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We reexpress superconformal gravity in Hamiltonian form, explicitly displaying all 24

generators of the group as Dirac constraints on the Hilbert space. From this, we can estab-

lish a firm foundation for the canonical quantization of superconformal gravity. The pur-

pose of writing down the Hamiltonian form of the theory is to reexamine the question of re-

normalization and unitarity. Usually, we start with unitary theories of gravity, such as the

Einstein-Hilbert action or supergravity, both of which are probably not renormalizable. In

this series of papers, we take the opposite approach and start with a theory which is renor-

malizable but has problems with unitarity. Conformal and superconformal gravity are both

plagued with dipole ghosts when we use perturbation theory to quantize the theories. It is

difficult to interpret the results of perturbation theory because the asymptotic states have

zero norm and the potential between particles grows linearly with the separation distance.

The purpose of writing the Hamiltonian form of these theories is to approach the question

of unitarity from a different point of view. For example, a strong-coupling approach to

these theories may yield a totally different perturbation expansion. We speculate that

canonically quantizing the theory by power expanding in the strong-coupling regime may

yield a different set of asymptotic states, somewhat similar to the situation in gauge

theories. In this series of papers, we wish to reopen the question of the unitarity of confor-

mal theories. We conjecture that ghosts are "confined. "

I. INTRODUCTION

A unified theory of all four known interactions
cannot be complete unless a procedure is found to
formulate a quantum theory of gravitation. Howev-
er, the presence of Newton's constant in the theory,
a dimensional coupling constant, precludes a con-
ventional renormalization scheme. Furthermore, the
presence of locally symmetric counterterms in the
higher-order loop expansion of gravity, supergravity,
and extended supergravity casts serious doubt on the
conjecture that these theories may be finite to all or-
ders in perturbation theory.

One alternative to the usual theory of gravity and
supergravity is to treat these two theories as effec-
tive theories, valid only in the long-distance limit.
In a previous paper, we (with P. Townsend)' pro-
posed that supergravity is only the long-distance,
broken version of the more symmetric superconfor-
mal gravity theory. Only at distances close to the
Planck length will the supergravity theory [based on
the group Osp(4/I)] emerge as the superconformal
gravity theory [based on the group SU(2,2/l)]. Zee,
Smolin, and others have proposed Higgs mechan-
isms for this kind of scale breaking. Adler even

proposes using fermion fields to replace the scalar
fields found in the theory, giving a dynamical break-
ing to scale invariance.

Our knowledge of the dynamical properties of
conformal gravity comes from perturbation theory,
and there are serious problems before a physical in-
terpretation can be made of this theory. First, in
perturbation theory around flat space, the asymptot-
ic states of the theory have positive energy but zero
norm. Second, even though the norm of a state is
not an observable, and these dipole states may
decouple from the S matrix, we encounter problems
when we include interactions. Because of the
higher-derivative nature of the theory, we find that
the potential between particles is linear. Once again,
we have difficulty in defining asymptotic states. We
do not have confinement in the usual sense because
we do not have singlet states under the group, but
this indicates some form of bound state. In sum-
mary, conformal theories are not unitary in the usu-
al sense when we use perturbation theory.

One way out of this problem is to start with an
R +R theory and use loop diagrams to push the di-
pole ghosts off the real axis into the unphysical
sheet by the Lee-Wick mechanism. This would ap-
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parently preserve unitarity and renormalization, al-
though some questions remain concerning causality
and whether or not a consistent prescription can be
found to all loop orders in the expansion.

In this paper, we want to explore yet another
mechanism to restore unitarity. In QCD, the naive
asymptotic states found in weak-coupling perturba-
tion theory are not the actual ones. This is because
infrared divergences require a reinterpreting of the
naive Hilbert space. In particular, in the strong-
coupling Kogut-Susskind approach, we find that a
solution to the constraint equation is to postulate
color-singlet stringlike states, which cannot be
reproduced to any finite order in weak-coupling per-
turbation theory. These stringlike states naturally
emerge when we quantize in the Hamiltonian ap-
proach. In the same spirit, we wish to construct the
Hamiltonian of superconformal gravity and look for
solutions to the Dirac constraints (which are not, in
general, solved by spin-2 gravitons with two helici-
ties). By canonically quantizing conformal and su-
perconformal gravity and going over to the strong-
coupling limit, we hope to find an entirely new Hil-
bert space without the troublesome dipole ghost
states found in the weak-coupling limit. We propose
that these ghosts are "confined. "

We wish to reexamine the question of the unitari-

ty of conformal theories. First, we wish to establish
the canonical quantization of conformal and super-
conformal gravity. There are many different but
equivalent quantization schemes, and all of them
have subtle problems with ordering, anomalies, etc.
We feel that the canonical quantization method is
the best understood of these various quantization
procedures. Second, we wish to eventually perform
a strong-coupling expansion on the theory which
will power expand the theory around a new Hilbert
space. In this manner, we hope that we can reestab-
lish unitarity from a different point of view.

In a previous paper, we established the canonical
formalism for conformal gravity written in metric
form. We wrote down the canonical Poisson brack-
ets of the theory and explicitly displayed the five
first-class constraints of the theory, four for general
coordinate transformations and one for local scale
transformations.

In this paper, we complete the discussion of con-
formal gravity by giving all 10 generators of the
conformal group (four general coordinate transfor-
mations, six local Lorentz transformations, one scale
transformation, and four proper conformal transfor-
mations). We go on to reformulate superconformal
gravity in canonical form, explicitly displaying all
24 constraints of the theory.

In our next paper, we extend these results by per-
forming a strong-coupling expansion of these

theories. One goal is to eventually show that the
usual gravitational interactions are actually van der
Waals-type effective forces of the conformal
theories.

Of course, it is very likely that the problematic
behavior of conformal gravity may persist even
when we treat the theory nonperturbatively. In this
case, we must reject conformal theories as a candi-
date for a renormalizable theory of gravity at dis-
tances smaller than the Planck length. However, if
we can somehow eliminate the nonunitary character
of conformal gravity found in perturbation theory
with methods which employ nonperturbative tech-
niques, then the theory would be a prime candidate
for a theory of gravity.

Even if we can establish a positive-definite Hilbert
space for these conformal theories, there still are
other problems, such as how to retrieve the desired
long-range behavior of the Einstein-Hilbert action.
One attractive method is to use dynamical symme-
try breaking to break down conformal gravity to the
usual theory. Since we still want to preserve general
covariance, it is likely that dynamical symmetry
breaking of scale invariance will reproduce the Ein-
stein action. There are several ways in which the
long-range behavior may be retrieved: (a) dynamical
symmetry breaking induced by instantons, (b) scale
breaking introduced by a cutoff procedure (e.g. , such
as in the Kogut-Susskind approach), (c) long-range,
van der Waals forces between stringlike objects.

II. SUPERCONFORMAL GRAVITY

The conformal group SU(2,2) is a 15-parameter
Lie group which includes the 10-parameter Poincare
group as well as scale invariance and proper confor-
mal transformations. If we enlarge this group to in-
clude anticommuting parameters, then the minimal
graded Lie group which contains the conformal
group is the superconformal group SU(2,2jl). This
group is a 24-parameter graded Lie group which in-
cludes the six generators of the Lorentz group (M'"),
the four generators of translations (P'), one genera-
tor for scale transformations (D), four generators for
proper conformal transformations (E'), 4+ 4 gen-
erators for two supersymmetric transformations
(Q,S ), and one generator for chiral transforma-
tions (A).

In direct analogy with usual gauge theories, we
can construct the action by first writing down the
curvatures associated with each generator of the
theory. The algebra of this graded Lie group is
represented by
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[Mab Mcd] 5bcMad+5adMbc 5acMbd 5bdMac

[Mab pc] 5bcpa 5acpb

[Mo Kc]=5bcK' —5"K

[P',D]=P',
[K',D]= —K',

V5 75 ~

e =det(ea&),

C= —C = —C ', Cy'C '= —y',
a a

gpv e pe v'

(2.3)

[K'P ]=—2(5'D+M' )

[Sp']=r'Q [S,A]= , irs—S, [S,D]= ——,S,
[Q K']= —r'S [QA]= ——.irsg [Q»]= ~ Q

[g Mab] ~abg Iga gPI
' (pC)&Ppa

[S,M' ) =cr' S, IS,SPI = , (y'C) —PK',

[Q,SPI = ——,C PD+ , (o'—C)PM' +(iysC)aPA .

(2. l)

We now associate a connection field for each of
the 24 generators of the theory. We denote the con-
nection field for the Lorentz, translation, scale,
proper conformal, supersymmetry, and chir al
transformations, respectively, by the following:

+5eR»(A )R""(A), (2.4)

where P=5=2iy= 8a-
It is a tedious, but straightforward task to show

that this Lagrangian, indeed, is fully locally gauge
invariant under the entire 24-parameter Lie group
once we choose the proper constraints on the theory,

As in Yang-Mills theory, we can now write down
the Lagrangian by taking various products of curva-
tures,

e»Pa[&R ab (M)R cd (M)eabcd

+PR„,(Q)ysRp (S)

+yRq, (A)Rpa(D)]

~„",e „,b R p„(P)=0, Rp (Q)y"=0 . (2.5)

R &v(M) =R» 4(e a&f—b» ebga„)—2g„gabg—

R»(D) = 2B&b +4e—„fa„+g„ctp„,

Rp„(A ) = 2r)pA „—2i g„ysP„—,

R„,(Q)=(2' „+2/„y„+bg „
, iA „g„y—s)', (2.2)

Rp„(S)= (2D»gp 2ctp„r'f'„b„g-„—
+ —,iA,Ppys)

R„'„(P)= 2B„e'„+2'„'—beb„+ ,
' y„ray„—

+2ea„b„,

R„'„(K)= 2a„f „+2„bfb—„,' y„r y, -

It is now a simple matter to write down all the
curvatures associated with each generator of the
theory,

In the usual theory of gravity and supergravity,
the constraint on the P curvature is optional because
it is redundant with the equations of motion for the
connection field for the local Lorentz transforma-
tions. Here, however, we impose this constraint on
the theory because it does not yield the naive equa-
tions of motion for the connection field. The com-
plete set of constraints is absolutely necessary in
proving that the action is locally gauge invariant
under the entire group SU(2,2/1).

These constraints, in turn, can be used to elim-
inate two connection fields in terms of the other
fields,

ab (0)ab+( b ba a bb)
P P P P

+-.(4,r'0' 0„r'0' 0—'y„y'), —
(O)ab ~ av b bco„=—,[e (e „„—e „„)

2f'pb„, —

where (all curvatures are to be antisymmetrized in p
and v)

g Oab g ~ah+ grab+ accb ~ac~eh
pv p v I p v v p

p4» —p(('v p C0p O' fv

+e' e "Pe'b peep] (a~b), —

4p =r'(Sp. + , rsS„.)~3, —

Sp = (DA'p+ b A'p 4'A p

rsvp�)

(p— —
(2.6)

5"=(+,+,+,+),
abed

V5 V172V3/4s fp =Pp~

Furthermore, we still have the freedom left in the
theory to completely eliminate the connection field f
through its equations of motion,
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f&„———, (R—„z—, g&—,R )+ , R—2„(Q)y,iti dimensional metrics is given by the usual ADM re-
lations

(—i /16)R „,(A ), (2.7)

where R„„denotes R„~„(M)e'e with f put equal to
zero.

Now that the preliminaries are over, we can begin
a discussion of superconformal gravity in Hamil-
tonian form.

Because superconformal gravity is a higher-
derivative theory, auxiliary fields must be added be-
fore we can express the Lagrangian in canonical
form,

4gpv=

—N +NkNk N;

Nj
3
glJ

where

( g00) —1/2

—N N'N
4

glJ

(2.10)

L =p;q; H(p, q—)+A;C', (2.8) N'= g'JNJ, metric=( —,+, +, +) .

[Notice that, in curved space, we use the metric
( —,+,+,+), while we use the metric (+,+, +,)

for flat-space indices a, b,c,. . . . We apologize for
using this mixed-metric formalism, but we wish to
conform with the metric conventions of ADM and
Ref. 2.]

We will find it convenient to introduce a vector
field n', which is a function of only the independent
fields e';, defined by the four relations

n'n'= —1,
(2.11)

We can also write down a closed form for n',

na 4ea0/( g00)1/2

This second form conceals the fact that n' is only a
function of the independent fields e';.

One purpose of introducing this new vector is to
be able to construct a projection operator for the
theory, because inversions in this strange 4&(3 space
are very tricky. For example, if we start with the 12
independent functions represented by a tensor A';,
then we can form a nine-component antisymmetric
tensor as follows:

A' =A'.e ' —A eai
l l (2.12)

But if we try to reverse this process, and recreate
the original 12-component tensor out of the nine-
component antisymmetric tensor, we obviously have
problems,

A' &A' e (2.13)

In other words, the freedom of rapidly contract-
ing back and forth between the flat-space indices
a, b,c,. . . and the curved-space indices i,j,k, . . . is
lost when manipulating tensors in this 4)& 3-
dimensional space.

The problem is solved, however, by introducing a
projection operator defined as

(2.9)
a 3 a 4 a
i ei ei

eal. 3eal 3 a 3 kl~4 al

The relationship between the three- and four-

where C' represents the Dirac constraints of the
theory, and A,

' represents Lagrange multipliers.
As in the usual Arnowitt-Deser-Misner (ADM)

formulation of gravity, we find that the key to
rewriting the action lies in a judicious choice of vari-
ables. In expressing the theory in terms of the 3 + 1

formalism, we must be very careful in selecting vari-
ables which. separate independent fields from depen-
dent ones and Lagrange multipliers.

We will thus begin our discussion of the 3+ 1

formalism by explaining as clearly as possible our
choice of variables.

We will first separate out the 16 independent
components of the field e'z into two sets, the 12 in-
dependent fields represented by e'; (i=1,2,3), and
the 4 remaining fields e'0, which will eventually be-
come Lagrange multipliers for the general coordi-
nate group. (We will use indices a, b, c, . . to.
represent four-dimensional flat space, while
i,j,k, . . repres. ent curved-space indices. )

When we are manipulating independent fields, we
will sometimes use the prefix "3", while the prefix
"4" will denote the original fully covariant tensor
(which, in general, can be decomposed into
Lagrange multipliers, dependent fields, and indepen-
dent fields).

From now on, we will use the convention that, if no

prefix is given, then all tensors labeled by i j,k, . . are.
independent fields

In general, covariant indices will represent in-
dependent fields, while contravariant fields are
formed by raising indices by the three-dimensional

~ 3metric g,J-,

3 4
gij = gij = gij

3 jk k
glJ g ~i
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nab ea;ebi 5ab+&a

nabn bc nac

ll =3 .

(2.14)

cause it does not yet contain the desired number of
fields. In a previous paper, we were able to quantize
conformal gravity (in metric form, only) because we
introduced auxiliary variables, like the second fun-
damental form

The correct relationship between the 12-
component A'; and the 9-component antisymmetric
tensor A' is therefore given by

A a n ab n baA ace c
l (2.15)

For completeness, we write down the equation
which allows us to go back and forth between four-
and three-dimensional fields,

eai 3eai 4&ai+ n aNigN (2.16}

Finally, we will find one more notational conven-
tion quite useful. Oftentimes, in general relativity, it
is more convenient to drop the time direction in
favor of a direction denoted by the vector n If w. e
define

A„=—A "=—NA

then

(2.17}

A„AI'=A„A "+A,3g'JAj

N'A'a'—~('A'+N'A')'g, ('jI +N'B')

(2.18)

The purpose of this decomposition, as we shall
see, is to reduce contractions over four-dimensional
space into contractions over three-space, which will
prove quite useful later on.

III. CONFORMAL GRAVITY
IN CANONICAL FORM

Before quantizing the complete superconformal
theory, we will find it useful to first start by quan-
tizing the smaller conformal group, which is locally
invariant only under the 15 local conform al
transformations. Many features found in this
simpler discussion will carry over into the much
more involved superconformal theory.

We will simply set all fermionic fields and the
vector fields to zero in order to obtain the conformal
action:

&epvpoeabcdR ab (M}'R cd (~)pa

=64( R""f& + , Rf +2f ——2f& f"—")ea,

(3.1)

where R~b R& e ", R =R——gaea", and f=ea"f'~
(we have dropped surface terms).

This theory cannot be put into canonical form be-

kij = (Ni
~ j Nj —

~

&

—gij )l2N . (3.2)

In order to introduce the second fundamental
form into the action, we simply added a new term
into the Lagrangian whose solution gave rise to the
previous equation:

HJ(2Nk;j Ni j N—j, +—g;1) . (3.3)

(The vertical slash, as usual, represents the covariant
derivative with the Christoffel symbols using only
the three-dimensional metric g;&.)

In conformal theory defined over tetrad fields,
rather than simply metric fields, we must define a
generalized second fundamental form.

A natural choice for the generalized second fun-
damental form emerges as we reformulate the theory
in 3 + 1 dimensions. Let us define

ak bi(ec ec )ec
2 kj jk i

+n'e Jn'(e'; i —e'1;)—2n'n";]

—(a+-4),

V;A'—=BiA'+ ';"(e)A (3.4)

n '(Nk'; V';e'0+—e'; Ne';n'b') .— (3.5)

Written in this form, we can now decompose the
connection fields into the proper 3 + 1 form,

co,' = —ai; (e)+[e' k&, n +e;e' bk —(a~b)],
co' = N("e'Jk +e'Je—e'k' )0 J J

+e oe' bk (a~b)—
Nkab+[eak&bk Ni ebkea b

(ab)], — (3.6)

Because of the large number of fields present even
at the level of conformal gravity, it will be useful to
clearly define the 3 + 1 decomposition of all fields.

The generalized second fundamental form k';,
which has 12 independent components, will be

k'; =[—e';+8;e'0+ate;'(e)e "0+Ne';n'b']/N .

We can add the generalized second fundamental
form into the action by simply introducing, as be-
fore, the term
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kab (ebjka +nckc eajilb) (a~b), k:—k

beb. +e &k..

(3.7)

decomposed into a six-component symmetric field

k,j and a six-component antisymmetric field k' as
follows:

f„,:e—'„f'„, fij =e';f'j,
f;„= N—f = N—e' f' gi'

f„;= Nf—; = Ne—' f';,
(3.9)

We will eventually find that the field k becomes
the Lagrange multiplier for local Lorentz transfor-
mations, while the symmetric field k,j splits into
two parts: the traceless part becomes an indepen-

dent field, while the trace of k;j becomes a separate
independent field, a scalar under the three-

dimensional group.
In addition, we can decompose the dilatation field

b& into its components

ba isa( b)+eakb

b =naba
(3.8)

We will find that the bk become independent

fields, while the field b becomes the Lagrange multi-

plier for local scale transformations.

Finally, we decompose the 16 fields contained

within f'z into a three-vector f;„, another three-

vector f„;, two scalars f„„and f» and a symme-

tric traceless tensor fj, while the antisymmetric ten-

sor a,j vanishes from the action:
I

f N2f. 00 N2eaofa 4gPD
P

Now that we have decomposed all fields into the
proper 3 + 1 formalism, we can categorize all fields,
whether they become Lagrange multipliers, or
dependent fields, or independent fields.

The Lagrange multipliers for the 15-parameter
conformal group are e'0 for general covariance, k'
for local Lorentz transformations, f;„,f„„for proper
conformal transformations, b =n'b' for scale
transformations.

The independent fields can now be paired off into
canonical-conjugate momenta and independent coor-
dinates,

(e' vr")

(kj,f"),
(b;,f"'),
(k f ).

We are now in a position to decompose the action
into its relevant pieces. Let us rewrite the Lagrang-
ian as

L =64aN( g)'~ [ f«R "'+f( , R„"—+R /6) —f'jRij+
3 fjj—2f'jf j+2aja—'j aj R'j-

f;„(R'"+4f"'—
) +f„"( , R,j , R„"+4—f,') ]—, —

where the bar over a field means that we must extract out its trace, and where

Rab4eaveb &aRabeb /N+Rah(eak naNk/N)eb

n bg ab4 av g ab beak;„=—n;v e = — ~kn e

eavgpoe g ah cake y~ ~kg abeajeb

~2g ab e avg pOeb 0 + ab e akn bp+ ++kZ abe ajn b jj
nn pv Ok kj

(3.10)

(3.11)

It is now a straightforward, though very tedious, task to rewrite the above curvatures in terms of the 3 + 1

decomposition given earlier. Substituting the expressions for the co s in terms of e, k, and b, we now find

Z,„=—-', a, k+k,
~

j+-,'b,-k+2b k,,

R q:kij/N+Nl i
l

j'/N+2k kj (N
l

jk«+'N
l
ik«j)/N

N;j l«/N+ Rij —2b;bj+2b l; —ki, b kkij+gij[2b—kb "+(—1/N)b N k+2b lk],
R k/N N 8 k/N k. kj+N I

I

./N k /3. +bk+3N
I

»b /N+2bkb" +b
(3.12)

R„;=—, k;+kj lj+ , bik 2b—;+2b;/'N+2—bjkj; 2(Nj;bj/N+N;b/N) 2N—jb;
l
j/N . —
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We are now in a position to complete the last step of the calculation, which is to rearrange all terms so that
we have the desired canonical form. A simple rearrangement of all terms yields

L =m ~e'; (2—f"'b;+f' k,j , f—k—}(g)'~ +e' P'+Nb(D)+ f'"NK'ak' M' N (3.13)

where f4 =f'& g, a= ~ (for convenience), H(p, q)=0 (actually, the Hamiltonian is a total derivative,

which is important depending on the boundary conditions), and

K'=('g}' e"(4f" + —k V'k—' b—k—)

+( g)' n'( —
2
kJk'J+ , k +—3bkb" 2V—kb" 4fk—" —, R—),

P'=( g)' n'[ 2fJf'—+f"'( Vjk;—+ —,k; , kb—;)—

+f J( 2k; —kj + 3kk,I—R() 2V;—bj+2b;bj)

+fk ( k I3+—'R I6+ , bkb "+—,Vkb"—k"—k'~)—

+ , V fk" —2Vk(b—f ) , (bj, ——b;~)+—, fk"fj~+—m;~k'I( g)' V;Vjf—'J]

+( g)'~ e"[2b;VIf J 2f"J(bJ—, b; J)+—, VJ(kf j;—)+f"V;k„,——,fk k;] V;n",—
(3g)1/2,(2V flll+k flj+ kf k} +IeQ

Mab ~ah+ ~ (~c nc nb ~bcncna)

(3.14)

(3.15)

(3.16)

(3.17)

where we define

VgA) =V;A) +ggqbkA" —
b) A; . (3.18)

Notice that the b field, which usually drops totally out of the action when we eliminate all components of
the f field, plays a crucial role in the canonical formalism of the theory. This is because we do not eliminate
all components of the f field, which also remains in the theory as a dynamical field.

Now that we have explicitly displayed the action in terms of canonical coordinates, we turn our attention to
the more complicated superconformal theory with its 24 generators.

IV. QUANTIZING SUPERCONFORMAL GRAVITY

Using the conformal theory as a guide, we can now perform the decomposition of superconformal gravity
into canonical form. Many of the features of conformal gravity in canonical form carry over directly to the
superconformal case.

As before, we want to keep the f field as an independent field in the theory. A straightforward reduction of
the original Lagrangian yields

L =64ae( 2f„,f "+2f +—, Rf fq„V"")——
+86'" Pa[3iP„B+pP 4g„y y Dp—g 3lg y Apg-.

+ , iPpP+~p(A—) Pqo' P„g~y—5o' Pp) 8aeRq„(A)—

where

V„,=R„,(M f=/=0) , iR„„(A) ,—R—„(Q)y„g——g„ap $„a—„g, . —

(4.1)

(4.2)

[The R (M) curvature in the above equation must have the f and P fields set equal to zero. ]
Written in this form, it is not at all obvious that the Lagrangian can be put into canonical form. However,

our work is made possible by the rather remarkable identity, which reduces out most unnecessary fields:

Vq, —V„q
—— fag„+2b„„,i—R„,(A ) (ij~=v) . — (4.3)

This identity will prove critical in eliminating out certain fields.
As in the case of conformal gravity, we begin the 3 + 1 decomposition of the Lagrangian by first decompos-

ing the connection fields for local Lorentz invariance and by defining a generalized second fundamental form,
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which now are functions of fermionic fields,

ep,' = —ep;'(e)+ [e'Jn kz+e;e'"bk+(p;y e' fk —, f—ke' y'e';e g~ )—(a~b)],

cop =
2 N ( e'Jk

&
+e' e e'pk k )+,N"sky e "1(; e—'pe bk —, Np—"n'p , —p,—ypf& (a—~b)

k'; =(1/N)[ e';—+V;e'p+Ne';n'b'+ , (gp—y'p;+g;y'N pk)] .

(4.4)

eR„„(Q)y'X" (4.5)

into the action. And third, we introduce the field m into the action, which has the net effect of reducing the
term R&,(A) into a term linear in the curvature, in much the same way that Maxwell's equations are put into
canonical form by adding in the conjugate field. This conjugate field will, of course, become the conjugate
field to the A field. Notice that the net effect of all three additions to the action is to reduce a higher-
derivative theory to a theory with lower numbers of time derivatives.

In order to reduce out the term (4.2), we will find the following identity useful:

R„„(Mf=/=0)=R„„(Mf=P=Q=b =0)+ , D q(Q—yQ, ) , D ~—(A—q „) 2bqb„—+2Vqb„+gq, V b

ie ~i p—P y.d e(4 yA—'p)~, .+ , ( 4i —y'4—P +Py Pb pg,. Py, S—P
it y—fib.» (4.6)

where

Before we begin the final reduction of the Lagrangian, we must add a few new terms to (4.1). First, we must
convert (4.6) by adding a Lagrange multiplier m", much the same way that (3.5) was added into the conformal
action. Second, we must add a fermionic auxiliary field X into the action in order to accommodate the fer-
mionic constraint (2.5). We accomplish this by adding the term

~ ~—2f"Vg Bp(b;+ , f ykf;) , A—k(Vg ~"+—i—g,p;e' ')+, ~~pk+~~pk+~rXk

+Nit "Q+NpS+NX"T+NbD+Nf'"K'+e'pP'+NK' M' +NA "0,

where the Hamiltonian is again a total derivative, where a = « for convenience, and

=K' +e"v g [ V*(y;yy )
—y;an/» —y;o'npk+—'( ilv g )e—; RJk(A) (4 v g )e Rk—i(Q)y5y;pg

, k0'y—JA—efgyA—Ay'0']

+n'V g [—, V;*(g"ykf')+ „—b,Jkg y'g"+gk—crJ pJ+( —,IVg )e'J"Rjk(Q)y&yg;],

I"=I'"'+n'v g [f"'[ , V, (WyP—)+—,k0'y 4 -0'b y4 R—«-»&' (—'—l~&-'—
+f' [ , Q bky;QJ+ „—6;JkpyJQ , V,'—(Q ykp )——

+ ,'Vk(~, ', ) , 0-;yP k.;+—0;—~",4k+4i~ JA+ Rkj(Q)y;A

, Vk(h; Jf' )+fk [ „V—;(g"ykg')+3I gyp—~f'yf —
9e &Jkf y Q- —

+ .~'"R;,(Q)ysyA+0'~';6+ , Ak4'b;]-
+( ,

' lv g )4 yyP-Jek~" +(3ilgv g )0;yAJyk~'" ,'R J(A)' ,
'e ~k~'——,', (A0j —

W—JN
)'———

+ „(Q'p gp—')(b; J
—bJ;) (i l4—)e'J mk—(b; J

—, iA/J)—

(4.8)

(4.9)

~apy Paypky 4a3 yap+ Ppyafy ~ (4.7)

and where D represents the usual covariant derivative with b =/=0.
Using the above identities, we can now reduce out totally the curvatures given in (4.2) in terms of indepen-

dent and dependent fields. The calculation is quite tedious and not very illuminating. Instead, we will simply
give the final result for the entire reduced action:

L =yr 'e'; + , kf v g k;~—f'Jvg—
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—„(b;,J —bj,; )'+e/j"[ —~; (Q)—D;/t/J ]yX/, /~g

+ (2/v g )/t/(yy/Xke'
"

iT/—YD/Xke/k/Mg + /T/ YX»e' "bj~g

e-'ye' .'[-,'-~"-C;y, ys~'"Ck &-'%(y, , ") X.]I
+e' ~g [ ,f"—V (pyjpk) —, Vk(f"—t/r'y/p )

——,e [AmV/(A/t/k) A—/t/k(Ajm —Am J)]—, V g—AmV»m , V—g—m (Ajm Am—/)

+e Vk( 2 '4 yj ys'P'm+Pil jXm+4m YjXk) 2
~ NiyjysDmkk

e'/"g—;y,D Xk+e'/(D it/;)Y, X»+(2k je"n + , g —y'n' ,—pa—ympb)

&& [ ,—e/"—0/yjys&"/tk &"—"it/(yj &") Xk-] I

Q/~g = , y'gk V—jf""
yuck V—;f"'+f"'[ , yp; k ——,b "yk it—/;

—, yk g;—iT/'y/g" , yet—/ k;—
] 1+ YP'—4/YA V—g —ysy~ jk(Q)&'" &/ 4—']

+f' [ , y/g, +—,ykg, p—;yg + , y gjk—;m+n'rr', p;+( , g)e/ —ysy;~/jm(Q)]

+ , yg, V-f" b;r,X—»~' /~S+y;D, X e" v g+D;(yjpk&" )/v g

+f» [ y&'b —y& &'—yi&'+ rr"n'& y'&'k~J—+ ~ y'& iT'y&k]

+ , YP'V k—(f )+,~"0;P,ys~"0k~'"/v g (/»6—i g )A~/»(A)~" + , /V;A/4k~—'"/i/g

„ys—kk—~ +(3i/4)yd;YJX»e" /v g+ , ynbf-a[, ~' Ayjys~ 0k ~' A(yj, ~ ) 6]/v g

+y'X; e'j'( ,
' 4y'y, —+e', j/, )/~g ,

'
y'g/F-""P—; y—'Xk/~g,

S= f /n'cr' f—;v g +(3i/8)g;V Aa/ — y ysD /k''/

(3i /4)Y—~A//t/kk"/" + , a' g;g~—y,o' gk»" "+(i /8)p;R/k(A)e' "+,~g cr"n'g fk"

+(3//16)ysykir ~g 2e y yjX» e Dk(y'ysy')

lab M(O)ab+ gjky y y &aby y (&ab y ) X gjk'
8=(3i/8)V (iT//t/k)e'j" (3i/8)/t/;y—/»AD''"+ „~gVkrr" (3i/4)p;y —y X e'

D =D' '+2/;y/Xke'/",

Yjys~' . &y= Xy/&—"—~//= it yj&"

T = 2e'/"yk[y;p/+ —, b;g~ (3i /4)A;—ysy—j—, D 4g]+y'0'& —(
4 4)y"fk+e /bk) &Dk(y/it//)—

and where we have used the following definitions:

n y =y; V';*AJ. ——V;AJ. +A h,jk+g,jb Ak —
b~

yn ~4gOay (y ab) y
ab aby &ijk &Oijk

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

The symbol (0) over the generators of the algebra
represent the original generators found in (3.18),
with the exception that the asterisk in (3.18) is to be
replaced by the generalized star symbol given above,
and that all k/j's now are functions of the fermion
fields as well. We also use the notation that the D
derivative on a fermion field requires a connection
field given by (2.6), while the V derivative on a fer-
mion field requires the connection given by (3.8).

This completes our discussion of the construction
of the generators of the algebra. Presumably, these
generators have Poisson brackets which close on
themselves, generating a representation of the super-
conformal group.

V. CONCLUSION

We have constructed the canonical formalism for
superconformal gravity, which is required before we



2818 MICHIO KAKU 27

can rigorously quantize the model. The correct Hil-
bert space of the theory must satisfy

where the C' represent the constraints on the theory.
Our conjecture is that solutions of the above equa-
tion using nonperturbative methods may bear little,
if any, resemblance to the Hilbert space generated by
perturbation theory. If this new Hilbert space is
positive definite, then we have a new candidate for a
renormalizable theory of gravity which is unitary.

In the next paper, we will complete the straight-
forward but tedious steps necessary to calculate in
the strong-coupling limit.

First, we will construct the "reduced Hamiltoni-
an." Notice that the Hamiltonian in (4.8) is formal-
ly zero. This is because we have neglected surface
terms. When we carefully calculate variations of
(4.8) under changes in the variables, we see surface
terms are necessary in order to complete Hamilton's
equations. In particular, we will see that the Hamil-
tonian is actually a reduced version of n'P', just as
in the usual gravity theory.

Second, we will make a redefinition of fields to
bring out the strong-couplir~g limit. In particular,
we will find that the term fJf 'J in (3.15) naturally
emerges as the dominant term. As expected, we also
find that the usual spin-2 gravitons with two helici-
ties are not solutions to the constraint equations.

Third, we must go to the lattice approximation in
order to construct a Hilbeit space which is quan-
tized (rather than continuous). We will construct
some solutions to the Dirac constraints, and we will
see that stringlike states (with zero energy to lowest
order) emerge as solutions.

We will also ask the difficult question: is the en-
ergy spectrum in this strong-coupling limit positive~
In the canonical approach, unitarity is probably re-
stored, but the price one may have to pay is the posi-
tivity of the energy. Unfortunately, this must
remain an open question because the positivity of
the energy probably cannot be established to any fin-
ite order in the strong-coupling expansion.

And finally, we will make the conjecture that the
solutions to the Dirac constraints represent the
"real" graviton, i.e., the real graviton actually has
structure in the same sense as glueballs having struc-
ture. Thus, at large distances we see the graviton as
a point particle, while at distances close to the
Planck length the graviton begins to exhibit struc-
ture (which is the reason why the theory is renor-
malizable while the usual theory of gravity is not).
Furthermore, if we single out these composite gravi-
ton states and neglect all others, we find that confor-
m al invariance is necessarily broken. In other
words, if we only keep these composite graviton
states and discard the rest, the net effect is to
dynamically break local scale invariance.

Of course, the next step, then, is to actually show
that graviton-graviton interactions actually repro-
duce the usual Einstein-Hilbert action in the long-
distance approximation.
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