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Riemannian structure of space-time as a consequence of quantum mechanics
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Different axiomatic approaches to general relativity which use light rays and classical test
particles as primitive concepts remain incomplete because they end with a Weylian instead
of a Riemannian structure of space-time. It is shown that the final step to a Riemann space
can be obtained as a necessary consequence if quantum mechanics, as the theory of matter,
is made part of the total scheme. Quantum mechanics must contain classical particle
mechanics as a limiting case. The self-consistency requirement that in Weyl space this lim-

iting case should agree with the axiomatically introduced classical-test-particle behavior im-

plies the conclusion that the Weyl geometry of space-time must be restricted to the special
case of a Riemann geometry. This is shown in detail for massive spin- —particles after a

general discussion of the theory of unquantized tensor fields and two-spinor fields in Weyl
space. The result is independent of the Weyl type chosen for the orthotetrad (Lorentz
basis). The same conclusion is obtained from massive Klein-Gordon theory in Weyl space
in demanding that the physically reasonable current should be divergence-free.

I. INTRODUCTION

General-relativity theory as a metric theory for-
mulated in Riemann or Riernann-Cartan space is
now accepted as the most satisfactory theory of
gravitation as far as quantum effects of gravitation
may be neglected. During the last centuries there
have been many attempts to deduce the Riemannian
structure of general-relativity theory from a few ax-
ioms. A certain class of approaches seems to be the
most important one because the basic tools are not
complex physical objects like clocks or gyroscopes,
but primitive concepts like light rays and freely fal-
ling test particles (see details below). But these ap-
proaches have the disadvantage in common that the
respective axiomatic constructions of the theory end
with the Weyl space as space-time. There seems to
be no way to close the remaining gap between Weyl
and Riemann space if one is restricted to the use of
these primitive concepts only. The axiomatic
scheme remains incomplete. The aim of this paper is
to show that the gap can in fact be closed if quantum
mechanics as the theory of matter is made part of the
total scheme Quantum m.echanics proves that
space time must be-a Riemann (or Riemann Cartan)-
space.

This proof is based on two demands a gravitation
theory has to fulfill':

(i) Completeness: The theory must mesh with and
incorporate all nongravitational laws, in particular

the quantum mechanical.
(ii) Self-consistency: if one calculates the predic-

tion for the outcome of an experiment by different
methods, one always gets the same result.

The demand (i) forces us to include quantum-
mechanically described matter into the scheme of
general relativity. Quantum mechanics must con-
tain classical mechanics as a limiting case. The
demand (ii) then requires that this classical limit on
one hand and the axiomatically introduced classical
mechanics on the other agree. It is this demand
which will finally lead to the conclusion that gravity
as a space-time theory must be described by a
Riemannian instead of the more general Weylian
structure. Note that our arguments are not based on
the outcome of experiments. We are testing the
consequences of a theory against its original founda-
tions, which in our case are introduced axiomatical-
ly using classical concepts.

A. The gap which is to be closed

Up to 1970 the common axiomatic approach to
space-time structure was the one of Synge, which is
based on the behavior of standard clocks. The main
objection against this chronometric approach is
that the real clocks of physicists and astronomers
(e.g., atomic clocks) are highly complicated systems
which work on the basis of quantum mechanics.
Because one can construct ideal clocks showing
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gravitational time in a more geometric way by
means of light rays and freely falling particles, the
chronometric axiom reduces to the claim that gravi-
tational and atomic time agree. This, on the other
hand, should better be deduced from theory and
measured experimentally. Accordingly there have
been several efforts after 1970 to describe an alterna-
tive constructive approach to general relativity based
on more primitive concepts. All these different ap-
proaches end up with assigning to space-time a Weyl
geometry instead of the further restricted Riemann
geometry of general relativity.

A typical axiomatic scheme which results in a
Weyl geometry is the one described in Ref. 3. It can
be very briefly summarized as follows: primitive
concepts are event, light ray, and freely falling parti-
cle. The light propagation determines the null cones
and therefore a conformal structure, i.e., an
equivalence class e"'"'g

p of metrics. The freely fal-
ling particles determine the affine geodesics and
therefore a projective structure, i.e., an equivalence
class of symmetric affine connections. The com-
patibility requirement that the null geodesics of the
conformal structure belong to the geodesics defined

by the projective structure then finally results in a
Weyl structure 8' .

In a Weyl geometry W (Ref. 6) there is a unique
symmetric connection which is semimetric:

dye np ~pagep ~ppgac @gap '

The metric undergoes a conformal transformation
(gauge transformation)

i.e., that rates of gravitational standard clocks do
not depend on their history. This means that two
coinciding clocks of this type of equal rates still
have equal rates when they are separated and over
different world lines brought together again. This
postulate is of course unsatisfactory from the point
of view of an axiomatic scheme which has the basic
intention to overcome the chronometric arguments.
In addition, the physical meaning of such a postu-
late is unclear because its relation to the behavior of
real physical clocks (e.g., atomic clocks) in Weyl
space is an open question. No generally valid
answer is to be expected. Therefore, the more
promising approach seems to be the discussion of
self cons-istency of particle physics in Weyl space in

regarding the classical limit of quantum mechanics.
In Riemann space, the trajectory of the free parti-

cle can either be described by an affine geodesic or
alternatively introduced by means of a variational
principle based on proper time. Both definitions
agree because the connection is metric. In Weyl
space this situation is different. The free motion of
classical test particles is by axiomatic construction
described by affine geodesics. The Hamilton-Jacobi
equation, on the other hand,

(8 S)(BpS)g ~=m (1 4)

contains the metric g p with the nontrivial transfor-
mation behavior related to (1.2). This induces a cor-
responding nontrivial transformation behavior of m.
If in addition the gradients of the surfaces of equal
S

A(x)gap~gap =& gop (1.2) p. = —a~ (1.5)

with real A(x). It should be noted that conformal
transformations (1.2) appear in physics under several
different circumstances. The related mathematical
theorems and physical results often differ and can-
not necessarily be transcribed to the physics of Weyl
space. Related to (1.2) is the transformation

(1.3)

of the gauge potential a&, whereas I pz remains unal-

tered. In Weyl space it is possible to introduce grav-
itational standard clocks in a geometrical way. '

Accordingly, Weyl spaces may be taken as possible
physically reasonable space-times. The question is,
therefore, how can we show that Weyl space must be
further specialized to a Riem ann space (or
Riemann-Cartan space) in order to describe the real

physical world?

B. How quantum mechanics closes the gap

The usual, non-quantum-mechanical way to do so
is to postulate that there is no second-clock effect,

may still be related by some reason to the paths of
free test particles, it can be conjectured that the
Hamilton-Jacobi approach leads to a different class
of particle trajectories. Quantum mechanics is in

fact based on the Hamilton formalism. Also, in

Weyl space it will therefore imply in an appropriate
classical limit a Hamilton-Jacobi equation (1.4) so
that a question of self-consistency will arise.

To put it in a different way: While the classical
test particle motion is described by trajectories and
the respective tangent vectors, the classical particle
limit of quantum mechanics is based on the surfaces
of equal phase and the related gradients, i.e., on
one-forms. In Weyl space, there is because of (1.2)
no "natural" isomorphism between vectors and one-
forms. It can therefore be supposed that the con-
sistency demand that the classical limit of quantum
mechanics should agree with classical mechanics
forces one to be restricted to special Weyl spaces
with Riemannian structure. ' This would close the

gap described above.
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The purpose of this paper is to work out the de-
tails of this approach. We restrict ourselves to clas-
sical quantum-mechanical fields and introduce only
rudiments of the related theory of first quantization.
This will already be sufficient. To do so, we first
outline the basic structures of vector and spinor
fields (which transform nontrivially under Weyl
gauge transformations) in a Weyl space W . The af-
fine and metric structure of a Weyl space and the
gauge transformations of vector fields are discussed
in Sec. II. The introduction of orthotetrads will
then permit the definition of spinor fields. Section
III contains the basic algebraic and differential
properties of two-spinor calculus in Weyl space 8' .
In Sec. IV Stokes's theorem is given a form which is
appropriate for the discussion of physical currents
and conservation in 8' . Dirac theory in Weyl space
is introduced in Sec. V. In Sec. VI we demonstrate
the intended theorem, namely, that the classical
WKB limit does not agree with the free fall of clas-
sical particles as introduced in the axiomatic scheme
above. Section VII contains a discussion of Klein-
Gordon theory in Weyl space with the result that
again the restriction to a Riemann space is neces-
sary. Our conclusions are given in Sec. VIII. In the
Appendix we describe the "standard" choice of the
Weyl type of the orthotetrad.

C. Empirical background

Although our arguments are based on a discussion
of completeness and self-consistency, and therefore
remain totally within theory, it may be of interest to
inquire about the empirical evidence that freely fal-
ling massive elementary particles follow the same
trajectories as macroscopic bodies. This can in fact
be directly shown for neutrons using a gravity re-

fractometer with an uncertainty of only ~

parameter gauge transformations:

f(x)~f(x)'=e ' ' '"'f(x),

T(x) T(x)'= e"-'"'"'T( x)

(2.1a)

(2.1b)

which are called Weyl transformations A. (x) is
thereby a real function and w (f) and w(T) are real
numbers characterizing the behavior of the fields
f(x) and T(x) under Weyl transformations. w(f)
and w(T) are called the Weyl types of f(x) and
T(x), respectively.

Throughout this paper we will assume a coordi-
nate basis E =8 and E =dx in T„(M) and

Tx (M) to be of Weyl-type zero:

w(E )=w(E )=0. (2.2)

Components with regard to a coordinate basis
E =8 and E =dx will be denoted by Greek in-

dices:

T=T Q ttEt'. (2.3)

D(S+ T)=DS+D T (2.4)

the gauge covariance under Weyl transformations is
reflected by

D(fT) =[dg+w(f)ag] T+fD T (2.5)

and by the demand that the Weyl type is preserved,

On the manifold is defined exactly one affine con-
nection I called the 8'eyl connection which is the
gauge potential of the coordinate transformations.
It is of Weyl-type zero: w(l') =0. We introduce a
doubly covariant derivative D of scalar and tensor
fields, called the Weyl derivative, which is covariant
under general coordinate transformations and under
Weyl transformations. It defines a linear mapping
of tensor fields of type (p, q) into tensor fields of type
(p, q + 1). Apart from the usual property

II. WEYL SPACE w(D T) =w(T) . (2.6)

A. Gauge structure

We have as a starting point as usual a real, four-
dimensional, connected paracompact smooth Haus-

dorff manifold M. The tangent space at the point x
is denoted by T„(M) and the dual space of one-

forms by T„(M). Elements of T„(M) will be indi-

cated by a tilde. For AFT„and BET there is a
linear mapping (B,A ) into the real numbers. Ten-
sors are constructed in the usual way.

Apart from the action of the group GL(4,R) of
the real four-dimensional linear transformations
(represented as local coordinate transformations), all
scalar fields f(x) and tensor fields T(x) are subject
to the following position-dependent real one-

a~a'=a —dA(x) (2.7)

under Weyl transformations.
The components of the Weyl connection I are be-

cause of (2.2) given by

DE„=r~ E'e E„, (2.8a)

D E"=1
p

E~E (2.8b)

f(x) is thereby any function, w(f) its Weyl type,
and S and T are any vector fields. a is a real-valued
one-form called the 8'eyl potential. It is the gauge
field of the Weyl transformations (2.1) and
transforms inhomogeneously according to
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We restrict the following to the case of vanishing
torsion:

I py
——I yp. (2.9)

This will lead us below to a Weyl space instead of a
Weyl-Cartan space. The restriction (2.9) is intro-
duced in order to simplify the equations. It can very
easily be abandoned. In this case our main physical
result, that quantum mechanics implies a Riemann
structure of space-time, remains correct if
"Riemann" is replaced by "Riemann-Cartan. " Be-
cause we are discussing quantum mechanics in the
extreme classical limit fi—+0 of a WKB approxima-
tion, the coupling of torsion with the elementary
particle spin can be disregarded. '

Introducing components with regard to a coordi-
nate basis

D T=(D„T p)E"SEPSEa, (2.10)

we find with (2.2) and (2.5) for the Weyl derivative

D„T p=dqT p+I q,T'p r„'pT, +—w(T)a„T p

Accordingly, the connection I is not a metric con-
nection as in Riemann space, but a semimetric con-
nection.

We introduce in the usual way the symmetric co-
variant tensor g conjugate to g with components g p

defined by

gapg =&a (2.17)

The Weyl type of g is w (g) = —1. Its Weyl deriva-
tive vanishes

Dg=0. (2.18)

The three quantities I, a, and g are not independent.
Because of (2.16) the torsion-free connection is
determined uniquely by g and a:

I ~~„=I~&„j+ 2 (8„'a„+8„'a„g„,g 'ia—, ) . (2.19)

I~&,j is thereby the Christoffel symbol as constructed
from g~p and g P. Its contraction is
I„',j =B„in'' —g, where g is the determinant of g p,
and so

(2.11) I z,——B„lnv' —g +2a„. (2.20)

and for the transformations of the Weyl potential

ap~ap =ap —BpA . (2.12)

B. Metrical structure

Apart from the unique Weyl connection I and
the Weyl potential a we introduce the pseudo-
Riemannian metric g(x) as an additional geometric
field of fundamental importance. g(x) is a sym-
metric (0.2-tensor) with signature —2. The essential
point in Weyl space is that g(x) is assumed to be of
a nontrivial Weyl type:

Because of (2.16) or (2.19) not only I and g but also
the Weyl potential a must be interpreted as a
geometric field.

A four-dimensional manifold with a unique sym-
metric connection I', an infinite set of tensor pairs
(g,a), (g', a'), . . . related by Eqs. (2.7) and (2.14),
and a doubly covariant derivative D with (2.4)—(2.6)
and (2.15) is called a 8'eyl space W .

To complete the description of a Weyl space, one
can introduce the curvature tensor of the Weyl con-
nection,

w(g)=1 .

Because of the corresponding behavior

(2.1 3)
and the field strength of the Weyl potential,

tv i)b'av i)Qp (2.22)

g g~ eA(x)g (2.14)

Dg=0, (2.15)

This implies for the components g~p

~iigap raiigep rppSae a@gap (2.16)

under Weyl transformations, the fundamental tensor

g is only fixed to within an arbitrary positive scale
factor. Thus, there is not a unique metric tensor but
a whole class.

The structures I, a, and g are now correlated in
demanding that the Weyl derivative of the metric
vanishes:

Both tensors are of Weyl-type zero. Using the lem-
ma (2.20) it can easily be shown that they are related
according to

(2.23)

This demonstrates even more than Eq. (2.19) that
the Weyl potential a& is part of the geometry of the
Weyl space and should therefore be interpreted as a
gravitational field.

A Weyl space with a symmetric connection
reduces to a Riemann space if and only if the field
strength fz„ivshane Tshe necessary and sufficient
condition for this is that a& is a gradient of a scalar.
In this case there exists a gauge transformation
(2.12) such that a„' vanishes identically. On the oth-
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er hand, for vanishing curvature R
&&

we obtain be-
cause of (2.23) a Minkowski space.

As far as gauge structure of a Weyl space gravita-
tional theory is concerned, the situation is similar to
the Riemann case: the theory cannot be called a
proper Yang-Mills gauge theory. One of the main
differences is that the gauge potentials I ttr are no
primary objects. There is a metrical substructure
and the "potentials" I p& can be derived according to
(2.19) from the Weyl potentials a& and the prepoten-
tialsg p.

D~e,"=t}te," I—,t et'+ I zt e~+ w (e )a qe,"=0,
(2.28)

I b,t„[——t}t„e,"+I ",t„e,'+ w (e )at„e,"]e„. (2.29)

For the introduction of spinors it is important to
realize that the change between different ortho-
tetrads,

where the covariant derivative is taken with regard
to all indices. It follows immediately that

C. Larentzian structure

y b~e~~e =lg ~e (2.30)

In order to be able to define spinor fields in Weyl
space W via representations of SL(2,C), we have to
introduce the proper orthochronous Lorentz group
W+ first. This can be done as usual by means of
tetrad fields. The ratio of the magnitudes of vectors
at the same point is invariant under Weyl transfor-
mations. The same is the case of the angle between
two vectors according to the usual definition. We
can therefore introduce in T„(M) a basis [e j of
four orthogonal vectors of equal length. To make
our conclusions as general as possible, the Weyl type
w(e) of this Lorentz basis remains unspecified
throughout this paper. Without restrictions we may
assume that for A(x)=0 the length of the four-
vectors is +1:

g,b g(~e,~e)——=expt [2w(e)+1)A(x)) ri,b (2.24)

with the constant matrix

is, because of (2.24), a Lorentz transformation,

Introducing the reciprocal matrix L'b with

(2.31)

I'bg I'bg ——lb'L' I,g+L' a,l

A consequence of this equation is that

e
~(ab)A, Ie(a I b)g

(2.33)

(2.34)

transforms with regard to the indices a and b as a
tensor under Lorentz transformations.

III. TWO-SPINOR CALCULUS IN WEYL SPACE

(2.32)

we obtain from (2.30) the inhomogeneous transfor-
mation behavior of the connection I'b~ under
position-dependent Lorentz transformations of the
orth otetrads,

rt, b
——diag( —1,—1,—1,+ 1) . (2.25)

D~e=I b~E e
D eh= rb &E~e e

(2.26a}

(2.26b)

so that we have, for the components T'b of a tensor
T with regard to j e I and I e ),

D„T'b —B„T'b+I ' „T b
—I™b„T'

+w(T'b}a&T'b . (2.27)

Because of (2.8) and (2.26) we find for the coordi-
nate components e," of the orthotetrad (e =e,"E&}
the relation

Such a basis is called an orthotetrad. We demand
that the manifold M be noncompact and that it ad-
mit a spinor structure. The latter is a global condi-
tion which is fulfilled if M carries a global field of
orthotetrads. ' For later use we introduce the dual
basis e of Tz(M) with (eb, e ) =5, and
w(e ) = —w(e). The components of the connection
I with regard to an orthotetrad are given by

A. Spinor algebra

It turns out that with regard to Weyl transforma-
tion the two-spinor calculus shows simpler struc-
tures than the four-spinor calculus. We therefore re-
strict ourselves to the first' and define at every
point x a two-dimensiona1 complex vector space
S„(M) as well as the respective dual S„(M) and the
complex conjugates S (M) and S„(M). Bases are
denoted by taq I, Itt" I, Iv~j, and Ilr" I, respectively.
Components g~:::r:.'. of a spinor g are obtained as
usual.

With regard to Weyl transformations it is as-
sumed that correlated with the Weyl transformation
of scalar and tensor fields, all spinor fields are
simultaneously transformed according to

(3.1)

where the real number w(f) denotes again the Weyl
type of g(x).

We introduce an antisymmetric spinor metric y.
For A, =O we choose the spinor basis to be normal-
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ized in the sense of

y(~~, ~s) =y~s

=exp[ [(()(y)+2(() (LA ))A(x) l ~4B (3'2)

with the constant matrix

with 0," being fixed Hermitian matrices of Weyl-
type zero: w((r, " ) =0 . The immediate conse-
quence of (3.10a) is the fixation of the Weyl type of
the spinor basis

u)(a~)= —,w(e) . (3.10b)

Ewe =~ =B
0 1

—1 0 (3.3)
Corresponding to (3.10a) we have

abC 6 ' 0 AXKBKY (3.11)

The Weyl types w(y) and w(Lrz)= —u)(Ir ) of the
spinor metric and spinor basis will be specified later.
The conjugate metric j is given by

w(y)A(x)pg (3.4)

A consequence of (3.10a) and (3.11) is the following
condition for 0.,

2o[a Ob~ FXY6AC ='gab 5C
AX BY (3.12)

with w (y) = —w (y), and satisfies the relation

ABC

A change of the basis
B

K~ ~K~ =lA KB

which preserves (3.3), fulfills

eAB ——lA lB AN
M N

(3.5)

(3 6)

(3.7)

which has the Pauli matrices' as a particular solu-
tion.

We complete the coupling between the spinors
and tensors in a Weyl space 8' in demanding, as in
Riemann space, the equivalence of the two respec-
tive metrics in the sense of (3.10). Because of (3.12)
this implies for the Weyl types

(()(y) = —,(()(g)= —, (3.13)

and therefore
and is therefore a representation of SL(2,C). The
matrix reciprocal to lA is denoted by L c.

To summarize, we have the following definition
of a spinor g in a Weyl space W: A spinor is a rule
which assigns to each orthotetrad I~ej at x an array
of complex numbers g" ' ~ which (i) transforms
under a Lorentz transformation W+ of the ortho-
tetrad according to

~ ~ e X o ~ ~ iA -X
M e ~ ~ V e ~ ~ ~ ~ ~ V o ~ ~

—X N
—S. B Y=L aL rlM lv ' '4 w. .

AX BY gB
2&(a +b) YXY YAC =gab Uc

We note for the later use the consequence

AX a A X
Oa 0 BY 5B6Y

where we have introduced the matrix

a . "ad DZ0 Bj —g Od VDBYZj

(3.14)

(3.1 5)

(3.16)

which is as well of Weyl-type zero; w((T's„)=0.
With reference to the coordinate basis, we finally de-
fine

(3.8)

where lA and LAB are the corresponding elements
of the twofold covering group SL(2,C) and which (ii)
transforms under a general Weyl transformation ac-
cording to

~ ~ \ X 1 ~ ~ ~ ~ o X o ~ ~

M V ~ ~ t y 0 ~ ~

=exp[w (gM'. '.'. )A(x)](M'. '.'. ~'.'.'. .

AX a AX
p p a

AX)

which obeys the lemma

AX BY
&p Ov TABTXj =gatv

C. Spinor connection

(3.17a)

(3.17b)

(3.18)

B. Relation to tensors

(3.9) We define a doubly covariant 8'eyl deriuatiue D
for spinors. The components of the respective 8'eyl
spinor connection I are given by

DKA ——I AgE KB .B A, (3.19)

AX
~e =CD K~ KX (3.10a)

The isomorphism which maps the spin space
S„S„onto the vector space T„can be introduced
by

For the spinor derivative D we require, apart from
linearity, reality, and Leibnitz s rule, that (i) it
reduces for tensors and scalars to the doubly covari-
ant derivative defined in Sec. II, and that (ii) it com-
mutes with y,
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D y=O,

and 0., in the sense of

D~a. = —I .~ b +I B~ ~ +IAX b AX A BX X A Y

(3.20) elude tensor densities, the Weyl derivative is general-
ized in the usual way by an additional term [com-
pare (2.11)]:

D„T.. . =B„T.. . +I„.T. . . +
(3.21)

Components of the derivatives are introduced as
usual. Taking into account the derivative D~ of sca-
lars as it can be read off from (2.5), we find with re-

gard to a coordinate basis, for example,

with
+w(T)a„T. . . d(—T)I „T.. . (4.1)

(4.2)

A typical density with a nontrivial behavior under
Weyl transformations is V' —g,

(3.22)
w (V' —g ) =2, d (

V' —g )= 1 . (4.3)
The Weyl type remains unaltered. With (2.28) and
(3.17) we have because of (3.21) also in Weyl space

(3.23)

It can be seen from (3.19) that under a spinor
transformation the Weyl spinor connection
transforms according to

o I (,g+ ~ cdgltt . (3.24)

Below we will make use of the fact that because of
the properties of I."c and ltt, the trace I"„~
transforms as a scalar under spin transformations.
It is therefore a covariant vector.

Equation (2.29) shows that I'b~ can be expressed
as a function of the orthotetrad field e,"(x) and the
Weyl potential. For practical purposes it may,
therefore, be useful to have in addition I "» as a
function of I'bx The relat. ion (3.10) causes such a
dependence. Taking the derivative, we obtain

D„UI'= B„(V'—g U") .1

—g
(4.6)

For a manifold with metric, Stokes's theorem can
be given a form which is very close to physical ap-
plications:

f A"n "g„,d V = f B&(v' —gA&)d V.1

(4.7)

With (2.20) we have

D„& g=0 —. (4.4)

The divergence of a vector density S [i.e., d(S) =1)
of Weyl-type zero [i.e., w(S)=0] reduces in Weyl
8' as in Riemann space to

D„S"=B„S". (4.5)

Applying this to &—g U" where U" is of the type
w ( U")= —2 and d ( U")=0, we find that (4.4)

b AX BX A AY X.I,gob
——cr, I By+0., I (3.25)

Contracting with cr'cz, using the lemma (3.15), and

contracting different pairs of spinor indices, we find

AX b g~b~

d V and d V are thereby the scalar volume elements
built as usual with the help of the line element
ds =g~ttdx dx~. They are of the types
w(d V)= —,, d(d V)=0 and w(d V)=2,
d(d V)=0. n" is the vector orthogonal to the
three-surface 0 with

+5~[——,I "d~+ , iIm(I "—„~)].
and with (3.14),

(3.26)
vn'=

ds
(4.8)

Re(r"») =-,' I'«. (3.27)

IV. STOKES'S THEOREM

In order to perform integrations we introduce
quantities which are tensor densities with regard to
coordinate transformation. A Weyl tensor density T
is characterized by its Weyl type w (T) and its densi-

ty weight d(T), where d(T) is an integer. To in-

The vector Im(I "zx) remains undetermined by the
orthotetrad field. We put it equal to zero to have
the correspondence to the usual convention in
Riemann space.

It is of Weyl type w (n")= ——, and invariantly nor-

malized to unity,

n n gatv=+1 (4.9)

w (A&) = —2, d (At') =0 . (4.10)

Using the lemma (4.6) we then finally obtain from
(4.7) the following handy form of Stokes's theorem
in 8'eyl space:

Integration can only be performed over integrands
of Weyl-type zero. The consequence is that Stokes's
theorem in the form (4.7) can only be applied to vec-
tors A" of type
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DpJ"=0 . (4.12)

In this case, the physical interpretation of the left
side of (4.11) which must be invariant under Weyl
transformations is the following: JI'n "g&„d V is the
amount of Q as measured by an observer with

tangent vector n" in the orthogonal rest space to
which d Vis attributed.

V. DIRAC THEORY IN WEYL SPACE

The scalar Lagrangian 1.of a field theory in Weyl
space with d (L)=0 must be of Weyl type

w(L)= —2 . (5.1)

The scalar density L =& gL is —accordingly
d (L ) = 1, w (L )=0. The Lagrangian L of the Dirac
theory must be covariantly formulated with regard
to coordinate transformations, Weyl transforma-
tions, and spinor transformations coupled to the
Lorentz transformation of the orthotetrad. We take
the two-spinor fields X" and Pz as the fundamental
fields of Dirac theory and introduce the convention

that, in the following indices of spinors or tensors
will be moved in the usual way with g p, g ~, yq~,
and y . Because we want to describe massive Dirac
particles and not neutrinos, a mass term must be in-

cluded. A real Lagrangian density L for the Dirac
fields which fulfills all these demands and reduces
to the well-known one in the special case of a
Riemann space is obtained by minimal coupling
(velocity of light c= 1):

f A"n "gq,d V= f DqA&d4V, (4.11)

where A" has to fulfill the condition (4.10).
A consequence of Stokes's theorem (4.11) is that

also in Weyl space the existence of a conservation
law for a quantity Q is related to a current J" of
type (4.10) which is divergence-free according to

(5.4)

The corresponding space-time behavior of m results
from the Weyl transformation factor e '"'~ only.
It is the field m=const which is transformed this
way. m in Weyl space is therefore not a new physi-
cal field for which field equations would be neces-
sary, it is a parameterlike quantity. The quotient of
two such parameters m~ and m2 remains constant.
Because the measurement of a mass uses in fact a
reference quantity (e.g., a reference mass), m may
indeed keep its physical meaning, if a local mass
measurement is possible in Weyl space.

To clarify additionally the concept of mass in
Weyl space, it must be remembered that already in
Riemann space, mass cannot be introduced as an
eigenvalue of the Casimir operator which is related
to the translations of the Poincare group. Accord-
ingly, in Weyl space, nothing similar can be expect-
ed. The reason for this is that in going to curved
space-time, the Poincare group of Minkowski space
is not enlarged but restricted. The translations are
lost, while the remaining Lorentz symmetry is local-
ized. The latter still permits the usual classification
of fields with regard to their spin values. The mass
parameter on the other hand can only be introduced
in the following way: To obtain the Lagrangian of
quantum fields in curved space-time one transcribes
the Minkowski-space Lagrangian according to
minimal coupling (with regard to the quantum-
mechanical interpretation this is the transcription of
the spin-position representation in the Schrodinger
picture). This results in the Lagrangian (5.2).

Inserting in (5.2) the different terms of the Weyl
derivatives according to (3.22), it can be seen that
the real Lagrangian density L does not contain the
Weyl potential az explicitly due to the "symmetriza-
tion" of the kinetic term. Nevertheless, a& reap-
pears explicitly in the Euler-Lagrange equations-
e.g.,

2

y .~aAxg) y +y ouAxg) y . )

—m(/AX" +yxX ) . (5.2)

By (5.1) the Weyl types of the spinor fields are
uniquely fixed,

w(X")= —1 ——,w(e),
(5.3)

w(P„)= ——,+ —,'w(e) .

Another necessary consequence is that independent

of the choice of w(e) the mass term must be of the
nontrivial Weyl type

=0

icr zzD~X ~x 0,&2'
(S.sa)

io D~Qg+ X =0.
2iri

(5.5b)

To relate with the Dirac field at least rudimerits of a
quantum-mechanical interpretation, we need more

(Ref. 17) [see the Appendix for w (e ) = ——,].
To work out these field equations in detail, one

makes use of (2.20) and (2.23) or corresponding rela-
tions like D o"„~=0. For all values of w (e) the re-

sult is the Dirac equations
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J' =W2o (pA(()x+XAXx) . (5.6)

It does not contain a& and is independent of w(e).
Its type is

than a Lagrangian and field equations. Quantities
with a physical meaning can be obtained from the
vector

Combination of these two equations leads —with
(3.13)—to the Hamilton Ja-cobi equation

(a.S)(EBS)g ti=m', (6.4)

2D (B,s)(itis)g B=D,(m ), (6.5)

which reflects again w(m )=w(g B). Taking the
derivative of (6.4) yields

w(j )= —2, d(j )=0. (5.7) where we have used (2.18) and

Because of the field equation (5.5) j~ is divergence-
free in the sense of DI,B )S=O (6.6)

D~ =0. (5.8)

According to (4.11) this is related to a global conser-
vation law, which in this case may be interpreted as
the conservation of charge or probability. j is the
physical Dirac four curren-t.

For later use we note a decomposition of the
current j which can be obtained from (5.6) using
some two-spinor algebra:

Bpj„=j p+O(fi) = — (3„S+O(A') (6.7)

with

A X 3
Ilo=(tioAXo+it'oxXo w(~p)= 2

. (6.8)

which is a consequence of (6.2) and (2.9).
Using (5.9), the four-current j" takes in the WKB

limit the form

j = g B(itixDttX XDtiitix—/AD&X"—
Zml

Because of

Jo(nJo =&o (6.9)

+X"DPitiA )

~aX(A P . B)y X )

VI. CLASSICAL LIMIT

(5.9)

the four-current j~p is a timelike vector.
For the directional Weyl derivative of jpz we ob-

tain, with (6.5), (6.7), and (6.9),

(D.jo„)jo=D.t»m '(jo.jo)' 1jojo„
+jo„j "D„(lnm) . (6.10)

Note that the connection I
&&

is contained in the left
side of Eq. (6.10) according to

XA &is(x)/fi g ( ih)nXA(x)
n=0

(6.1a)

&is(x)/A' g ( ih)ny . (x)
n=p

where S(x) is of Weyl-type zero,

w(S)=0.

(6.1b)

(6.2)

Inserting (6.1) into the Dirac equations and equat-
ing the lowest order of 5 to zero, we obtain equa-
tions which no longer contain the Weyl potential a:

A m
AxXo n + ~ ~ox&2

(6.3a)

o ppA()~s+ - Xo =0 .v'2 (6.3b)

We obtain the limit of classical particle paths by
means of the first step of a WEB approximation.
The respective ansatz is

(D J )J =(a,J,„)J,' r„J nj o—J J' „. —(6.11)

In a physical situation where a WKB limit (Xp iI)pA )

defined by the neglect of the terms 0 (fi) is an exact
solution of the Dirac equation (or an appropriately
good approximation), the corresponding four-
current field j~p defines as a tangent vector field a
congruence of timelike world lines. They will be
called streamlines g p. According to (6.10) and
(6.11) parallel propagation of jp by means of I tir
along a streamline does not result in a vector which
is still tangent to the streamline. This leads to the
following result: In a 8'eyl space W, the timehke
streamlines g p of the extreme classical limit of the
Dirac theory (no spin effects) are not geodesic, ie.
they are not autoparallels. Accordingly, the
quantum mechanically d-efined particle trajectories
on one hand and the free fall trajectories Pf -of clas
sically defined structureless test particles on the other

do not agree. This result is independent of the choice

of the II'eyl type w(e) of the orthotetrod (Lorentz
basis)

On the other hand, the requirement that the parti-
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(6.12)

cle trajectories obtained from quantum mechanics in
the classical limit should agree with the geodesic
trajectories of freely falling, spherical, nonrotating
neutral test particles —introduced as primitive con-
cepts of a space-time theory of gravitation —results
with (6.10) in

Dpm =0.
This implies

(7.3)

(fi g"'D&D„+m +Afi R)4=0 .

The four-vector

(7.4)

as well as d(m)=d(4)=d(R)=0. Possible candi-
dates for R are among others the contractions R
and R'~,

z of R'z&„ from (2.21). The Klein-Gordon
equation is then

a& ——B&(lnm )

so that

(6.13)
j"= g"'[—O'D„4 (D„4—*)4]iR. , (7.5)

,=0. (6.14)

VII. KLEIN-GORDON THEORY IN WEYL SPACE

It is well known that the theory of unquantized
Klein-Gordon fields does not allow a probabilistic
single-particle interpretation. In Minkowski space,
there exists a continuity equation for the four-
current but the corresponding density is not positive
definite. Anticipating second quantization, it may
be interpreted as the charge density of an assembly
of positively charged particles and negatively
charged antiparticles. It is therefore doubtful from
the physical point of view to base a discussion of the
particle path in Weyl space (obtained as classical
limit from quantum mechanics) on Klein Gordon-
theory This is. the reason why our discussion of
self-consistency and the related closing of the gap
has been based on Dirac theory.

On the other hand, if one, nevertheless, rests con-
tent with classical Klein-Gordon theory and
demands that at least the property of a conserved
physical current should be found in Weyl space,
Klein-Gordon theory offers a new approach.

The Lagrangian L with w(L)= —2 and d(L)=0
for the complex massive scalar fields 4(x) is

L =ill (Dq@*)(D„@)g"" m@~4 MR 4&—~4, —

(7 1)

where R is an appropriate curvature quantity and A,

is a real number. A Maxwell potential is neglected
but could easily be included. To obtain the values of
w (L) and d (L) above, we must again have

w(m}= ——, -(7.2}

as in (5.4) and

The consequence of the requirement is therefore
that the Acyl space reduces to a Riemann space and
the gap described in Sec. I is closed. ' Note that the
conclusions in this section are essentially based on
the nontrivial Weyl type of the mass m (and not on
the Weyl potential a ).

is of the type w(j")= —2, d (j")=0 [compare (5.7)].
It is divergence-free

Dp"=0. (7.6)

But from the physical point of view, j" has the
disadvantage that already for dimensional reasons it
cannot be taken as a probability current. A possible
candidate for this, which shows as well the
Schrodinger limit, is instead

(7.7)

If one now insists on giving the classical Klein-
Gordon field the usual physical interpretation, one
has to demand a continuity equation for jg'. The
consequence of this requirement would be

Dpm =0 (7.8)

n=0
(7.9)

implies with (7.4) to the lowest order in fi the
Hamilton-Jacobi equation

(7.10)

as in (6.4), and

jp = —(Ops}@o+o+0(A' ) . (7.11)

As far as the geodesic behavior of jz and jp„ is con-
cerned, we obtain, as a consequence of (7.7), (7.10),
and (7.11),

[compare (6.12)] and therefore the reduction of the
8 eyl space to the Riemann space. Note, that this is
a way to reach the Riemann space without referring
to the classical particle path. It can be shown on

Uery general physical grounds already that there can
be no physically reasonable classical Klein-Gordon
theory in the generic 8'eyl space W .

In order to-complete our discussion and to permit
a comparison with Dirac theory, we add a WKB
treatment of the two currents j"and j&. The WKB
expansion
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aIld

(D,j„}j'=D, (in@*4j}'j„
+ , (4—*4)Dq(m )~O(fi) (7.12)

APPENDIX: THE STANDARD CASE

To discuss spin- —, fields, tetrads are usually taken

as the primary fields and the metric is introduced as
a derived concept. Coupling according to

(D.JP/ VP =DE» JPJPI
g=e'e g,s, ta(g)=1 (A 1)

+(4~4) D&(lnm)+O(A), (7.13)

where the latter shows a close analogy to (6.10). In
both cases Eq. (7.8) is again the necessary and suffi-
cient condition for a streamline to be geodesic.

ta(g,s)=0,
gab jab ~

(A2a)

(A2b)

we obtain

and demanding that the coupling be mediated by a
quantity of trivial Weyl type

VIII. CONCLUSION w(e )= ——, . (A3)

The space-time structure of general relativity can-
not fully be explored within classical physics using
light rays and freely falling structureless test parti-
cles. To prove empirically the existence of torsion
in Riernann-Cartan space, one already has to make
use of the quantum-mechanical spin. ' An axiomat-
ic scheme based on the two primitive concepts above
ends up with a Weyl space and remains incomplete.
Only by including quantum-mechanically described
rnatter can one handle torsion axiomatically and
make the final step from Weyl to Riemann (or
Riemann-Cartan) space. The latter has been shown
above.

The following general structure can be read off
from our calculations, where we have discussed
some rudiments of quantum mechanics in first
quantization for spin 0 and spin —, in Weyl space:
Whenever the quantum-mechanical field equations
containing a mass parameter m allow a WKB limit
with

(8 S)(BttS)g ~=m (8.1)

If in addition 8 S is related in a simple way by the
tangent vector to the classical particle paths as ob-
tained from the four-current in the WKB limit (this
point is to be discussed in detail for every quantum
field), then quantum mechanics will contain classi-
cal mechanics as a limiting case if and only if the
Weyl space is reduced to the Riemann space.

General relativity and quantum theory are para-
digms in Kuhn's sense. Our discussion has shown
that —already, in a very preliminary stage—the in-
terference between these two paradigms proves to be
very useful for a deeper understanding of both of
them.

(i.e., whenever they reflect the local energy law), we
have

(8.2)

This particular choice is called the standard case.
An independent second approach to the standard

case (A3) is the demand that the two two-spinors Pz
and 1 which combine to the Dirac four-spinor

(A4)

be of equal Weyl type

ta (P~ ) =ta(X"), (AS)

dx"
ea

dS~
(A6)

the contraction with tetrad vectors represents the
transformation in a local Lorentz system, in which
the measured distances are still subject to Weyl
transforrnations (which are in this case conformal
transformations). The vector n" of (4.8) can be in-

terpreted as a particular tetrad vector. Compare the
corresponding physical interpretation of the four-
current in Sec. IV.

Assuming (A3) we have

(gob } 0 gab 9ab

whj h imples, with D~g, b
——0,

I ( b)a=o .

(A7)

(A8)

so that it is possible to attribute a unique Weyl type
to %. In this case (A3) is an immediate consequence
of (5.3).

There is a third possibility of justifying the re-
striction to (A3). In the general-relativistic theory
of measurement in Riemann space, tetrads represent
the local Lorentz observer and the respective mea-
sured values are obtained by projecting tensors on
the related tetrad. If according to (A3) the tetrad
components may be written as
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Using this to simplify (3.26) we obtain, with (2.29)
and (2.19),

gx~ BA, — gx BA, + & gx

where I. I» ~~ denotes the two-spinor connection
with the %'eyl connection I p& replaced by the Chris-
toffel connection gr I. Taking into account that for

the choice (A3) the two-spinors g" and Pq are of
Weyl type ——,, we find that the differential opera-
tor part of the Dirac equation can be written with
the help of the Christoffel connection only:

o D Pz ——o (8 Pz —I' q Ps), (A10a)

(A lob)

~K. S. Thorne, D. L. Lee, and A. P. Lightman, Phys. Rev.
D 7, 3563 (1973).

J. L. Synge, Relativity: The Special Theory (North-
Holland, Amsterdam, 1956); Relativity: The General
Theory (North-Holland, Amsterdam, 1964).

J. Ehlers, F. A. E. Pirani, and A. Schild, in General Rela-
tivity, edited by L. 0 Raifeartaigh (Oxford University,
Oxford, 1972).

4J. Audretsch and G. Schafer, Gen. Relativ. Gravit. 9,
243 (1978); 9, 489 (1978); L. Parker, Phys. Rev. D 22,
1922 (1980); E. Fischbach, B. S. Freeman, and W.-K.
Cheng, Phys. Rev. D 23, 2157 (1981)~

5Apart from Ref. 3, see also M. Enosh and A. Kovetz,
Ann. Phys. (N.Y.) 69, 279 (1971);M. A. Castagnino, J.
Math. Phys. 12, 2203 (1971);M. Enosh and A. Kovetz,
ibid. 14, 572 (1973).

H. Weyl, Raum, Zeit, Materie, 5th ed. (Springer, Berlin,
1923); J. A. Schouten, Ricci Calculus, 2nd ed. (Springer,
Berlin, 1954).

7In the axiomatic approaches sketched above, torsion is
usually excluded by postulate without any reference to
physical arguments. It is in fact an additional disad-
vantage of an axiomatic scheme based on classical test
matter only that torsion cannot be handled (compare
Sec. VIII) ~

sWe use the following conventions: a,p, . . . = 1, . . . , 4
are tensor indices; a, b, . . .= 1, . . . , 4 are tetrad indices;
A, . . . , A, . . . , =1,2 are two-spinor indices. The sig-
nature of the metric tensors is e '"'g

p
——( ———+).

The partial derivative is denoted by 8 . Symmetrization
is denoted by A( p] ———(A p+Ap ). Antisymmetriza-

tion is denoted by A
~ ~~

——
2

(A p
—A p ).

It is important to distinguish clearly the different con-
texts in which conformal transformations appear. See
for this and for further literature T. Fulton, F.
Rohrlich, and L. Witten, Rev. Mod. Phys. 34, 442
(1962); H. A. Kastrup, Ann. Phys. (Leipzig) 9, 388
(1967). The different topics are (i) discussion of Weyl
space as an extension of Riemann space, (ii) discussion
of conformally related Riemann spaces (one-to-one

mappings between Riemann spaces with related change
of connection), (iii) discussion of the 15-parameter con-
formal group replacing the Poincare group in Min-
kowski space [see, e.g., S. Ferrara, R. Gatto, and A. F.

Grillo, in Springer Tracts i'n Modern Physics 67, edited

by G. Hohler (Springer, Berlin, 1973) for a survey], (iv)

conformal supergravity as a gauge theory of the super-
conformal algebra generalizing Poincare supergravity

[see, e.g., M. Kaku, P. K. Townsend, and P. van

Nieuwenhuizen, Phys. Rev. D 17, 3179 (1978)]. We are
concerned with point (i) only.
See M. A. Castagnino of Ref. 5.

'K. Hayashi and T. Shirafuji, Frog. Theor. Phys. 57,
302 (1977), have made the observation that in the real
Lagrangian of a scale-invariant Dirac theory the corre-
sponding gauge potential does not couple minimally.
Based on this they have concluded that, accordingly, (i)
the corresponding gauge-covariant Dirac equations do
not contain the gauge potential, and (ii) that therefore
the gauge field is devoid of physical significance for
these particles and fields and can be completely disre-
garded (i.e., put globally equal to zero). This
justifies —according to these authors —the step from
Weyl space to Riemann space. These arguments are
wrong already for the following reasons. In K.
Hayashi and T. Kugo, Prog. Theor. Phys. 61, 334
(1979), the authors stress the fact that a scalar matter
field does indeed couple to the Weyl gauge field, so that
the conclusion (ii) above, that the gauge field is devoid
of physical significance, cannot be drawn and it
remains an open question how the specialization to
Riemann space can be justified. In addition, conclusion

(i) is valid only if w(e)= —2, as will be discussed in

more detail in Sec. V and Ref. 17.
L. Koester, Phys. Rev. D 14, 907 (1976). Earlier experi-
ments with neutrons are reported by A. W. McRey-
nolds, Phys. Rev. 83, 172 (1951); 83, 233 (1951);J. W.
T. Dabbs et al. , ibid. 139, B756 (1965); L. Koester, Z.
Phys. 198, 187 (1967).

J. Audretsch, Phys. Rev. D 24, 1470 (1981); 25, 605
(1982).

' R. Geroch, J. Math. Phys. 9, 1739 (1968). Compare, in

addition, R. Geroch, J. Math. Phys. 11, 343 (1970); K.
Bichteler, ibid. 9, 813 (1968).

~5We assume the reader to be familiar with two-spinor
calculus. For a review see F. A. E. Pirani, in Lectures
on General Relativity edited by A. Trautman, F. A. E.
Pirani, and H. Bondi (Prentice-Hall, Englewood Cliffs,
1965).



2884 JURGEN AUDRETSCH 27

16

~x 1 ~x
3 ~ () 1 i 4 ~ 0

That the Dirac equations (5.5) are the correct Euler-
Lagrange equations can as well be directly demonstrat-
ed in starting from the complex Lagrangian density

I Q g [&g~2(yx a .D yA y. aAxD y )

—m (/~X" +yxX )]

which differs from L of (5.2) by the total divergence

a.(&—g X~o „«X"—&—g Pxo
2

[use (4.6) to show this], and which therefore leads to the
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