma of quarks and gluons. This plasma screens
the (color) electric flux and confinement is lost.
Since curvature can cause particle creation it seems
reasonable that in regions of very high (or very rap-
idly changing) curvature a plasma of quarks and
gluons produced by curvature-generated particle
production could screen the (color) electric flux and
thus cause a loss of confinement.

In the language of the bag model confinement
may be lost at high temperature due to three ef-
fects. ' The bag constant A may depend on tern-
perature. If as expected A decreases with increas-
ing T then the radius of the bag will increase, if

4'~ 0 then confinement will be lost. Thermal fluc-
tuations will create a gas of bags whose density will
increase as the temperature increases. At some
point the bags will start to overlap and join. Even-
tually the bags will condense and confinement will
be lost. Lastly, the chiral properties of the vacuum
may depend on the temperature.

I am uncertain as to how this picture will change
if one thinks about increasing or decreasing the cur-
vature instead of the temperature. The bag constant

may or may not change as the curvature changes
and the direction of change could conceivably de-
pend on whether the curvature was positive or nega-
tive. In regions of high or rapidly changing curva-
ture a gas of bags could be produced in the same
way that curvature can lead to particle production.
It is important to note that here I am not talking
about bags produced by fluctuations of the metric.
These could be important but that is a subject for
quantum gravity not quantum field theory in curved
space-time. Throughout this paper I work with a
fixed manifold upon which I quantize the matter
(and gauge) fields. As for the chiral properties of
the vacuum I have no idea what, if anything, curva-
ture does to them.

In a quantum field theory in a black-hole space-
time the free field propagators are periodic in
imaginary time and one gets thermal Green's func-
tions with a temperature that is inversely propor-
tional to the surface gravity of the black hole. It is
believed that the Green's functions remain thermal
even in the presence of interactions. In light of this
one would certainly expect that if QCD loses con-
finement at high temperatures it will lose confine-
ment at high curvatures.

Aside from being an interesting theoretical prob-
lem there are two places where the loss of confine-
ment due to curvature might be important: near a
small primordial black hole and in the early
universe.

If QCD becomes unconfined at high curvatures
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then a small black hole might Hawking radiate free
gluons and in the last stage of its life a few free light
quarks. One must be careful here about talking
about particles since the radius of a 10' -g black
hole is about a fermi. However, one can still talk
about the quark and gluon fields and of course for
an observer some distance from the hole the particle
concept makes sense. By a small primordial black
hole I mean a "Hawking mass" black hole. The
Hawking mass is the mass of a black hole that evap-
orates in the present age of the universe. The Hawk-
ing mass has been computed by Page to be
5)(10"g&MH &7X10' g. Such a black hole has
a very high surface gravity. A very crude and
speculative estimate of when curvature could cause a
loss of confinement can be obtained as follows. As-
sume for the moment that QCD loses confinement
when the temperature is of the order 100 MeV or
10' K. Then assuming that QCD also loses con-
finement when the temperature which characterizes
the black hole (which is the temperature that ap-
pears in the thermal Green's functions for fields
near the hole) reaches 10' K tells one that confine-
ment will be lost when the surface gravity ~ is
(2~k/R)10' K. Any black hole of mass 2X10' g
or less will have a surface gravity this large or
larger. Thus it looks like a Hawking-mass black
hole will do the trick. Once colored particles are
emitted from a black hole they will remain uncon-
fined since away from the hole they can interact
only with color singlets. In light of our present ig-
norance about QCD at high curvatures and about
primordial black holes (sm Blandford and Thorne
for a review of primordial black holes) it is impossi-
ble to say if colored Hawking radiation from pri-
mordial black holes might be detectable but the situ-
ation does not look hopeful.

If curvature affects confinement then the curva-
ture of the early universe should affect T„ the tern-

perature at which QCD undergoes a phase transition
from an unconfining to a confining phase. It is dif-
ficult to say how large this shift might be. Strictly
speaking, in the presence of curvature one should

probably talk about a critical line parametrized by T
and a curvature parameter; however, in the simplest
models of the early universe the curvature and the
temperature are not independent so it makes sense to
talk about a T, .

All this is very interesting but also very specula-
tive. To try to learn something concrete I have been

studying the Schwinger model ' in curved space-
time. The Schwinger model confines in flat space-
time and has the advantage of having been exten-
sively studied in flat space-time. " ' The disadvan-

tage of the Schwinger model is that it is confining at
high temperatures' ' and thus one would expect it

gy" d„—g , F""F—„„+—egy "PA„

(2.1)

where the I/P term is a gauge-fixing term,
With my conventions the flat —space-time metric

'g&p is 'goo = —'g
~ ~

——1 and

1 0
0

0 1

—1 0

and

0 1

The curved —space-time y matrices are denoted by
y"(x) and satisfy

Iy"(x),y"(x) I =2g""(x) . (2.2)

The curved —space-time y matrices are related to
the flat —space-time y matrices by

~y(x) = bq (x)y~, (2.3)

where the vierbein (really zweibein in two dimen-
sions) fields are defined by

q fi bg(x)b~(x)g——„,(x) . (2.4)

In curved space-time the Lagrangian is

&=i Py "(x)Vqg ,F""F„,~egy"—(x)QA—q(x)

2
(V„A") (2.5)

where Vz is the covariant derivative and

to be confining at high curvatures as well. The
Schwinger model is also superrenormalizable which
will make it less interesting in curved space-time
than a renormalizable model would be. I will say
more about this point later on. It turns out howev-
er, that the Schwinger model in curved space-time is
difficult enough for a first step.

In Sec. II the model is set up and I show that the
vector current satisfies the Klein-Gordon equation.
I also discuss why it is difficult to prove confine-
ment in curved space-time.

In Sec. III I set up and solve the equations for the
Green's functions and show that the solution is
more complicated in curved space-time.

In Sec. IV I discuss some open problems and sug-
gest some directions for further research.

II. THE MODEL

In flat space-time the Lagrangian for the
Schwinger model is
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F„,=V„A, V—P„. The covariant derivative of g is

V„y=(a„—1.„)y, (2.6)

where I &(x) is the spinorial affine connection de-
fined by

I q(x) = , y~—ypbtg(x)g (x)V„b~(x)

with

(2.7)

i yt'(x)[V„ieA„(x)]g(—x)=0 (2.10)

and

Vg""(x)=ej"(x),
where

(2.11)

j"(x)=f(x)y"(x)p(x) . (2.12)

V„b (x)=B„b —I„b (x) . (2.8)

Here I &, is the usual Christoffel symbol. The field

g is defined to be P=g yo. In curved space-time the
anticommutator between f and g is'

lan
Sn [x —x'])[g(x),g(y) ] = ~, (2.9)

(g.)'"
where n is a timelike unit vector lying in the for-
ward light cone. The curved —space-time field equa-
tions are

equations. For this reason I work in a space-time
obtained by restricting the Schwarzschild metric to
two dimensions. It, of course, does not satisfy the
Einstein field equations. The metric is given by

—1

drds2= 1
2MG dt2 — 1

2MG
r r

4MG

r
(2.16)

Although I have specialized to a two-dimensional
Schwarzschild space-time most of what follows will
be applicable to any time-independent space-time
provided the space-time is asymptotically flat (AF).
It is difficult to define confinement in nonasymptot-
ically flat space-times although on physical
grounds one expects to be able to define confinement
operationally.

My strategy in solving the Schwinger model in
curved space-time is to follow Brown's" flat—
space-time solution as closely as possible.

The first step is to solve for Fz, . From Eq. (2.14)
I have

(2.1 5)

This metric has vg =1, a singularity at r =0, an
event horizon at r =2MG, and the scalar curvature
R is

The current conservation equation is of course

VJ"(x)=0. (2.13)

The equation on F""can be simplified to the more
useful form

gF01
=ejo(r, t) .

Br

This equation is solved by

F '= —eB' J dr'&(r, r', tj)(r', t),

(2.17)

(2.18)

(vg F"')=ej"(x) .
g Bx

(2.14)
where &(r,r', t) satisfies

I now wish to specialize to a "mock Schwarzs-
child" space-time. In two dimensions there are no
curved space-times which satisfy the Einstein field

I

(2.19)

The solution to Eq. (2.19) is

g "(r) &(r,r', t) =5(r r') . —
dr dr

&(r,r')= '

t

, (r r')+MGln——, r & r'
r' —2MG
r —2MG

1 r —2MG
—,(r r')+MG—ln, , r )r' .r' —2MG

(2.20)

Note that for M~0 and r, r'~ 00, &(r,r')~ —,
~

r r'
~

which is the cor—rect fiat —space-time result. Also
note that &(r,r')=&(r', r}. Using Eq. (2.18}for F ' and current conservation it is easy to show that F' sat-
isfies the correct field equation.

At this point I need to pick a gauge. The most convenient gauge is the Coulomb gauge and from this point
on I will work in the Coulomb gauge unless otherwise noted. In the Coulomb gauge A i

——0 thus F '=d'A (x)
and so using Eq. (2.18) I have

A (x}=—e J dr'&(r, r'j)(r', t)+f(x ) . (2.21)
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In flat space-time f(x ) is usually set to zero and for an AF space-time lim
&

A (x)'"'"'d=A (x)""so f(x )

is zero in an AF space-time if it is zero in flat space-time. Thus I will set f(x ) =0. I now want to construct
the Hamiltonian. Now

and

ai
VV (2.22)

so in order to compute H I need to evaluate I'z(x). A tedious calculation gives

r„(x)=
—y G

2r
p=O

0, p=1.
(2.23)

In computing I „(x)one needs the zweibein fields. With my conventions these are as follows. For b (x):
' —1/2 ' 1/2

bo(x)=sec8 1—0 2MG
r

' —1/2

b i (x)=tan8 1—0 2MG
r

bo(x)=tan8 1—2MG

' 1/2
2MG

b i (x)=sec8 1—
r

For bz(x):

bo(x)=sec8 1—0 2MG

' 1/2
2MG

bo(x) = —tan8 1—
r

b i (x)= —tan8 1—0 2MG
r

bi(x)=sec8 1—1 2MG

' —1/2

' —1/2

Here 0 is an angle which determines the orientation
of the zweibein fields. I have chosen 8=0.

Using the result for I'&(x) in Eq. (2.22) gives

i Py'(r)V, Q—
2 00

+ jo(r, t) I dr'&(r—, r')J' (r', t) . (2.24)

from the r=O end point of the integral, not the
x~ —oo end point as in fiat space-time. I have
thrown this piece away and this procedure can be
thought of as defining my Hamiltonian. Such sur-
face terms will be thrown away throughout this
work.

The axial-vector current is defined as

In deriving the equation for A I have used the fact
that W can be rewritten as

W =i gy "V„g+—,(B,AO)(B'A )+ejo(x)A (x)

j4q(x)=iTty5(x)y"(x)f . (2.25)

The axial-vector current may also be defined with y5
instead of y5 since y5 ——y5. It is easy to show that j",
and j"are related by

=ify~V lP+ J (x)A '(x)+ a, (A, a'A')
j~ (x)=d'"j„(x), (2.26)

I have then thrown B,(AoB'A ) away because it is a
surface term. This is a delicate point. The contribu-
tion from the r~ ao part of Bi(AoB'A ) will be the
same as in flat space-time but the contribution from

the other end point is more difficult. Due to the
singularity at r =0 the space-time is the half plane
0&r & oo and —oo &t & oo not the full plane
—oo &x & oo —oo & t & oo as it is in flat space-time.
Thus Bi(AoB'A ) contributes a piece which comes

where e '= —e' =1. In order to derive the wave
equation on jz(x) I need to know the time develop-
ment of j5. In curved space-time the time develop-
ment of an operator 6 is given by

Ws~s, d'= i [8,H], — (2.27)

where W is the Lie derivative. For a Schwarzschild
space-time
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aj~(x)
~srs~j~s(x }=

Bt

thus using Eq. (2.25) I get

(2.28)
Bj&(x)

at
= —i[j'(x),H] .

Using Eq. (2.24) gives

(2.29)

8j5(x) ~ 2

j '(x), f dr py'(r)V&p —' j '(x), f drj 0(r) f dr'N(r, r')j (r', t) (2.30)

as
The first term can be evaluated in a straightforward manner and doing so gives the axial-vector divergence

2 00 00

Vp~&(x)= — f dr[j &(x,x'),jo(r, t)] f dr'&(r, r'j)(r, t)

+ f drj (r, t) f dr'&(r, r')[j, (x, t),jo(r', t)] (2.31)

To evaluate this expression I need to evaluate commutators of the form [J'„(t,x)j„(t,y)]. It is sufficient to
evaluate this commutator for currents with flat —space-time y matrices since the space-time factors in the
curved —space-time y matrices can be pulled out of the commutator. Since the commutator is ill-defined at
x =y it must be evaluated by point separation. Doing this gives

[jz(r,x)j,(t, y)]= —s-lim I[/(y +E )y,g(y —e ),g(x+e)]y&g(x e)—
6', E' ~0

+g(x+&)y [Py+~')y„g(y e'), g—(x —e)]], (2.32)

where the primes denote currents defined with y& and where s-lim stands for the symmetric limit with x and y
approaching each other along a spacelike path. Using the canonical commutation relation (CCR) [Eq. (2.9)]
gives

[J')(t,x }Jo(t,y)] = s-lim [g(y +e')p(y x —p ——e')y)g(x e) g(x+e)y)Q(x y e p )f(y &)]
E,E' ~0

(2.33)

If I assume (as is done in flat space-time) that the commutator is a c number then

[Jt(~»)~jo(~ y)]=s lim [(0~ p(y+e'}y&l((x —e)
~
0)5(y x e e')

e,e'~ 0

—(0
~
g(x+&)y~f(y e)

~
0)]5(x—y— ~ e)] . —— (2.34)

Furthermore I will assume that

lim (0
~ g(x)y, f(y) 0) =(0

~
P(x)y, P(y)

~

0) "'.
x~y

(2.35)

This is a standard assumption in fiat space-time (see Schwinger' for a justification of this assumption) and
since it is a short-distance limit it should hold in curved space-time as well. In the limit e,E ~ 0 [j &,jo] would
vanish if it were not for the poles in (0

~ gy~iP
~

0) "'. This means that I only need the pole part of the free
propagator and I can use a Riemann normal coordinate expansion to obtain this part. The vacuum expectation
value (VEV) that I need is related to the fermion propagator by

(0
~

P(x )y~P(y)
~
0) =Tr[y,S(x,y }], (2.36)

where S(x,y) is the fermion propagator. The expansion for the free fermion propagator in Riemann normal
coordinates has been worked out by Bunch and Parker ' and is
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ik y m— 1 A(ik y —m)
S( x»') =i ik(x —x') a + a

(2&)n k 2+ m 2 4 (k2+ m 2)2

2 ~.,k k (ty.k m—);&'„.[y.,yp]y"k"
(k'+m')' 8 «'+m')' (2.37)

where y is defined by yy y '= —y and R,R „and 8 ~&„are evaluated at x'. I have chosen y=y. I am in-

terested only in the m =0 case and in two dimensions the only divergent term is the kay /k term. There are
no curvature-dependent divergences. This is because the Schwinger model is superrenormalizable.

The fact that in flat space-time it is really [j&,j,] that determines the confining properties of the Schwinger
model suggests that the best place to look for loss of confinement due to curvature is in field theories that are
renormalizable but not superrenormalizable. Since the only divergence is the flat —space-time piece I get

Tr[yiyt, ](x Z—)"
&0

I P(x)y~P(y) I
0&= " +finite terms

(x y) —+i@

1
+finite terms .

(x y) .+i—e (2.38)

The two propagators I am interested in are &0
I t/i(x+e)y~g(y —e')

I
0& and &0

I
1(t(y+e')y~li(x e)

I
0&. Sin—ce

I care only about the divergent part which is the same as in flat space-time I can write

&o
I 4(x+~)yi&U' —e')

I
o& = &o

I PU +e')yi4« —~)
I

o& = &o
I
P(2[~+e'])yif(0)

I
o&

Equation (2.39) is of course only true for the pole terms. It is not true for the finite part of &0
I gy&g I

0&, but I
only need the pole for Eq. (2.34). Using Eq. (2.38) in Eq. (2.34) gives

1 . 5(x —y +e+ e') —5(x —y E E')——
[j', (t,x),jo(t,y)]= . s-lim

l 7T E', E' —+ 0 2 e+6 (2.40)

Letting rt/2=@+@' and taking the limit rt —+0 gives

[J't(t») I'o(t3')l= .
a

Bx

In terms of jt' instead ofj" Eq. (2.41) is
' —1/2 ' ' 1/2

j
ry ()& 1

Plugging this into Eq. (2.31) for V@~5(x) gives

(2.41)

(2.42)

00 2MG
V j~g(x)= — dr 1—

2~ r„

' —1/2 ' 1/2

1 — 5(r„r) f dr'&(r, r')J' (r',t)—2M6 ~ "
t 0

r Br&

+ f drj (r, t) f dr'&(r, r') 1 —™
X

—1/2 1/2

1 —™5(r„r'), (2.43—)r' Br„

where j is a component of the vector j =j e& with e& a basis vector such that e& e„=g&,. Thus

V&j~5(x)= — f dr'&(r„, r'j)(r', t)+ f drj (r, t)&(r,r„)
2m Br„ Br„

00= ——f dr'& ( r„,r'j)(r', t), (2.44)

where in the last line I have used the fact that &(r„,r') = &(r', r„). Using Eq. (2.18) gives
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2

Vqj g(x) = — e„„F"'
2m- "" (2.45)

which has the same form as the flat —space-time equation. Using Eq. (2.45) along with j~5(x) =e1' j„(x) and
V„j&(x)=0 gives

2

0+—j„(x)=0,
7T

(2.46)

where Cl is the curved —space-time d Alembertian. Equation (2.46) is quite complicated. Writing it out in
components gives

p ~
. 4MG 1)J1 x 2MG 2MG

g B~BpJ1 x
r2 Br r2 r

Bjo(x)

at

2MG+
. r

MG

r 2

2
2MG

r

' —1
2

j1(x)+—j1(x)=0 (2.47)

and

2MG i)J1(x) 2MG . e
g pa.apio(x) ,——,io(x)+ Jo(x)—=0.

r2 Bt r3 7r
(2.48)

Clearly these equations cannot be solved analytical-
ly. One must either use a computer or be content to
study them in the limit MG /r « 1 or
(1 2MG—/r) «1. Fortunately I will not need the
solution to Eq. (2.46). In flat space-time it is easy to
show that Eq. (2.46) implies confinement. " One
first shows that the current-current correlation func-
tion satisfies the spectral representation

=(~~ a' —a&a ) f do r(o )b, +(x x', o )—,
(2.49)

where

b, +(x —x', o )= 9(k )5(k +o )e' '"d"k

(2m )"

and r (o ) vanishes for o &0 and is real and positive
semidefinite for o &0. Applying Eq. (2.46) to Eq.
(2.49) then gives

boson in the model and that this gives the only
intermediate-state contribution to (j"j ). Unfor-
tunately things are not so simple in curved space-
time. The trouble lies in deriving the analog of Eq.
(2.49) in curved space-time. The starting point for
the derivation of Eq. (2.49) was writing (j1'j") as

(j"(x)j"(x') )

= y &o li"(o)
I
~)e '

&~ li"(o)
I

o

One cannot do this in curved space-time because one
no longer has translational invariance. As a result I
have not yet been able to prove that the Schwinger
model confines in curved space-time although I
suspect that it does.

III. CONSTRUCTION OF THE GREEN'S
FUNCTIONS

The next and last step in solving the model is to
construct the Green's functions. Let

(0l j"(x)j"(x')l0) G(x1»2) (0
l
~[/(xl )y(x2)] l

0) (3.1)
=(q~"a2 —a~a")i 2a+(x —x;I 2), (2.50)

where p =e /m. . This shows that there is a massive
where I will worry about which vacuum state is ap-
propriate later. I want to compute i y1'V„G Now.

iy"(x1)v„'G(x1,x2) = i y"(x1)I [7„'8(t1—t2)](0
l
f(x1)$(x2) l

0) —[v'„'()(r2 —r1)](0
l Q(x2)f(x1)

l
0) ]

+ i@~(x,)(o
l
r[v„'y(x1)17(x2)

l
o) . (3.2)
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Z) Z)
To make further progress I need to evaluate V„8(t, t2—). The easiest way to calculate V„8(t,—t2) is to as-
sume that

V&8(xp —xp )=f(x)5(n [xp —xp]),
and then to use

[iy "(x)V„" m—]SF(x,x') = [g (x)] '~ 5"(x —x'),
where SF is the free fermion propagator, to fix f(x). Doing this gives

V„"8(t t')—=gpp'~'5l n [t —t']) .

One can then check for consistency by showing that the use of Eq. (3.4) gives

[0„+m +JR (x)]GF(x,x') = [g (x)] '~ 5"(x —x'),
where GF is the free propagator for a scalar particle. Using Eq. (3.4) in Eq. (3.2) gives

y"(x))V„'G(x(,x2) =5'(x) x2—)+ie(0
~ T[y "(x))&„(x))g(x))$(x2)]

~
0),

where I have also used Eq. (2.10). In the Coulomb gauge, Eq. (3.6) becomes

y"(x~)V&'G(x~, xq) =5 (x~ x2)+—ie(0
~

T [yp(x~ )A (x] )P(x] )1j/(x2)]
~

0) .

Inserting the result for A from Eq. (2.21) gives

p(x&)V&'G(x~, x2)=5 (x& —x2) —ie f dy'&( Ix,y')(0~ T[y (x&)j (y', x~)g(x, )g(x2)] ~0) .

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

In order to get a closed equation for G(x~,x2) I need to compute the effect of the Klein-Gordon operator on
(0

~

T [j "gp]
~

0). An easy but long calculation gives

V"„(0
~ T[j "( )xQ( )x)Q( x)]2~ 0) = (0

~

T[V~J"(x)Q(x))tP(xp)]
~

0)
—gpp' (x)5 (x —x])y y"(x)(0~ T[g(x~)g(x2)] ~0)5,

+gpp' (x)5 (x —xq)(0
~
T[g(x&)y"(x)y g(x2)]

~

0)5, (3.9)

In deriving this equation I have used

and

5(n[x —x, ])[j"(x,x ),p(x&,x )]=—y y"(x)g(x„xp)
Z

5"(x —x i )
5(n [x —x, ])[j"(x,x ),p(x),x ))=Q(xt, xp)y"(x)y

SZ

(3.10)

(3.11)

A similar but even longer calculation gives

2

CI„+—(0
~

T[J'"(x)g(x, )f(x2)]
~
0)

[y"(x)y"(x)]&V"„5'(x—x
~ )—[y'(x)y "(x)]~V~5'(x —x2)

2

+ [5(x —x ] )V~~(x —XI ) —5(x —x2)Vg~(x x2)] (o
l
T[0(» )1 (»)] I

0&

(3.12)

where I am using the short-hand notation I ~(0
~

T(pp)
~
0) =(0

~
T(Pg)p

~

0) and I p(0
~
T(pQ)

~
0)

= (0
~

T(QI P)
~

0) where I is a combination of y matrices. In deriving Eq. (3.12) I have used
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2

[Voj "(x ',x ),p(x', ,x )]= e"„—y"(x)y g(x i,x ')Vi5(x ' —x', ) +—yoyo(x)g(x I,xo)V&~(x i

2901

(3.13)

and

2—
[Voj (X,X ),g(x2, x )]=e I/J(x i,x )y"(x)y Vi5(x ' —x2) — f(—x2,x )y (x)y V"N(x ' —x2) . (3.14)

Defining G(xi,x2) by

(3.16)

(0~ ~[j"(x)P(xi)P(x )] ~0)

G(xi,xz)=(0~ T[g(xi)f(xz)] ~0) (3.1 5}

and b, +(x —y;p ) by

(CI+p )6+(x —y;p )=5 (x —y)

[where in the flat —space-time limit 6+(x —y;iM ) ~ f (dk/2n)8(k }5(k +p )e'"'" «'] gives when used in

Eq. (3.12)

2

=fd'ya, x —y;—
7T

[y"(x)y"(x)]i [Vs'(y —x i )]—[y"(x)y"(x)]2[V«P'(y —x, )]

2

+—[5(y —x i)V«N(y' —x i)—5(y —x2)V«&(y' —x2)] G(xi, xz) . (3.17)

Thus

2 2

(0
~ T[j "(x)it(xi')Q(x2)]

~
0) = [y&(x)y"(x)]V„b, x —xi', [y"(x—}y"(x}12V ~+ x x2'—

00 2

+— dy 4+ x —y, x —xi', —V~iii&(y —x )
00

o o e p,

e
b, + x' y', x x—q', — Vi2P—'(y' ——xq} G(x»xq) .

'jj

This expression for (0
~

T [J'"gg]
~
0) can now be used in Eq. (3.8) (with p =0) to get

y~(x, )V„'G(x„x~)=5 (xi x2) ie—f —dy'&(xi, y')[yo(xi)]i

2

&&
' [3 (y}'Y"(y)]iV ~+ y —xi 0'

7T

(3.18)

2
—[ y"(y)y (y)]iV'„'5+ y' —xp, x i

—xp,' — G(xi, x2) .

(3.19)

This is a closed equation for G(xi, x2). Before solving this equation I want to look more carefully at the term

2

f, dy'~(x i y')[ ro(xi)]i[ y'(y)r'(y)]iV', "~ (3.20)

In flat space-time this term is equal to zero. The argument is that I can shift variables toy'=y' —x i. The re-
sulting function is odd in y and is integrated over an even interval. Thus the result is zero. In a two-
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dimensional Schwarzschild space-time this argument is not correct because the region of integration is not an
even interval. The singularity at r =0 cuts the space-time in half and the spatial part of the space-time is the
half line not the line. This is an artifact of a 1 + 1 space-time but nevertheless the term in Eq. (3.20) cannot be
set to zero.

I can use a trick to rewrite Eq. (3.19) in a more convenient form. Using y&(x)V&y"(x)V~A+(x, 0)=5~(x) I
get

2i"f,"@'~(xI,~')[yo(xi)]i [y"u) y'u»]2V."'~+ X' —x2,xi —x~', — «xi, x2)

r

=ie'y"(x))V„'[y (x))y (x, )],Vg"V"„' f d zh+(x, z;0—) f dy'[y"(y)y (y)],

where

=y"(x) )V„'F(x„x2),

2

&&%'(x~,y )b, + y —xz,z —xz, —1 o o e

7T

F(x(,x2)=ie[y (xt)])Vg'V„' f d zb, +(x) —z;0)yo(z)

2

X f "dy'[y"(y)y (y)]2&(xI,y')b+ y' —xz, z —x~',—

—the same term with x~ ——xz .

Since only the derivative of F with respect to x
&

is defined I am free to subtract a function of x2 and this gives
me an F(x~,x2) such that F(xq, x2) =0. After playing the same trick with the term in Eq. (3.20) I can rewrite
Eq. (3.19) as

y (x1)Vp G(xl~x2) ~ (xI x2) y (x1)[Vp H(xl~x2)]G(xlix2)+y (x1)[Vp F(xl~x2)]G(xl~x2) ~

(3.21)

where

H(x&,xz)=ie y~(x&)V~'V, ' f d zb, +(x~ —z;0) f dy'&(z', y')

2

&&[yo(z)]1[y'(J»y'(3»]1~+ 3
' —z' o;—

the same term with x~ ——x2. Note that F(x„xz) and H(x~, xq) are defined so as to be finite when x& ——xz.
These functions are in fact finite everywhere provided the manifold has the singularity at r =0 removed. This
can be done by defining w= it and working in the resulting Riemannian space-time.

In flat space-time the H term is'zero. To solve this equation let

(3.22)

Plugging this into Eq. (3.21) gives

y"(x))e ' ' ' ' V„S(x„x~)=5(x( —xp) .

Left multiplying by e + and using F(x2,x2) =H(xz, xz) =0 gives

(3.23)

(3.24)

Since I am going to need to compute [y",e ] I want to rewrite F and H so as to pull the y factors out of
them. I can do this by writing
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F(x),x2)=(3 Y ))(r r )zfnp(x), x2),

where

(3.25)

f,p(x),x~)=ieb (x()Vg'V„' f d zb+(x) —z;0)rioogoo'~ (z)

X f dy'b p(y)g (y)'~ S'(x &,y ')b+ y' —x2,zo —x z, —

and

—same term with x& ——x2

H(x),x2)=(r 1 ),(y r ),h~p(xi, x2) )

(3.26)

(3.27)

where

h p(x&,xz)=ieb (x~)V~'V„' f d zb+(x& —z;0) dy'S'(z', y')
0

2

&&gM'"(z)nM (y)'"br(y)~+ y' —z',o;—

Now

—same term with x
&

——x2 . (3.28)

—F+Hyy(x )eF—H yP(x )+eF H[yP(x ) eF H]

—F+H —F+H
=y"(x&)+e + [yI'(x&),F —H)]+ [y&(x&),(F—H) ]+ [y&(x, ),(F—H) ]+

2I

and these commutators can be computed with the help of relations like

[ri (r r')i(y r')21=2ri '(r"rs)i(r r')2

and

[r"r r ]=2&so"r"rs

where the e symbol is the flat —space-time e. Doing this gives
—F(x&,x2)+H(x &,x2) F(x&,x&)—H(x &,x2)

e
' ' P(x, )e

' '
=[cosh@~(x~,xz) —(y5)&sinh@, (x„x2)]

(3.29)

(3.30)

(3.31)

where

)& [ cosh@&(x &,x2) —(y&) &
sinh4z(x ~,x2)]g(x & ), (3.32)

and

4)(x),xz)= —2(y y )zf)p(x), xz)

4z(x&,xz)= —2esri h~p(x»x2) .P aS

(3.33)

(3.34)

Using Eq. (3.22) in Eq. (3.24) gives

[ cosh@&(x &,xq )—(y5) ~ sinh4&(x ~,x2)][cosh@2(x &,x2) —(y5) &
sinh42(x &,x&)]

&&[r"(xi)]iV, 9'(x] x2)=5 (x& x2) . (3—.35)

Left multiplying by cosh4~+y5 sinh4~ and cosh@2+ yq sinh@2 gives

[y"(x) )],V„'9'(x„x,) =5'(x„x,) .

This is the equation for a free massless fermion Green's function. Thus

9'(x ] x2) =Gp(x $ x2),

(3.36)

(3.37)
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where Go is the free Green's function, and

F(x &,x&)—H(x &,x2)
G(x~,x2)=e ' '

Gp(x~, x2) . (3.38)

Since one can solve for any other Green's function in just the same way as the two-point Green's functions
was solved for, this solves the Schwinger model in a two-dimensional Schwarzschild space-time. The model
has been solved in terms of two functions Go(xi,xq) and b, +(xi,x2,p ). Since Go is the Green's function for a
massless particle, Go can be obtained from Go" by a conformal transformation. Writing the line element as

dsz=C(r)du du

and making a conformal transformation gives

Go(xi,x2)=C ' (r)C '~ (r')Go"(x,x') .

(3.39)

(3.40)

Of course one must still specify the vacuum state, which is equivalent to specifying the null coordinates used in

Eq. (3.39}. The usual choice for an eternal black hole is either the Kruskal or the Schwarzschild vacuum (see
Birrell and Davies for a discussion of these vacuums). The function b, +(xi,xz,p ) however cannot be expli-
citly solved for. Because of the mass one cannot use a conformal transformation to calculate it and the equa-
tion for the mode functions

(Oyp )P(x)=0 (3.41)

(3.42)

is too complicated to solve.
The Ward identity satisfied by G(xi,x2) can be easily derived by starting from the generating functional

e "' ' =/ Ap %' 4' q g~ e

where 7 and X are Grassmann sources and

Scff—f ~g d "x[ ,F""F&„+g—(y"V& +ie pA & )g + ( V„A") i V„ri~V&ri—]j, (3.43)

with ri and ri* complex Grassmann ghost fields.
The Ward identity is then derived by making a Becchi-Rouet-Stora (BRS) transformation:

5A„=—V„(&*ri+&ri *),1

e

iS '(x —z)5(—x —y), (3 44)

where I" is the three-point function and S is the
inverse propagator. Equation (3.44) shows that as

expected the %ard identity has the same form as in
flat space-time.

IV. CONCLUSIONS AND OUTLOOK

The main point of this paper is that the infrared
properties of quantum field theories in curved

5il = (V„A")A, , 5i)*= (V„A")~*,
ue ae

where A, and g~ are complex Grassmann constants.
Using the fact that under this transformation

5S,ff —0 allows one to show that

V„l "(x,y,z)=iS '(x —z}5(z—y)

I

space-time are important and can (at least in very
simple systems) be attacked. However, the subject is
very difficult, even with an exact solution to the
Schwinger model I have not yet been able to prove
that it confines in curved space-time. Since it con-
fines for finite temperatures I expect that it will con-
fine for finite curvatures arid I am working on
showing this. In a future paper I will use the solu-
tion to the Schwinger model to study Hawking radi-
ation from a black hole.

For reasons discussed earlier in this paper, the
best place to look for loss of confinement due to cur-
vature would be in a renormalizable but not super-
renormalizable model that lost confinement at high
temperature. The best model to look at would seem
to be CP ', ' in curved space-time.
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