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We consider the general phenomenon of amplitude zeros, first discovered in the process
du ~W y. Using spin-0 particles, we investigate the circumstances for amplitude zeros to
occur in the physical region and, as well, their location in phase space. A necessary condi-

tion is that all of the charges must be of the same sign or neutral. We analyze, in detail,

both the massive and massless cases for radiative decays, photoproduction, and direct pho-

ton production.

I. INTRODUCTION

A few years ago Mikaelian reported' that the dif-
ferential cross section for photoproduction of W+-

bosons, yd~W u, yu~W+d, etc. , reduced to a
very simple expression if the anomalous-magnetic-
moment parameter tt=g —1 for the chas the value
assigned by gauge theories, namely ~=1. Later the
crossed channels du~8' y and ud —+8'+y, where
a similar simplification for it= 1 occurs, were inves-
tigated. It was found that the angular distribution
for tc=l, when compared with those for other
values of tt, is very different. In studying these pro-
cesses we discovered that the angular distribution
for a=1 vanishes at a certain angle, and proposed
using this peculiar behavior in pp or pp collisions as
a means of measuring the magnetic moment of the
8". More recently, it was pointed out that the zero
also occurs (for spin-0 quarks as well as the standard
spin- —, quarks) in radiative decays of the W where,
in this case, the energy distribution vanishes along a
certain line in the Dalitz plot.

These zeros are quite remarkable —the lowest-
order amplitude vanishes for each spin state and the
position of the zero is independent of photon energy.
(For massless quarks, it depends only on the quark
charges. ) The simplification (factorization) referred
to above and the amplitude zero provide a check on
the magnetic moments of both the 8' and the
quarks and the position of the zero enables a direct
measure of fractional quark charges by real pho-
tons.

It has been shown that the tree diagrams for
these reactions have a factorization property which
is quite general. In this paper we will investigate the
general conditions for a zero to occur in the physical
region. Using spin 0 for the incoming and outgoing

charged particles, and standard coupling to the pho-
ton, we will see that the zeros are essentially due to
the complete destructive interference of the radia-
tion patterns.

In Sec. II we give the general requirements for an
amplitude zero. In Sec. III we discuss the general
radiative-decay process in both the massive and
massless cases, treating in detail the decay into one
charge, two charges, and, in two special cases, three
charges. In Sec. IV we show that the conditions for
an amplitude zero in photoproduction are essentially
the same as those for radiative decays, so the results
in Sec. III apply here as well. Section IV deals with
direct photon production. Here again, we show that
the zeros occur in the same place as in the corre-
sponding radiative decay, the photon direction, how-

ever, now being determined. Section VI contains a
brief summary of our results.

II. GENERAL REQUIREMENTS FOR A ZERO

Consider a process with one real photon and n + 1

additional external particles Q and Q;, i= 1, . . . , n

(Q and Q; also denote their charges) with four-
momentum k, P, and p;, respectively. The masses of
Q and Q; are M and m;. Now consider the ampli-
tude for the set of tree graphs for this process, ob-
tained by attaching the photon in all possible ways
to the external lines. The following conditions must
be satisfied in order to obtain an amplitude zero:

k P k.Pi k Pg k.P„
Q Qi Q2 Qn

Assume the amplitude for this process contains, as a
factor, the standard bremsstrahlung form (the pho-
ton polarization four-vector is e), which is certainly
true at the tree level for scalar charges:
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n Q.p.

) k-p;
QP
kP '

One can rewrite Ao in the symmetrized form

5

0 2k'P ~ fij gji
l,J

where

(2a)

(2b)

One can see now that these conditions are indepen-
dent of Er. Energy conservation is simply

QX;+y=2 .

The condition for longitudinal (along the photon
direction) momentum conservation is

X;a;=1 .

f~j= Qk —
pj Qjk—p;

(2c)

glJ
pi

k.p;

p'
~ p

k-pJ

Now it can easily be seen that if the "zero condi-
tions" [Eq. (1)] are satisfied, Ao ——0 and the ampli-
tude vanishes. (The above forms for Ao describe the
decay Q~Q, + Qz + + Q„+y, but it is trivi-

al to write Ao for the other related processes. )

In addition, of course, we must also ensure
energy-momentum conservation. Actually four-
momentum and electric charge conservation always
ensure that one of the n equations in Eq. (1) above is
trivially satisfied. One can see from Eq. (1) that a
necessary condition for a zero to exist is that all of
the charges must be of the same sign or neutral. For
this reason, in everything which follows, we will as-

sume that we have no opposite sign charges. We will

now consider in detail the three cases of interest.

III. RADIATIVE DECAYS

First, let us study the general radiative decay

Q~Qi+Q2+ +Q. +y (3)

y:2Er/M, —
1 —P;cos8;ai=

2

(4)

where E; and Er are the energies of particle Q; and

the photon, respectively,

P;=(I—m; /E; )'~

is the velocity of Q;, and 8; is the angle between the
three-momentum of particle Q; and the photon, all

in the rest frame of Q. The zero conditions in Eq.
(1) become

X;a;= (5)

For convenience, we define the following quantities:

X;=2E;/M,

We must, of course, ensure momentum conservation
in the transverse directions as well. We can see, us-

ing Eq. (7), that one of Eqs. (5) is trivially satisfied
because of charge conservation, as noted above.

For any neutral particles, Q; =0, we can see from
Eqs. (4) and (5) that a necessary condition for an am-

plitude zero is m; =0 and 8; =0, i.e, neutral particles
must be massless and must travel along the photon
direction.

Consider the case of massless particles, m;=0,
i =1, . . . , n, but M&0 (i.e., the extreme relativistic
limit). We have P;~1, 0&X; & 1, 0&y & 1, and, of
course, 0(a; & l. Using Eqs. (5), (6), and (7), it is
easy to verify that for Q;/Q&0, i=1, . . . , n, the
amplitude vanishes at X;=Q; /Q with a; = 1,
i=1, . . . , n (y=l). In general, for the massless
case, zeros will occur in a subspace region of the

X~, . . . , X„space, while in the massive case, as we
shall see, depending on the specific situation, an am-

plitude zero may or may not occur in the physical
region. Finding all the zeros in the general case is,
however, very complicated (for n & 3, the event need
not be in a plane). We shall confine ourselves here
to the cases n=1, 2, and, for two special cases,
n=3).

n=I. This case is very simple and the energy of
Q and the photon are uniquely determined:

ill i
X( ——1+ (g)

and

PPl 1y=1—
M

One can easily verify that the zero conditions [Eqs.
(5), (6), and (7)], are satisfied. Thus the amplitude
identically Vanishes here. Of course, this process is
forbidden anyway by angular momentum conserva-
tion.

n =2. Since there are only two independent
kinematical variables here, one has the following re-

lationship:

X2 —X] +
y

where
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2 2
m& —m2

M

Using the zero conditions [Eq. (5)] we obtain
T

Q2 —Q1
X2 —X&+25= y,

(10)

and, hence, a line of zeros given by

Ql(1 X1) Q2(1 X2) Q~ ' (12)

%%ether or not these zeros are in the physical region
in a given situation can be determined by construct-
ing the phase-space boundaries which, of course, de-

pend on the masses. We have explicitly verified that
transverse-momentum conservation is consistent
with this solution. This is not surprising, however,
since, as stated above, there are only two indepen-
dent kinematical variables in this case (i.e., choosing
X1 and X2 determines the event completely). Figure
1 shows two representative cases with Q1 & Q2, the
solid line for the massless case and the dotted line
for the massive case, m» m2 & 0. For the massless
case we have the line given by

and

1+P,
Q)=

2

(14)

and, hence, the zero occurs for

that in the massless (or equal-mass) case, i.e, Q1/Q2,
but the line is shifted down by (Q/Q2)b„ for b, &0.
In Fig. 1, to be specific, we have chosen Q1 & Q2 and
m~ &m2, however, it is, of course, very easy to dis-
cuss the other cases as well. Finally, we would like
to point out that, in the case of a massless neutral
charge tn1 ——Q1

——0, the zero line is X2 ——1 and for
m2 ——Q2=0, it is X1 ——1.

n=3. As noted above, the situation is consider-
ably more complicated here. Thus, we will confine
ourselves to two special cases.

(i) Two neutral massless particles:
M2 ——Q2

——m3 ——Q3 ——0. As discussed above we must
have a2 ——as ——0. (The neutral particles must be
massless and must travel along the photon direc-
tion. ) This implies that

Q1(1—X1)=Q2(1 —X2) (13)
m)

X) ——1+
M

which is in the physical region, for any Q1/Q2 &0
and which agrees with the result found by Grose
and Mikaelian for the decay W ~duy. Notice
that for equal masses m1 ——m2&0, the line of zeros is
identical to the one for the massless case [Eq. (13)].
Furthermore, for the general massiue case, m1&m2
and m;&0, i = 1,2, the slope of the line is identical to

mi
X,+X,+y=1-

M

In the massless limit m
&

——0, this becomes

X& ——1=X2+X3+y .

(15)

(16)

We have explicitly verified (for m 1
——0) that,

under these conditions, the rate for p~evvy does
indeed vanish. This could be of considerable interest
in the case of radiative ~ decays, e.g.,

0»
Q

7 ~8vwve3 7 ~pvrvpT, 7 ~g& QJ'v&p,

etc., where the presence or absence of the zero may
provide a sensitive test' of the g value of the ~.

(ii) One neutral massless particle: m3 —Q3 —0.
We must have, as before, u3 ——0. Using Eqs. (5), (6),
and (7) we find the following conditions:

X1+1 Q1/Q X2+2 Q2/Q

and (17)

X,I

~Q

Q

FIG. 1. The line of zeros is shown for the radiative de-

cay Q ~Q1+Q2 + y, with Q1 (Q2. The solid line
represents the case m~ ——m2, while the dashed line is for
m] pm2.

X3+y =2—X& —X2 .

This is precisely what we had for n=2. Thus, the
zeros occur along the line given in Eq. (12) (which
may or may not be in the physical region) where the
photon energy is now shared with the neutral parti-
cle (y —my+ X3). In the massless case, m1 ——m2 ——0,
we of course obtain Eq. (13) and so the line of zeros
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is in the physical region.
In general, one can see that for n particles Q;,

i = 1, . . . , n with n —m of them neutral and mass-
less, Q;=m;=0, i=m+ 1, . . . , n, the solution is
identical to the n =m case with charges Q;,
i =1, . . . , m and the neutral particles sharing the
photon energy

r

y~y+ g X;
i=m+1

IV. PHOTOPRODUCTION

and

X1——1+P12

X2 ——1 —P12,

where

whereas here it is given by g,".
,X;=2 correspond-

ing to Eq. (6) with y=0. Let us now consider a
specific case.

n = 2. From the above considerations and Eqs.
(11) or (12) we see that the zero condition is satisfied
for the physical values

In this section we will consider the general pho-
toproduction process

P12=
m1 —Nl2

2 2

(22)

r+Q-Qi+Qz+ "+Q. .

We will describe this process in the center-of-
momentum frame so that we can make use of Sec.
III. Here we scale the energies by the center-of-
momentum energy E,

Xi =2' /E,

X=2E/E, ~ =1+p,
y:2Er/E, —= 1 —p,

1
1

2Qi

1 2Qz

~i Q(1-p»)
(23)

If we now specialize to the case mi ——0, mi&0 we
find the zero direction is given by

Using Eq. (20) we find the direction in which we
have a zero amplitude is given by (cos8z ———cos8i)

and

g X;=X+y =2,
i=1 1+mi /s —2Qi/Q

COS81 =
1 —mi /s

(24)

p—=M /s

with

In order for the zero amplitude to be in the physical
region, we must, of course, have —1&cos8i &1.
This leads to the two conditions

2&—:Ec.m.
Qi/Q &1 (2&)

The zero conditions are again

Xa; =Q /Q, t = l, n (20)
which is automatically satisfied due to our assump-
tion of no opposite-sign charges, and

with a; again given by Eq. (4). Longitudinal-
momentum conservation is given by Qi/Q) mi /s . (26)

X;a;=1 (21) In the zero mass case m i ——0 we find

g X,+y=2,
i=1

(6)

as before, and, we must, of course, again also have
transverse-momentum conservation. We see that the
conditions for a zero amplitude in photoproduction
are identical to those for radiative decays —the only
difference being the energies here are scaled by E,
and the photon direction is, of course, fixed. So the
results in Sec. III apply here as well. Note that in
Sec. III energy conservation was given by

cos8i ——1 —2Q, /Q, (27)

which, under the conditions assumed, is always in
the physical region (0& Qi/Q & 1).

We have explicitly verified that the process'
yq~Wq' has a zero amplitude in the direction
given by Eqs. (24) and (27). Of course, if the quarks
have the standard charge assignment, the conditions
of our assumption and Eq. (25) are not satisfied, and
there is no zero in the physical region. For
integral-charged quarks or leptons, however, the
zero can occur in the physical region. For example,
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cos01= —1 ~

independent of m ~ /s.

(28)

the process ye ~W v, (or ye+~ W+v, ) has an
amplitude zero in the direction ' 1/2

MP= 1—

Equations (4) and (33) lead to the result

V. DIRECT PHOTON PRODUCTION

In this section we will consider the general
direct-photon-production process

Xa X'a'

where

1

QT

X;a;
l =1, , Pl

Q

Q+Q' Q&+Q&+ +Q. +y. (29) QT=Q+Q' (34)

As in Sec. IV, we will describe this process in the
center-of-momentum frame so that we can again
make use of Sec. III. As before we scale the energies
by Ec.m. :

Xi =2E; /E-,
X=2E/E, =1+p',
X'=2E'/E, ~ =1—p',

y =2E&/E,
n

g X~+y =X+X'=2,

and

M —M'
P=

and, hence, the amplitude zero direction is given by

cos8=
p p' QT ~ (35)

This determines the photon direction relative to the
incident beam direction. The other conditions, Eqs.
(30), (31), and (32), are identical to the conditions
given in Sec. III for radiative decays [Eqs. (5), (6),
and (7)] with Q~QT. Thus the zeros here occur in
the same place as in the corresponding radiative de-
cay (quantities here scaled by E, } but with the
photon direction now determined by Eq. (35).

In the case of equal-mass incident particles
M=M', Eq. (35}becomes

with

2~—:Ec.m. (30)

1 2cose= —1—
QT

In the massless limit M =M' =0 this becomes

(36)

Longitudinal-momentum conservation is again given

by 2cos0= 1— (37)

X;a;=1 (31)

and again, of course, transverse momentum must
also be conserved. The zero conditions are

X'a' Xa
Q' Q Q;' l 1p ~ ~ ~ p n (32)

1 —Pcose
2

with a; again given by Eq. (4) and the obvious nota-
tion

1 —P'cos8'
a =

2

This is the result found in the original discovery of
1

the zero, where, for du ~W y, Q= Qd = ——, , and

cosO = —cosI9= —
3 (38)

It has also been directly verified for du ~W y that
Eqs. (35) and (36) give the correct zero direction. It
can be seen directly from Eqs. (35) and (36) that
contrary to the massless case, in the case of massive
incident particles, the zero direction does depend on
the incident energies (as does the question of wheth-
er or not the zeros are in the physical region&. For
example, in du ~W y, for M =M'&0, Eq. (38) be-
comes

with cos8'= —cos8,
' 1/2M''= 1 —

2
(33)

1cosj9'=—
3

(39)

and the zero is in the physical region if and only if
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q+q —+q+q+y,

q+q q+q+x
(40)

p& —,.
It is interesting to note from Eq. (35) that for

equal charge to e-ner-g& ratios, Q'/X'=Q/X, the am-
plitude zero, if it occurs at all, must occur at
cos8=0. That is, the photon direction must be per-
pendicular to the incident beam directions, indepen-
dent of charges, energies, and masses.

If we now take the nonrelativistic limit for the in-

cident particles, P and P' —+0 and a and a'~ —,, in-

dependent of 8 and 8'. The conditions for an ampli-
tude zero [Eq. (34)] include Q/M= Q'/M' as well as
the conditions on the final particles. It should be
emphasized that the zero here, if it does occur in the
physical region, is independent of photon direction

(and, of course, photon energy); i e., the . amplitude
identically vanishes.

In particular, if we now specialize to the nonrela-
tivistic collision Q+ Q'~Q+ Q'+y we find that
the zero conditions [see Eqs. (34) and (12)] are satis-
fied if and only if Q/M=Q'/M', i.e., the amplitude
identically vanishes in nonrelativistic collisions of
particles with equal charge-to-mass ratios. Thus the
zero conditions [Eq. (1)] are a generalization of the
nonrelativistic result from classical electromagne-
tism that electric dipole radiation vanishes in col-
lisions of particles with the same charge-to-mass ra-
t]0 11,12

n=2. An interesting example here is the pure
QED process" e +e —+e + e + y. From Eqs.
(13) and (36) we find that this process has an ampli-
tude zero for Xi ——Xi and cos8=0 independent of
m, andE,

Other interesting examples occur in quark-quark
and quark-antiquark scattering:

zeros are essentially due to the complete destructive
interference of the radiation patterns. We have
treated the general radiative-decay process in both
the massive and massless cases and have given, in
detail, the zero-amplitude solution for the decay into
one charge, two charges, and, in two special cases,
three charges.

We have also shown how to find an amplitude
zero, and whether or not it occurs in the physical re-
gion, for photoproduction and direct photon produc-
tion. In each case, we have discussed some specific
examples.

Recently we received a paper by Brodsky and
Brown, " in which the following theorem is given:
"Let TG denote a tree graph with n external lines la-
beled by particle four-momenta p;, charges Q;, and
masses m;. The external and internal lines can be
scalar, Dirac, or vector particles (spin (I). The
vertices of TG are taken to correspond to local in-
teractions involving any number of fields with con-
stant or single derivative couplings, and the deriva-
tive couplings must be of gauge-theory form. In
particular, the photon-particle couplings, which are
central to the theorem, must correspond to the same
gyromagnetic ratio, g =2, for all spinning particles.
Theorem: If Mr is the single-photon emission ampli-
tude which is the sum generated by making photon
attachments (four-momentum q) in all possible ways
onto To, then Mr ——0 if the ratios Q;/p; q are all
equal"; i.e., Eq. (1) is satisfied. The authors further
state that neutral particles can be included, provided
they are massless and either spin 0 or spin —,. Thus
we have the spin independence of the amplitude
zeros and, hence, the generality and usefulness of the
results presented in this paper.

Brodsky and Brown also state that the zeros per-
sist if one includes radiation from internal lines (no
closed loops). Let us first consider radiative decays
(Sec. III), where the process in Eq. (3) is now modi-
fied to

subject, of course, to the same-sign-charge require-
ment. For example, the process u+ d~u+d+ y
has an amplitude zero at cos8 = —I /3P and

X2 ——2X1 —1, where 8 is the angle between the y and
the incident u direction and Xi (Xz) is the scaled en-

ergy of the final u (d ). Although very interesting,
zeros in these processes would, of course, be very
difficult to observe experimentally.

Q~Qi+(Qi. i~Qz+Q~+ ' ' ' +Qn)+'Y

(41)

where Q;„, represents a virtual particle of mass m

and, of course,

int i ~ (42)

VI. DISCUSSION AND SUMMARY

Using spin 0 for the incoming and outgoing
charged particles, we have shown that the amplitude

Otherwise, the notation is the same as before. The
total amplitude for this process, obtained by attach-

ing the photon in all possible ways to the external
lines and the internal line, is
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Qp Q&pi

kP kgb
Q.t(P —pi)
k (P p)—)

[(P—p )
—k)' —m']

Ql pl

A'~ k
Q.t(P —pi)
k (P —p, )

[(P —p)) —m ] (43)

It can easily be verified that under the previous zero conditions [Eqs. (1) or (5)], the quantity in each square
bracket in Eq. (43) vanishes and, hence, A„,=O. Thus, amazingly, the zeros persist at the same iocation in
phase space, independent of the mass of the internal particle

We can, in a similar way, extend the discussion of Sec. V for direct photon production. Let us consider the
process

Q+Q (Qi Q1+Q2+ +Q. )+r (44)

where Q;„, again represents a virtual particle of mass m and, otherwise the notation is the same as before, with,
of course,

Q.t=Q+Q'=QT ~

The total amplitude for this process, again including radiation from the internal line, is

(45)

QP Q'P' QT(P+P')
k P k P' k (P+P') [(P+P' —k) —m ]

Qlpl

A'k

QT(P+P')
k (P+P') [(P+P') —m ] I . (46)

Again, it can easily be verified that under the previous zero conditions [Eq. (34)], the quantity in each square
bracket in Eq. (46) vanishes and, hence, A„,=0. Thus, again we have the remarkable result that the zeros per-
sist at the same place, independent of the mass of the internal particle.
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