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Thermal gravitational radiation of Fermi gases and Fermi liquids
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In view of neutron stars the gravitational radiation power of the thermal "zero-sound"

phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas

is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravita-

tional radiation power per unit volume P ~I=[(9')'~'/5]GQn'~'(kT) /iri c' and

P(g)-(4 /5 )(3/m) Ga n (kT) /A e for the cases of "zero sound" and bremsstrahlung,

respectively. Here Q =4~a 2 is the total cross section of the hard-sphere fermions, where a

represents the radius of their hard-core potential. The application to very young neutron

stars results in a total gravitational luminosity of about 10"erg/sec.

I. INTRODUCTION

In view of the possibility of liquid or solid struc-
tures in massive astrophysical objects such as neu-
tron stars, we investigated in a previous paper' the
gravitational radiation of the thermal phonons of a
homogeneous elastic isotropic body. To perform the
calculations we restricted ourselves to nonrelativistic
elastodynamics and to a special form of the body,
namely, to a finite freely vibrating "thin" elastic
cylinder. An essential point for the calculation was
the fact that the wavelength of the gravitational ra-
diation in the case of thermal excitation is small
compared with the length of the cylinder so that the
usual quadrupole radiation formula could not be
used and a generalized approach was necessary.

For the total gravitational radiation power we
found originally a T law, in the case in which the
temperature T of the body lies below its Debye tem-
perature TD. The application to a young neutron
star has lead to an extremely high thermal gravita-
tional radiation power. This result, however, is
based, unfortunately, on an inconsistent integration
procedure, which we already mentioned in a short
paper. Taking this into account a consistent calcu-
lation yields a T law for the gravitational radiation
of the thermal phonons of the body, which leads to
a very drastic decrease of the radiation power of a
young neutron star.

All these considerations have been performed
under the assumption that the body vibrates
coherently as a whole. However, this is correct only
if no internal damping of the phonons is present. In
contrast to this, in the case of non-negligible damp-
ing the vibrations of the body fall to coherent pieces

of a length comparable to the penetration depth of
sound waves, which is for not too low frequencies
or—in the case of thermal excitations —too low tem-

peratures, small compared with the linear extension
of the body.

Considering that the inner part of a neutron star
may have the properties more of a neutron fluid
than of a solid neutron lattice, we confine ourselves
in this paper to consideration of Fermi liquids. In
this case, damping of the vibrations exists, and for
high frequencies, caused by thermal excitations, the
coherence length of the vibrations is determined by
the damping of the "zero-sound" waves of the de-
generate Fermi matter. We find in Sec. II that as a
consequence of this a T law for the gravitational
radiation power of the visco-elastic vibrations is
reinstated.

On the other hand, in the case of Fermi liquids
gravitational radiation is also emitted by scattering
of the gaseous Fermi particles. Therefore, in Sec.
III the thermal gravitational radiation power of a
degenerate Fermi gas is investigated.

In view of neutron stars we note that the degen-
eration temperature Td lies at =10' K, so that the
mean energy of the scattered Fermi particles (neu-
trons) has a value of approximately 10 MeV. For
this energy region the collisions of the neutrons can
be described by means of a hard-sphere potential
with a radius a=0.4 fm. Therefore we perform all
our calculations in Secs. II and III on the basis of a
hard-sphere Fermi particle model.

Because it is to be expected that the gravitational
wavelength is large compared with a, the quadru-
pole radiation formula for calculations of brems-
strahlung can be used. Furthermore, the de Broglie
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wavelength of nonrelativistic neutrons is also large
compared with the hard-sphere radius a. Conse-
quently, the gravitational bremsstrahlung of the
neutrons must be calculated in a quantum-
mechanical frame. We have here a situation in
which the emission of gravitational radiation of a
macroscopic body (neutron star) requires a quantum
theory of gravitation, at least in the first-order ap-
proximation. In this way we also find for the total
gravitational bremsstrahlung a T law according for
which, for Fermi liquids, the radiation of the "zero-
sound" phonons and the thermal bremsstrahlung of
the Fermi particles are of the same order of magni-
tude.

Finally we give an estimate of the gravitational
luminosity of a very hot neutron star for the case in
which the assumption of a Fermi liquid for its inte-
rior is correct.

II. THE GRAVITATIONAL RADIATION
OF THERMAL PHONONS

To begin with we repeat the results of our previ-
ous paper' taking into account explicitly the correc-
tions that follow from consideration of Ref. 2. The
energy loss by gravitational radiation of the thin
cylinder with mass M and length L vibrating
coherently with frequency

coj =j marco/L, j=1,2, 3, . . .

is given by (G=gravitational constant)

dEJ 32 G Mco

dt 15 c5

~ 15x 1 —( —1)' j2(e~L)
co LJ

[EJ is the energy of mode j and

(2z/sr)' ji(z) =Js/2(z)

is the usual Bessel function], where

3A, +2p, ~
A+P Pp

(2.1)

(2.2)

(2.2a)

is the square of the velocity of sound (A, and p are
Lame's constants and po is matter density). Here
only one-phonon processes have been taken into ac-
count.

In view of the application to thermally excited
bodies only knowledge of the high-frequency range
of (2.2) is necessary; with the definition

P = (E+E )———1

2 dt ' '+'

P= —Mc L E32G 4
J 15 5 o J (2 3)

g~ f dco
ETC p

(2.3b)

Then we get from (2.3) the total thermal radiation
power

P= — co (kT) /A',
45 5L (2.4)

where T « TD (Debye temperature) has been
presupposed. This limiting case is of special in-
terest in view of the application to neutron stars,
where the Debye temperature is of the order of the
degeneration temperature of the neutrons.

With the area of the cover surfaces F=2mR,
where R is the radius of the cylinder, we find

P= —
poco F(kT) /fi.8~ G

45 c' (2 5)

Evidently, in case of the coherently vibrating body
the emission of gravitational radiation is a surface
effect.

On the other hand, when internal damping of
matter is present, only pieces of the cylinder with
coherence length l radiate coherently. Then Eq.
(2.3) is to be applied only to such a piece and subse-
quently to be multiplied with the number L/I of the
pieces; in this way one finds, the gravitational radia-
tion power in the case of vibration with frequency
COJ P

G Micp
P = E, MI ——M—.

15 c' (2.6)

In the case of thermal excitation the insertion of the
mean thermal energy according to (2.3a) gives

32 G Ace /lL
PJ. — 5Mcp ~ ikT15 c

(2.7)

Now, the coherence length l is to be specified.
For a Fermi liquid the collision time of the fermions
is given by (T« Td, with Td the degeneration tem-
perature)

In the case of thermal excitations of the single vibra-
tion modes the energy EJ is to be replaced by the
mean thermal energy according to

EJ ~EJ =ficoj/(e ' 1) .— (2.3a)

Adding up the contributions of all vibration modes
we perform, finally, the replacement [cf. (2.1)]

one obtains, for j g&1,
(kT)

m
(2.8)
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l=u~,

where

9~U=
8

2/3
1/3

m

(2.9)

(2.10)

is the mean velocity of the degenerate Fermi parti-
cles of the fluid (n is the particle number density).
From (2.8)—(2.10) it follows immediately that

l=(ng) '(A' /2m) (3m. n) i (kT) . (2.11)

On the other hand, in addition to the coherence
length knowledge of the velocity co of the zero
sound is necessary for calculation of (2.7). Here we
use the property that a very viscous fluid behaves in
the high-frequency limit as a solid with pure shear
waves, where the shear modulus is given by

P =71/7 . (2.12)

Then the velocity of sound reads [compare (2.2a)
with A,~a)]

co=(3u/po)' '. (2.13)

For the viscosity 7I we have to use the general defini-
tion according to the microscopic transport theory:

7)= , Inmu . — (2.14)

where Q is the total cross section of the fermions (m
is their mass). On the other hand, the frequency
range which contributes most to the radiation power
is, according to (2.7), given by co=kT/A. Then using
this result together with (2.8) we obtain

co%~& ))1
2 A'2/mg

kT
(2.8a)

for T« Td (note that the numerator is of the order
of the Fermi threshold energy eF) Ac. cordingly we
are beyond the hydrodynamic limit and the coher-
ence length is determined by the mean-free-path

' length of the "zero-sound" waves

emitted by the thermal phonons of the liquid. Inser-
tion of (2.11) and (2.16) into (2.7) yields

27 G ng
10c mL

(2.17)

Finally we substitute the sum over the contributions
of all frequencies col by the integral according to
(2.3b). Regarding (2.16) we obtain for the total
gravitational luminosity L~,~

of the thermal phonons
in the limiting case T ~& TD

L = — —n—i (kT)(97r) G Q M 2 3 4

S c5$2 m
(2.18)

L(,s) =qo.T F (2.19)

[o =(a /60)k /A c is Stefan-Boltzmann constant],
where

q = 2' —Q fin V'
7T C

(2.19a)

represents the "opalescence" factor. Its value gives
the ratio for which the radiation (2.19) is smaller
than that of a blackbody. We note that our results
(2.18) and (2.19) are only correct for q «1; other-
wise the body is nontransparent for gravitational ra-
diation, and absorption and reemission inside the
body must be taken into account.

In the case of a Fermi liquid consisting of degen-
erate neutrons with an energy of about 10 MeV we

have, for Q,

In contrast to the "coherent case" [Eq. (2.5)] the re-
sult (2.18) represents a volume effect. Furthermore
we note that the structure of the relation (2.18) is a
quite general one, so that it should be valid not only
for the special case of the thin elastic cylinder but
for all shapes of bodies.

Considering that between surface F and volume V
of spherical bodies the relation

F=(36m )' V

is valid, we can transform Eq. (2.18) into

Using (2.8), (2.10), and (2.11) one finds, for viscosity
and shear modulus of the Fermi liquid, Q=4ma, a=0.4 fm (2.20)

(3n ) A'
sg3(kT)

2 5/3 5

16 mQ
35/3 4/3 g2

p= —n
16 m

(2.15)

(hard spheres with diameter a). Then the following
gravitational radiation power per unit volume
caused by the thermal phonons of the neutron fluid
results from (2.18):

Here we obtain from (2.13) the following relation for
the zero-sound velocity [cf. (2.10)]:

P(, )
———,(3m )

i —— n'i (kT)
c

(2.21)

Cp=U . (2.16) For the opalescence factor (2.19a) we get

With knowledge of the properties of zero sound
we are able to calculate the total radiation power

21/3 2g 5/3 y1/3
7T

(2.22)
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Finally, we point to an interesting feature of our
result. According to (2.7) the energy loss of the
fluid by gravitational radiation of its thermal pho-
nons increases with decreasing mean path length I,
for which the heat conductivity of the thermal pho-
nons decreases also. Consequently, when the energy
loss by the electromagnetic radiation emitted from
the surface is attenuated, the energy loss by gravita-
tional radiation coming out of the inner parts of the
fiuid is enhanced.

III. THE GRAVITATIONAI. RADIATION
OF A DEGENERATE FERMI GAS

As mentioned in the Introduction the gravitation-
al bremsstrahlung emitted by the scattering of two
hard-sphere fermions of the Fermi liquid must be
calculated quantum mechanically. The radiation in-
tensity produced by the transition from the initial
states defined by the momenta pi, p2 into the final
states p &,p 2 is given in the quadrupole approxima-
tionby' ' '

I- - .- - =
45

—,
I ~P 1 P2IQab I P1P2& I'

P 1' P 2' P 1' P 2 45

(3.1)
Going over to center-of-mass coordinates and rela-

tive coordinates the quadrupole operator separates
into a center-of-mass part and a relative part, Q,b

and Q,b, respectively. Then in the case of central
forces Q,'b'—=0 is valid generally, so that the matrix
elements of the relative part of the quadrupole
operator remain in Eq. (3.1). For the following it is
appropriate to set Eq. (3.1) in the form

~ ~

, ~ 1&pi p~lQab I pi p2& IP &~P2ip]~P2 45

(3.2)

with

(pi +p2 —pi pz—)
2 2 '2 '2

2m
(3.2a)

In the case of hard-sphere potentials the interac-
tion is taken into account as a boundary condition
for the wave functions, whereas for the rest free

~ ~

propagation is valid. Thus Q,b becomes

"(r) 2
Qab — (3PaPb P ~ah) ~

rM

(3.3)

(3A)

The initial and final states 1(t; and ff, respectively,
are to be chosen in such a way that the scattering
problem has been solved already. This means that
1(i; contains an ingoing spherical and a plane wave
and Pf contains an outgoing spherical and a plane
wave, where the wave functions iA and 1(tf vanish at
the radius a of the spherically symmetric hard-
sphere potential; in our case a is identical to the di-
ameter of the hard-sphere fermions. Performing
this we can restrict ourselves to the s-wave scatter-
ing, because the reduced de Broglie wavelength of
the particles is large compared with the scattering
length a in view of nonrelativistic neutrons. In this
way we find for r & a, taking into account the
indistinguishability of the particles,

p=-, (pi —P2)

represents the relative momentum of the two parti-
cles, and p denotes their reduced mass in this sec-
tion. Here it follows, from (3.2), that

8 6
2 I &4f I3p.pb p"'fab

I

—4& I

r

ei p ~ x /4+ —i p ~ x /fi —ipr/fi i P ~ X /A'

r

ei p
' x /ii+e i p

' x /ii —~ eip'r/S ei p ' X /ii

(3.4a)

(x= xi —xq is the relative coordinate, r =
I

x I,

m ) x)+m2x2X=
m~+m2

is the center-of-mass coordinate, and P= pi+ pz is the total momentum). Evidently, only particle pairs with

symmetric wave functions (singlet) participate in the scattering. Inserting (3.4a) into (3A) we find the follow-

ing intensity of the bremsstrahlung':
2

If; = — [3(p,pb p,'pb )—(p2 —p —2)5,b j~[(2M)35 (P—P ')] (3.5)
45 c' p2
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—a+( —,P —p) /2m

kT

—a+ ( —,P+ p ) /2m

kT
+1expexp

For calculation of the radiation power P~g~ of the bremsstrahlung per unit volume we have to divide (3.5) by
(2M) 5 (P—P) and subsequently multiply by the density of states in the momentum space and the mean occu-
pation numbers according to Fermi statistics. Taking additionally into account that the singlet state represents
only 4 of all possible spin states we get

2 2 2

d P,
64m G a fi

[( P,P)2+3 2,2 .
2~)

5 „4
1 1

a —( —,P+p') /2m
X exP

kT
+1 ' 'exp

a —( —,P—p ') /2m

kT
+1'

dp dp' dP
(3.6)

(2M) (2M) (2M)

Here 7 is the angle between p and p
' and the P ' integration has been evaluated already. The integration over

the remaining momenta is to be performed within the following limits:

0&P & 00, 0&p & 00, 0&p'&p, (3.6a)

whereas the angles in the momenta spaces of p and p
' run over half-spheres only because of the identity of the

particles. The chemical potential a takes, in the case of high degeneracy, the form

a= (3n. A' n) »11 a
2m kT

For evaluation of the integrals in (3.6) we consider the products of the brackets explicitly. One finds

(3.6b)

[ )[ ]=1+exp P
4 +p —2ma mkT

+2cosh(
I

P p'I /2mkT)exp
p2

4 +p —2ma 2mkT (3.7)

j j [ j = 1+exp — +p' —2m aP
4

mkT

+2 cosh(
I
P p'

I
/2mkT)exp

p 2

4
+p —2m a 2mkT (3.8)

Evidently, with such denominators the integrals cannot be calculated exactly. For an approximate estimate we
use the fact that only particles within an energy range of +kT around Fermi's threshold energy participate
essentially at the collisions. Therefore, the following holds:

2 2 l2 l2
P1 P2

k
P1 P2

2m 2m — '
2m 2m

Because of 2
I p P

I

=
I pl —pz I

and 2
I p

' P
I

=
I

p', —p'2
I

it follows immediately that

I p P
I

&2mkT
I p

' P
I

(2mkT .

Here the cosh functions in (3.7) and (3.8) can be approximated by 1 and (3.7) and (3.8) take the forms

[)[]=(1+e")', j jj j=(1+e ')'
with

(3.9)

(3.10)

(3.11)

P2x= +p4
2mkT —,y=kT'

p2

4 +p 2mkT—
kT

(3.11a)
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Furthermore, we substitute P as follows:

p2z= 2mkT .
4

(3.11b)

Then with x, y, and z as new variables instead of p, p', and P the expression (3.6) results in, with the use of
(3.11),

P(g)—9 647r 6 a iri (2mkT)'
c' p' (2rfi)'

1/2
n

x —z+ Q+ kT

&/2z dxdydz
d 0 d20 d 0

(1+e") (1+e «)

2 CX Q
(x —y) +3 x —z+ y —z+ sin X

kT kT

(3.12)

P /4 a p''2 ()
2mkT kT 2mkT' (3.13)

From (3.10) we obtain, if the azimuthal angles in the
momentum spaces of p and p' are measured with
respect to the direction of P,

~

cos8
~

&2mkT/pP, if pP&2mkT,

~

cos8'~ &2mkT/p'P, if p'P&2mkT .

To perform the integrations in (3.12) we have to
consider at first the integration limits. With respect
to the exponential functions in the denominator of
(3.12) the integrand contributes noticeable amounts
to the integral only for x =0, y =0, where y &x is
valid (p' &p ). Here it follows from (3.11a) immedi-
ately that f f1QdQ =4m

P P ip2

2mkT z

f fd Q d Q sin X=2m"
ppp' '

(3.15)

where the two last integrals run over half-spheres
only, as noted above. Taking into account that, ac-
cording to (3.11a) and (3.11b),

pP =4mkTV z (x z+a/kT)—'~i,

p'P=4mkTV z (y —z+a/kT)'

we find, from (3.12) and (3.15),

(3.11c)

I

In view of (3.13) these domains of P and p' ' are the
only relevant ones, see Fig. 1. Then the solid-angle
integrations in (3.12) can be performed; one finds

fd Qp ——4m,

2

d3P~ i
—— — (2mkT)' ~ [(x —y) + —,(x —z+a/kT)(y z+a/kT)]-

3o c m. pA

Xz '«(1+e") (1+e ") dx dy dz . (3.16)

For determination of the lower limits for x and y (the upper limits are oo and x, respectively) we conclude,
from (3.11a) and (3.14),

&z+ 1/4z a /kT, — (3.17)

where z runs from 0 to ao. However, because only the values x=O, y=O contribute most to the integral of
(3.16) the relevant domain for z is, according to (3.17), restricted to

kT/4a (z (a/kT; (3.18)

for most of these z values the lower limits of x and y are, in view of Eq. (3.17), practically —00. Here, with the
fact that because a/kT »1 the values of x and y in the numerator of (3.16) can be neglected in view of the
denominator, we obtain, from (3.16),

1 6 a +~kr ff + ~ 8(x —y )(a/kT z) dz dx dy—
P( )

—— — (2mkT)' «"'- 2O, 5 ~4 4~7 0 (1+ x)2(1+ —«)2 i/&
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+~ e
—I&—~Idx dy

—"(1+e")(1+e ")(1+e«)(1+e «)

I

J O ( )dzdxdy=

where the lower limit of z has been set equal to 0 (kT/a « 1).
Now we are able to estimate the integrals in (3.19). At first we find

' 5/2

(3.20)

where the temperature dependence comes from the z
integral and the x,y integrations in (3.20) give a
number factor only. Its approximate value lies at —,.
Consequently, from (3.19) and (3.20) we obtain after
insertion of a according to (3.6b) and of p=m/2
the following radiation power per unit volume':

2/3 2

Pi ~

———— —— n (kT) . (3.21)
4 3 G a 5/3 4

5' ~ c'

The comparison with the expression (2.21) for the
thermal gravitational radiation of the phonons
shows that both components of a Fermi liquid, the
phonon and the gas part, radiate with an intensity of
the same order for all values of n and T in question.

IV. APPLICATION TO NEUTRON STARS

po-5 X 10' g/cm

for a neutron star' the degeneration temperature of
the neutrons amounts to T~-10' K, whereas the
Debye temperature for the phonons resulting from
the hard-sphere fermion model is about T~-10"K.
Therefore even the temperature of T 5/10' K of
a very young neutron star' lies below T~ and TD,
respectively. Furthermore with these values for po
and T the coherence length (2.11) is in view of (2.20)
of the order of

l=7&(10 "cm.

On the other hand the wavelengths corresponding to
co=kT/A have the values

20. i

kT

0 kT 2R
P'/4m

FIG. 1. According to (3.13) most of the contributions
to the integrals come from the neighborhood of the
straight line p /m+P /4m =2a.

For the application of the results (2.21) and (3.21)
to neutron stars we test at first if the suppositions of
our considerations are fulfilled. Section II is based
on equations of motion, in which the gravitational
forces are neglected. As one can prove easily this is
justified in the high-frequency range of thermal ex-
citations even for neutron stars. Assuming a density
0

and

XG-5)& 10 ' crn

X~-10 "cm

for the gravitational and the sound wave, respective-

ly, whereby the sound velocity is, according to
(2.16), co-0.3c. Consequently, the conditions
Xs & XG « I «R (R is the radius of the star) are sat-
isfied for a large temperature range of

T(5)&10"K .

Furthermore Xz is large compared with the mean
distance of the neutrons. For the opalescence factor
(2.22), valid for the radiation of the phonons as well
as for the bremsstrahlung, one finds q=10 ', so
that even neutron stars are very transparent for
gravitational radiation. Finally we note that in case
of the bremsstrahlung of Sec. III the use of the
quadrupole formula is satisfied because of

XG »a 4&(10 ' cm .

Consequently, all suppositions of our calculations
are fulfilled.

With the approximate supposition of constant
density and temperature inside the neutron star we
find, by combination of (2.21) and (3.21), the follow-
ing thermal gravitational luminosity of the star:

2

L,s- —,(3m )
~ —, — n «(kT) . (4.1)

c 77l
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For a very young object with typical properties, i.e.,

T=SX10' K,
po=5)&10' g/cm, M=Mo ~

one finds a thermal gravitational radiation power of
about 10 ' erg/sec, if a =0.4 fm is chosen. In con-
trast to this, in the case of pure coherent vibrations,
the radiation power of the same ob'ect would be, ac-
cording to (2.5), approximately 10' erg/sec only. In
any case the frequencies of the gravitons lie in the
very-high-frequency range of 10 ' Hz.

V. FINAL REMARK

The foregoing result is based on the assumption of
a nonsuperfluid Fermi liquid for the main part of
neutron stars. Up to now it is not clear if this as-
sumption is fulfilled within the range of the numeri-
cal values for T and po used by us. It could be that a
description of the inner parts by a superfluid neu-
tron liquid or a neutron solid would be nore ap-
propriate. is iv In these cases new damping mechan-
isms will take place which, of course, imply new cal-
culations of the temperature dependence and of the
power of the thermal gravitational radiation.
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