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A cosmological model is proposed in which the Universe is created by quantum tunneling

from “nothing” into a de Sitter space.

The tunneling is described by a de Sitter—

Hawking—Moss instanton. After the tunneling, the model evolves along the lines of the in-
flationary scenario. It is argued that at any time there exist parts of the Universe which are
still in the de Sitter phase, while other parts have already recollapsed. This model does not
have a big-bang singularity and does not require any initial or boundary conditions.

I. INTRODUCTION
The inflationary-universe scenario' ~ gives a pos-
sible solution to three major cosmological puzzles.
They are the following.

(1) Horizon puzzle* The temperature of the
Universe is nearly the same even in regions which,
according to the standard scenario, have never been
in causal contact.

(2) Flatness puzzle.5 Our universe is almost flat,
its density is within one order of magnitude of the
critical density: p/p.~1. It is known, however,
that small deviations from p=p, grow in time, and
to have p~p, today, one must have
(p—pc)/pe <107 at the Planck time.

(3) Monopole puzzle.® In the standard model, the
number density of magnetic monopoles produced at
the grand-unification phase transition is far too
large to be consistent with observations.

The standard cosmological model assumes homo-
geneity, isotropy, and flatness of the Universe as ini-
tial conditions and offers no natural solution to the
monopole puzzle. In the inflationary scenario the
Universe passes through a de Sitter phase of ex-
ponential expansion: a(t)xef, where a(t) is the
cosmic scale factor. Such a phase can arise in a
first-order phase transition with strong supercooling.
As a result of inflation, all scales in the Universe are
increased by the factor Z =exp(H ), where 7 is the
duration of the inflationary phase. Horizon, flat-
ness, and monopole puzzles are solved if Z is suffi-
ciently large.! > '

There remain, however, several fundamental
cosmological problems which the inflationary
scenario has not solved.

(1) What is the origin of the small density fluctua-
tions which led to the formation of galaxies?

(2) Why is the cosmological constant so small to-
day?
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(3) What is the origin of the initial thermal state?
In the present form of the inflationary scenario such
a state is required if we want the Universe to be
stuck in the false vacuum state.

(4) What is the big bang? In other words, what do
we make of the cosmological singularity at ¢t =0?

(5) Besides, there is another problem if we assume
that the Universe is closed (which seems to be a
more aesthetically appealing choice) and that the
grand-unification scale is much smaller than the
Planck mass. It is natural to expect that at about
Planck time (¢ ~tp) the size and the energy density
of the Universe are O(1) in Planck units. But then
the Universe will expand and recollapse in about one
Planck time, its size will never much exceed the
Planck length, and the stage of exponential expan-
sion will never be reached. In order to cool down to
temperatures ~ 10'* GeV, the energy density at
t ~tp must be tuned to be near the critical density
with an accuracy ~ 1071%. This is just a milder ver-
sion of the same flatness problem that we faced be-
fore.

Recently, there has been some progress on the
problem of density fluctuations. The inflationary
scenario predicts a scale-invariant spectrum of fluc-
tuations.” 1% Calculations based on gauge theories
with a Coleman-Weinberg effective potential give
8p/p> 1, which is far too large. However, density
fluctuations of desired magnitude can in principle be
obtained using effective potentials of different
shape.®® If 8p/p turns out to be too small, the re-
quired density fluctuations can be produced by vac-
uum strings.!!

No convincing solution has yet emerged for the
cosmological-constant puzzle, and I will have noth-
ing to say about it in this paper.

The purpose of this paper is to suggest a new ver-
sion of the inflationary scenario in which the
Universe is spontaneously created from nothing, and
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which avoids problems (3)—(5) in a natural way.
This scenario does not require any changes in' the
fundamental equations of physics; it only gives a
new interpretation to a well-known solution of Eu-
clidean Einstein’s equations.

To my knowledge, the idea that our universe
might be a vacuum fluctuation was first suggested
by Albrow.'? A more elaborate discussion was given
by Tryon,!* who argued that all strictly conserved
quantum numbers of a closed universe might be
equal to zero. If a universe of finite size is spon-
taneously created from the vacuum, the cosmologi-
cal singularity problem is avoided. However,
Tryon’s work leaves us in the dark concerning the
initial conditions at the moment of creation. Re-
cently, Atkatz and Pagels'* have discussed the possi-
bility that the big bang was a quantum tunneling ef-
fect, in which the Universe tunneled through a bar-
rier from some classically stable, static initial state.
They have shown that such a tunneling event is pos-
sible only if the Universe is closed. A weak point of
this picture (noticed by the authors themselves) is
that the Universe could not stay in its initial state
indefinitely long if that state is unstable with respect
to quantum tunneling. Then we are faced with the
questions of how did the Universe get in that state
and what did it do before that. Brout et al.!> have
suggested that our universe has originated as a local
quantum effect in a flat space-time. But again, if
such an event has a finite probability per unit
space-time volume, the intitial flat space could not
have survived for an infinite time. The same diffi-
culty is shared by the model proposed by Gott,!® in
which the Universe starts as a quantum effect in de
Sitter space. One could think that in de Sitter space
the problem is milder than in flat space-time:
Analysis of bubble nucleation in an exponentially
expanding universe shows"!7 that the bubbles never
completely fill space, and so at any moment of time
there is still room for new bubbles to appear. We
note, however, that in the full de Sitter space the
phase of exponential expansion is preceded by a
phase of exponential contraction [see Eq. (3.6)].

The model discussed in this paper is similar to
Tryon’s picture, but it goes further in that it gives a
mathematical description of the tunneling process
and determines the initial conditions at the moment
of nucleation. This paper is an extended version of
Ref. 18. Creation of universe from nothing has been
discussed independently, by Grischuk and
Zeldovich,"” however they have not suggested any
description of the tunneling process.

This paper is organized as follows: Before we get
to cosmic tunneling, we shall discuss two simple ex-
amples of quantum tunneling in Sec. II. Section III
describes the birth of the inflationary universe by
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FIG. 1. A potential with a quasistable state at x.

quantum tunneling from nothing. Section IV
discusses the ultimate fate of the Universe: Will it
recollapse or will it expand forever? Conclusions are
summarized in Sec. V.

II. EXAMPLES OF QUANTUM TUNNELING

We shall first consider a nonrelativistic particle of
unit mass moving in a one-dimensional potential
U(x) of the form shown in Fig. 1. The classical
equation of motion is

X+ U'(x)=0. (2.1)

The point x =x; is a local minimum of the poten-
tial, and classically the particle can stay at x =x,
indefinitely long. The origin for the potential is
chosen so that U(x,)=0. As we know, the state of
the particle at x =x, is unstable with respect to
quantum tunneling through the barrier. A semiclas-
sical description of the tunneling is given® by the
bounce solution of the Euclidean equation of motion
[that is, of Eq. (2.1) with ¢ changed to 7= —if]. This
solution is also called an instanton. The bounce
solution starts with x =x, at 7— — o0, bounces off
the classical turning point at the end of the barrier
(x =x,), and returns back to x =x; at 7— + .
The tunneling probability is proportional to
exp(—.S), where

2

1 +U(x)

2

dx

S=[_ ar -

(2.2)

is the Euclidean action of the bounce.

The decay probability per unit time, I, is related
to the imaginary part of the energy of the quasi-
stable state E:

r'=2ImE, . (2.3)

It can be shown?® that the bounce contribution to E,
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has an imaginary part only if the bounce solution is
not a minimum but a saddle point of the Euclidean
action. In other words, there should exist small per-
turbations of the bounce trajectory that decrease the
action. If x =x(7) is the bounce solution, then the
action for a perturbed trajectory x =X(7)+£&(7) can
be written as

S[x]=S[x]+7 [ £8°S[x)Edr . (2.4)
Here,
828 [x]=—93, 2+ U"(x) (2.5)

is the second variational derivative of S at the
bounce solution. E, has an imaginary part only if
the operator 8’S[X] has a negative eigenvalue. It
can be shown? that this is always the case for po-
tentials of the form shown in Fig. 1.

Another example is the creation of electron-
positron pairs in a constant electric field. For sim-
plicity, we shall work in a (14 1)-dimensional
space-time. The electron trajectory in a constant
electric field E is a hyperbola,

x —xo=*[K2+(t —14)*]?, (2.6)

where k=m /eE, m and e are electron mass and
charge, respectively, and x(,¢,=const. The classical
turning points are at x =xy*«. The solution of the
Euclidean equations of motion can be obtained from
(2.6) by changing t— —it:

(x —x0) 2+ (r—10)*=K* . 2.7

This solution describes a circular trajectory; it is an
example of a compact instanton (or bounce). The
process of pair production described by the instan-
ton (2.7) is symbolically represented in Fig. 2. AB
and DE are classically allowed trajectories. AB de-
scribes an electron moving backward in time, that is,
a positron. The semicircle BCD represents the in-
stanton (2.7). The fact that the solution (2.7) is not
defined for 7— + o indicates that there are no elec-
trons and positrons in the initial state, i.e., the pair
is created from the vacuum.

The bounce action equals

s= 2

Introducing a new variable 6 according to
X —Xxo=kK cos0, T—T1y=k sinf, we obtain (eE > 0)

172

mil+ —eEx {dt . (2.8)

ax
dr

S =2rmk—meEx? . (2.9)

With k=m/eE this gives S =mm?2/eE, and the
semiclassical probability of pair creation is

P <exp(—mm?2/eE) , (2.10)

lst' -
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FIG. 2. A schematic representation of pair creation in
a constant electric field. The dashed semicircle represents
the “under-barrier” part of the trajectory. (Below the
horizontal axis ¢ is the Euclidean time.) The classical evo-
lution starts at ¢ =0.

in agreement with Schwinger’s result. It is easily
seen from Eq. (2.9) that S is decreased if we vary the
radius of the circle k. The bounce action is a max-
imum in the space of circular Euclidean trajectories
of different radii, and thus the bounce is a saddle
point of the action.?!

III. THE BIRTH OF THE INFLATIONARY
UNIVERSE

Suppose we have a gauge theory in which the
symmetry is spontaneously broken when the Higgs
field # acquires a vacuum expectation value. The
Higgs field of realistic grand-unified theories have
several components, but for simplicity we shall con-
sider a single scalar field ¢ with an effective poten-
tial V(¢). If ¢ =0 is the true minimum of the effec-
tive potential, then we require that ¥V (o)=0, so that
the cosmological constant is small today. Besides
¢=0, V(#) can have other extrema. If =4, is
such an extremum,

V'(do)=0, (3.1)

then ¢ =¢y=const is a solution of the classical field
equation for ¢,

06+ V'(¢)=0. (3.2)

The vacuum energy density at ¢ =g, will, in general,
be nonzero (and positive):

po=V(do) . (3.3)

Suppose now that the Universe starts in a vacuum
state with ¢=¢, and is described by a closed
Robertson-Walker metric,

ds*=dt* —aX(t)[dX?+sin*X(d6* +sin’0 d $?)] .
(3.4)

The scale factor a(¢) can be found from the evolu-
tion equation
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SZG ol (3.5)

where @ =da /dt. The solution of this equation is
the de Sitter space,

al+1=

a(t)=H ~'cosh(Ht) (3.6)
with
H =(87Gp,/3)"/*. (3.7)

It describes a universe which is contracting at ¢ <0,
reaches its minimum size (@, =H ~!) at t =0, and
is expanding at ¢ >0. This behavior is analogous to
that of a particle bouncing off a potential barrier at
a =H"'. (Here a plays the role of the particle coor-
dinate.) We know that in quantum mechanics parti-
cles can tunnel through potential barriers. This sug-
gests that the birth of the Universe might be a quan-
tum tunneling event. Then the Universe has e-
merged having a finite size (@ =H ') and zero
“velocity” (@=0); its following evolution is
described by Eq. (3.6) with ¢ > 0.

We shall discuss this cosmic tunneling by analogy
with the simple examples of Sec. II. The Euclidean
version of Eq. (3.5) is

—a*+1=H%?, (3.8)
and bounce solution is
a(r)=H 'cos(HT) . 3.9

This solution can also be obtained from Eq. (3.6) by
changing t——i7. Equations (3.4) and (3.9)
describe a four-sphere S*. This is the well-known de
Sitter instanton.”*?* The solution (3.9) bounces at
the classical turning point @ =H ~!, which indicates
that it describes a tunneling to the de Sitter space
(3.6). However, it does not approach any initial
state at 7— + o0. In fact, S*is a compact space, and
the solution (3.9) is defined only for |7| <7/2H.
[Compare with Eq. (2.7).] The instanton (3.9) can be
interpreted as describing the tunneling to de Sitter
space (3.6) from nothing, where by nothing I mean a
state with no classical space-time. Then the birth of
the Universe is symbolically represented in Fig. 3.

“Nothing” is the realm of unrestrained quantum
gravity; it is a rather bizarre state in which all our
basic notions of space, time, energy, entropy, etc.,
lose their meaning. This does not mean, however,
that cosmic tunneling cannot be described without
complete understanding of quantum gravity. The
curvature of the instanton solution (3.9) is

R =12H*=327mp, /mp?, (3.10)

and we expect quantum gravitational corrections to
be small, as long as p, <<mp*/327.

de Sitter |space

H' JH O a
st

¥

FIG. 3. A schematic representation of the nucleation
of the inflationary universe.

The action of the de Sitter instanton equals

§=S¢+Sum » (3.11)
where

Sg=— 16:TG [ RVE d* (3.12)
and

Su= [ [38,87+V($)]Vg d* (3.13)

are the gravitational and the matter action, respec-
tively. Using Egs. (3.4), (3.9), and (3.10) we find*

S =—3mp*/8p, . (3.14)

By analogy with “normal” quantum-mechanical
tunneling, we can require that the instanton (3.9)
should be a saddle point of the action. The behavior
of S under small variations of the metric has been
studied in Ref. 23, where it is shown that the opera-
tor ngS for the de Sitter instanton has no physically
significant negative modes. (There are some nega-
tive modes, but their contributions cancel out in the
functional integral of quantum gravity.) This im-
plies that there should be a direction in the ¢ space,
in which the matter action Sy, decreases. Obviously,
the gradient terms can only increase the action, and
we can restrict ourselves to homogeneous perturba-
tions of ¢. For such perturbations

828 =V"(¢po)Vg , (3.15)

and the operator 82S has a negative mode if and
only if V"(¢¢) <0, that is, if d=¢, is a local max-
imum of the effective potential. (It should be noted
that this argument is based on a somewhat shaky
foundation: &S should have a negative mode in or-
der to give an imaginary part to the energy of the
decaying state. However, the energy of “nothing” is
undefined.)

One can push the analogy with the tunneling of
particles a little further and interpret exp(—S) as be-
ing proportional to the tunneling probability.
(Needless to say, the tunneling probability for the
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Universe is not a measurable quantity.) Then, if the
effective potential has several maxima, most of the
universes will nucleate at the maximum with the
smallest value of p,.

Poor understanding of quantum gravity does not
allow us to go beyond a semiclassical analysis of the
nucleation process. The hope is that this analysis
will eventually be justified in the framework of full
quantum theory of gravity. One can speculate that
the relevant functional integral for the ‘“nothing-
nothing” amplitude is the integral over all compact
Euclidean manifolds. Such an integral has been dis-
cussed by Hawking®* in a different context. The ac-
tion of the de Sitter instanton is smaller than that of
all other compact gravitational instantons,?* and one
can expect that it gives a dominant contribution to
the path integral.

The de Sitter instanton with the Higgs field at a
maximum of the effective potential was first dis-
cussed by Hawking and Moss,”> who gave it a dif-
ferent interpretation. They considered quantum
tunneling from a local minimum of V(¢) at $=0
and interpreted the instanton (3.9) as describing a
tunneling event in which ¢ jumps from ¢=0 to
¢=¢, and the Hubble constant jumps from
8mGV(0)/3 to H =87wGV (¢y)/3 simultaneously in
the entire Universe. Note, however, that the maxi-
mal spatial section of the metric (3.9) has size H ™},
which is the new de Sitter horizon, and it is hard to
see how it can tell what happens to the Universe
outside the horizon. “Creation from nothing” ap-
pears to be a more natural interpretation of the
Hawking-Moss instanton.

IV. AFTER CREATION

We now turn to the question of how the newly
born Universe will evolve. The state with ¢=¢g at a
maximum of the effective potential is a point of un-
stable equilibrium, and the Higgs field will be driven
away from ¢, by quantum fluctuations.

To simplify the equations, we shall set ¢o=0 and
introduce the notation

ur=—v"(0). 4.1)

Then at small values of @, the effective potential has
the form

V()= —su’d’ 4.2)

and ¢ satisfies a free field equation with a tachyonic
mass,

(O—u?¢=0. 4.3)

We shall first concentrate on the more interesting
case when u << H. The growth of quantum fluctua-

tions can be characterized by the vacuum expecta-
tion value of the field operator squared, (#*). This
quantity is divergent and should be renormalized, as
explained, e.g., in Refs. 26 and 27. Here we will be
interested only in the finite time-dependent part of
(¢?) and will subtract the constant infinite part so
that (¢2) =0 at t =0. Then for u << H, we have??®

2

2y 3H* 2w’ | 44

<¢ )'_ 87TZ‘LL2 exp 3H 1 (4.4)
For t << H /p* this gives

($?) =H3t /47" . 4.5)

Note that p has dropped out of Eq. (4.5), and so the
behavior of the fluctuations at t <<H /u* is not
much different from that for a massless field.
Equation (4.5) has been derived in Refs. 27 and 28.
This equation is important for what follows and we

“shall spend some time discussing it. A free scalar

field theory in de Sitter space is stable if
m2+ER >0, where m and £ are, respectively, the
mass and the conformal parameter of the field. In
this case, all modes of the field ¢ are decreasing
functions of time (due to the cosmological expan-
sion). For m%+£R <0 the theory is unstable, and
the modes of ¢ grow in time (when their wave-
lengths become sufficiently large). A massless,
minimally coupled field, for which m24£R =0, is a
borderline case. The modes of such a field are de-
creasing until their wavelengths become greater than
the de Sitter horizon (H~!) and remain constant
afterward. As time goes on, more and more modes
come out of the horizon, their contributions accu-
mulate, and (¢?) grows.

The time dependence {¢?) ¢ can be pictured’ as
a Brownian motion of the field ¢. As a result of
quantum fluctuations, the magnitude of ¢ on the
horizon scale changes by +(H /2w) per expansion
time (H~!). Then the average “displacement”
squared is (¢*)=(H /27)’N, where N =Ht is the
number of “steps.” In this picture, the values of ¢
at points separated by a distance / in the range
H '«<l<«<H 'exp(Ht) made many Brownian
steps together and started wandering away from one
another only at ¢ =t;, where ¢; is the time when the
comoving scale / came out of the horizon,

t—t;=H'In(HI) .
Then the mean-square variation in the values of ¢ is
((84;)*) =(H /2)"In(H]I) . (4.6)

[This conclusion is confirmed®?® by a calculation of
the two-point correlation function (¢(x)d(x’)).]
Note that ((8¢;)?) << {¢?) for I << H ~'exp(Ht).



27 BIRTH OF INFLATIONARY UNIVERSES 2853

At t ~H /u? the negative mass squared becomes
important, and the evolution of ¢ can be pictured as
a Brownian motion in a field of force which drives ¢
towards greater values. At some later time ¢+, when
¢ grows sufficiently large (¢ ~¢+), quantum fluctua-
tions become unimportant, and the following evolu-
tion of ¢ is described by the classical solution of Eq.
(4.3):

2
~de L
d=~d+exp 3H(t ts) (4.7)

The moment at which the value ¢ ~¢s is reached
may be different in different regions of space, as a
result of quantum fluctuations [cf. Eq. (4.6)], and
thus t«=t+(X). This is the effect that gives rise to
cosmological density perturbations in the inflation-
ary universe.”~!© The magnitude of ¢. can be
roughly estimated as follows. Quantum fluctuations
change the value of ¢ by ~H on a time scale
~H~!, and so the fluctuation of “velocity” ¢ is
8¢~ H?. On the other hand, from Eq. (4.7) the clas-
sical velocity is ¢ =u’¢/3H. Requiring that 8¢ ~ ¢,
we find ¢« ~H>/u’.

Equations (4.4) and (4.7) assume that the form of
potential (4.1) extends to sufficiently large values of
¢. Our discussion can easily be extended to other
shapes of the effective potential, e.g., to the case
where there is an additional —A¢* term or where
there is only such term and u=0. [In the latter case
Eq. (4.5) applies up to®®? t~A"12H~! and
¢+ ~A"1°H. The evolution of ¢ is qualitatively un-
changed if A << 1.]

If w>>H, then (¢?)~HZ%xp(2ut), and the
growth of ¢ is probably too fast to have sufficient
inflation. The same applies to —A¢* potential with
A>1.

"When ¢ reaches the true minimum of the effec-
tive potential, the vacuum energy thermalizes and
the universe heats up to a temperature T ~p,'’*. In
our model this is the maximum temperature the
universe has ever had. At the time of thermaliza-
tion, the curvature radius of the Universe is
ag~H ~lexp(Hr), where 7 is the duration of the in-
flationary phase (for our purposes we will not need a
rigorous definition of 7). If 7 is large enough, a, can
be much greater than the present horizon.

If thermalization occurs everywhere at about the
same time, then we end up with a closed universe of
size ~agy. Such a universe would reach a maximum
size and then recollapse. It will now be argued that
the actual evolution of our model is quite different.
Right after the creation, the Higgs field can grow in
positive or negative ¢ direction with equal probabili-
ty. More generally, if ¢ is a multicomponent field,
there will be several directions of growth. Some of

these directions may lead to the true vacuum, while
others may lead to a false vacuum, and then parts of
the Universe will be permanently stuck in the de
Sitter phase.

A more interesting case is when the effective po-
tential is symmetric about ¢ =0, so that all possible
directions of growth lead to the true minimum of V.
Here we note that Egs. (4.4) and (4.5) give the mag-
nitude of ¢* averaged over an ensemble of universes
or, alternatively, over different regions of space.
However, the actual value of ¢ may be quite dif-
ferent at some places, and it is possible that in some
regions ¢ will be very small (say, ¢* <H %) even at
large values of ¢. The probability of having ¢* < H?
at t >>H ™! is small, but improbable events happen
if the number of trials is sufficiently large.

Now let us try to quantify this using the
Brownian-motion picture for quantum fluctuations.
Let F(¢,t) be the probability distribution function
for ¢. At small ¢ the slope of the effective potential
is negligible, and the evolution of F is described by
the diffusion equation

oF 3 F
—=D— 4,
o D e (4.8)
with the initial condition
F(¢,0)=06(¢) . (4.9)

The solution is
F(¢,t)= (m D)~ %exp(—¢2/4D1)

which gives

(¢*)= [ F(¢,0¢*dp=2Dr . (4.10)
Comparing this with Eq. (4.5) we obtain
D =H*/8x" . (4.11)

To take account of the slope of the effective po-
tential, we note that the classical time scale of varia-
tion of ¢ due to the slope is ~3H /u®. (Here it is as-
sumed* that u << H.) On the other hand, Eq. (4.10)
gives the typical time ~@¢2/2D ~4m*¢?/H>. The
slope becomes important when the two time scales
become comparable, that is, when ¢*>~3H*/47%u>.
[This also follows from a comparison of Egs. (4.4)
and (4.5).] For ¢>3H*/47’u’ the diffusion be-
comes biased in the direction of greater values of ¢.
The effect of the slope can be roughly estimated by
considering a diffusion on a segment with absorbing
boundaries at ¢ =+®, where

O~ 3H* /4w . (4.12)

The corresponding boundary conditions are
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F(®,t)=F(—®,t)=0. (4.13)

The solution of Egs. (4.8), (4.9), and (4.13) can be
found in the form of an infinite series,

F(¢,)=®~"' 3 b,,cos mmd
el 29
2773
Xexp | — m Hzt R (4.14)
329

where b,,=1 for m odd and O for m even. The
probability of having ¢2 <H 2 at large ¢ is

p~(H/®)exp(—H?t /329?) . (4.15)

The number of horizon-size regions with ¢2§ H?
is N ~p.", where

N ~exp(3Ht) (4.16)

is the total number of horizon-size regions in the
Universe. (/" corresponds to the number of trials.)
For pu<<H, we see from Egs. (4.15), (4.16), and
(4.12) that N >>1. This means that even at the
present time there are parts of the Universe which
still expand exponentially. The evolution of each
horizon-size region with ¢? <H? repeats the evolu-
tion of the whole inflationary universe, which itself
had size ~H ! at the time of creation. In this
cosmological model the Universe has a beginning
but has no end. Parts of the Universe recollapse and
develop singularities, while other parts are still in
the inflationary phase.

V. CONCLUSIONS

In this paper we have discussed a cosmological
model in which the Universe is spontaneously creat-
ed by quantum tunneling from nothing into a de Sit-
ter space. Here nothing means a state without any
classical space-time. The tunneling is described by
the de Sitter—Hawking—Moss instanton, in which
the Higgs field ¢ is at a local maximum of the effec-
tive potential, § =¢,. The Universe is closed and
has size H~! at the time of creation (H is the de
Sitter Hubble constant). Throughout the paper we
have assumed that H <<mp, so that quantum gravi-
ty corrections are unimportant. The case of H ~mp
cannot, at present, be analyzed quantitatively, but
one can expect that the qualitative picture of the
quantum nucleation from nothing will still apply.

After the creation the Universe evolves along the
lines of the inflationary scenario. Quantum fluctua-
tions drive the Higgs field away from ¢ =¢,. When
¢ reaches the true minimum of the effective poten-

tial, the vacuum energy thermalizes and the
Universe heats up to a temperature T ~(mpH)'/2.
In our model this is the maximum temperature the
Universe has ever had.

Quantum fluctuations near ¢ =¢, can be pictures
as a Brownian motion of the field 4. The magnitude
of ¢ on the horizon scale fluctuates by an amount
~H per expansion time (~H ~'). When ¢ gets far
enough from ¢, the slope of the effective potential
becomes important, and ¢ starts “rolling down.”
The probability of having (¢ —¢)* < H? at large ¢ is
very small. However, the number of horizon-size re-
gions grows like exp(3H?), and the number of re-
gions with (¢ —¢o)* <H 2 is increasing with time.

Each horizon-size region with (¢ —¢,)* repeats
the evolution of the whole Universe, which itself
had size ~H ~! at the time of creation. At any time
t there exist parts of the Universe which are still in
the de Sitter phase, while other parts have already
recollapsed and developed singularities. Thus, in
this model, the Universe has a beginning, but it has
no end.

Most of the problems discussed in this paper be-
long to what Steinhardt®! has called “metaphysical
cosmology” (or metacosmology), which is the
branch of cosmology totally decoupled from obser-
vations. (This does not mean, however, that such
problems do not allow a rational analysis.) The ad-
vantages of the scenario presented here are of an
aesthetic nature. It gives a cosmological model
which does not have a singularity at the big bang
(there still are final singularities) and does not re-
quire any initial or boundary conditions. The struc-
ture and evolution of the Universe(s) are totally
determined by the laws of physics.

We note also that the model discussed here may
open some new theoretical possibilities. In the
“standard” inflationary and noninflationary models
the Universe starts at infinite temperature and
reaches its present state through a series of phase
transitions. At T— o one normally has the phase
of maximum symmetry. My point is that there are
particle models in which, in the course of expansion
and cooling, the Universe gets stuck in a wrong
phase (such are some supersymmetric models®?). In
the creation-from-nothing type of scenario such
models should not be ruled out, since the Universe
can nucleate at any maximum of the effective poten-
tial, and the temperature of the Universe has never
been higher than ~p,!74.
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