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We analyze a large number of four- and five-preon models along with several six-preon
models. By imposing constraints such as cancellation of anomalies and reproduction of the
usual quarks and leptons as composites we are able to eliminate many of these from further
consideration. If we try to embed the electroweak interactions into the flavor group Gpr, we
are left with a single, five-preon model. The remaining model is inconsistent with grand
unification and asymptotic freedom. We conclude that the simplest preon model must have
at least six flavors and contain a single 3¢ and three 1¢’s.

I. INTRODUCTION

The idea that ordinary quarks and leptons may be
composite objects' has now been accepted as a
theoretical possibility although direct experimental
evidence is lacking. Although the similarities be-
tween quarks and leptons in terms of their elec-
troweak interactions may be explainable within the
context of grand unified theories? (GUT’s) the ex-
planation for the apparent multifamily structure ap-
pears to be lacking. Horizontal symmetries® do not
usually limit the number of families or explain why
only (?) three exist and are only useful for calculat-
ing Cabibbo-type mixing angles.* The large number
of “basic” fermionic states (six color-triplet quarks
and six color-singlet leptons) cries out for an ex-
planation. Although we are not (yet) in the situation
of the early 1960’s (when the quark model was pro-
posed), in terms of the large number of states ob-
served it seems unlikely that all these fermions are
elementary. Theoretical prejudice is also swayed by
observing that the Higgs bosons of the standard
electroweak model,” which can be thought of as ele-
mentary fields as well, may also, in fact, be
composites—condensates of fermion-antifermion
pairs via hypercolor® and that electroweak symmetry
breaking is dynamical.®

On the experimental side, present-day experiments
using accelerators show no apparent quark or lepton
substructure’ strongly indicating that the binding
scale Apc (for precolor), must be > 100 GeV at
least. Other experiments such as those that establish
upper limits on u—ey (Ref. 8) and measure (g, —2)
(Ref. 9) tell us that Ape must be at least 100 TeV
and may be as large as 1000 TeV. If so, it is obvious
that the binding of these more fundamental
objects—preons— into quarks and leptons must be
quite different than the binding of quarks into had-
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rons within quantum chromodynamics (QCD).!°

In QCD we have several flavors of fundamental
massless fermions (in the limit we turn off the elec-
troweak interactions) which bind into bound states
whose masses are of order A., the scale at which
QCD becomes strong (i.e., a;~1). This is due to
flavor-chiral-symmetry breakdown giving masses to
the baryons and vector mesons. The pseudoscalar
mesons, on the other hand, would be massless Gold-
stone bosons except for the “small” quark masses
produced via the electroweak interactions.

If quarks and leptons (which are essentially mass-
less at a scale of order 100—1000 TeV) are preonic
bound states then the preon dynamics must be such
that preflavor chiral symmetry remains unbroken
otherwise quark and lepton masses would be of or-
der Apc. These chiral symmetries would then only
be broken, very weakly, by the electroweak interac-
tions and yield the light composite masses. These
preflavor chiral symmetries thus protect the compo-
sites from getting masses on the scale of Apc. How
do we ensure that chiral symmetry remains unbro-
ken such that this miracle can occur?’

’t Hooft!! has proposed a set of conditions that
would require massless composite bound states to
occur in preon theories so long as these chiral sym-
metries remain unbroken. The first condition is that
the massless composites as well as the preons must
produce the same contribution to the Adler-Bell-
Jackiw'? (ABJ) anomalies in the currents of the un-
broken chiral symmetries. The second, called the
decoupling condition, would require that if one of
the fermions making up a composite were to be
given a large mass the remaining unbroken chiral
symmetries would permit all composites containing
this fermion also to get a large mass. The combina-
tion of these two conditions has proven to be so re-
strictive that finding suitable models for composite
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quarks and leptons has proven difficult.

Preskill and Weinberg!® have recently pointed out
that the use of the decoupling constraint may not be
justified without further assumptions and have re-
placed this condition by what they call the
“persistent-mass” condition. It says, essentially,
that when any preon gets some mass the unbroken
chiral symmetries permit all the composites contain-
ing this preon also to get some mass as well.

The preon theories which pass these criteria!* are
not at all simple and are quite complex in general
and have a large number of fundamental fermion
fields. (It is quite disheartening to need as many or
more fundamental fermions in preon models than
there are quark and leptons.) We propose here to go
a simpler route and see what is the smallest number
of fundamental fields that we can use. We will
make some rather basic assumptions which appear
reasonable—but may indeed be generalized; we will
approach the problem from the spectroscopic point
of view in our discussion below.

II. BASIC INGREDIENTS

(1) We will assume that quarks and leptons are
bound states of three spin-% preons which obey
Fermi-Dirac statistics. This is sometimes referred
to as the “valence” preon model'® and is constructed
in analogy with the simple quark model of baryons.
We will ignore the possibility of scalar preons here
although models containing such objects do exist.'®

(2) For simplicity we will assume that the preons
themselves transform in a simple way under SU(3),,
i.e.,, as 1, 3, or 3 of SU(3),; we will also demand that
we must be able to construct (at least) composites of
the expected variety: two color-singlet and two
color-triplets states corresponding to a normal gen-
eration.

(3) These com;l)osite states must have charges
(0,—1) and (%, — ), respectively, and have the nor-
mal values of baryon (B) and lepton (L) number.
This restricts in turn the preon charges and forces a
consistent labeling of B +aL (where @ may be arbi-
trary) upon them.

(4) The gauge group responsible for binding
preons into quarks and leptons, Gpc, must be such
that quarks and leptons are precolor singlets. We
will assume that Gpc is either SU(N) or SO(N)
below. '

(5) We will take simplicity as our major guideline
in looking at preon models and push it as far as it
can go. A first question to ask is how many flavors
of preons (preflavors) do we need to produce a nor-
mal generation regardless of the nature of Gpc. It is
obvious that a single color triplet of preons is insuf-
ficient to produce more than a single color-triplet

and color-singlet composite. Hence, we need, at
least, four flavors of preons; below we will consider
models of four possible classes (4,B,C, ..., will
stand for preon labels):

I 4~3¢, B~1¢,

II: A~3¢, B~1¢, C~1c¢,

I A~3c, B~3c, @.1)
IV: A~3¢, B~3c.

Given our restrictions above these are the only vi-
able models with less than seven flavors of preons;
model I has four flavors while II has five and III
and IV both have six. We will assume that for every
left-handed preon there also exists a right-handed
preon (as in the case of quarks) such that for n
equivalent representations of preons under Gpc our
global flavor symmetry will be (at most)

Gpr=SU(n); XSU(n)g XU(1)y , (2.2)

the axial symmetry is, of course, broken by ABJ
anomalies. Some subgroup of Gpgr can then be
gauged (we hope) to give us the usual gauge interac-
tion of SU(3)c X SU(Q2);, X U(1)y. If there are vari-
ous kinds of representatives of preons in Gpc then
Gpg will be the product of groups like that in (2.2)
plus possible extra U(1)’s.

Let us start with models I and II above; first we
ask how many color-triplet and color-singlet states
can we construct out of these preons (excluding an-
tiparticles in the singlet case). We find in the case of
model I that there are 6 color triplets and 4 color
singlets, while in model II there are 15 color triplets
and 13 color singlets. For an arbitrary gauge group
Gpc, however, all of these states will not be precolor
singlets. So we must now ask what kind of products
of three representations in SU(V) and SO(N) lead to
singlets. We will assume that both left- and right-
handed preons are in the same representation of
Gpc.

(i) Consider R to be some complex representation
of Gpc then there exist some R such that R3~ 1pc.
A good example of this is the case where Gpc is
SU(3)pc and R is either the 3 or 6.

(i) Paralleling (i) there is the case where R is a
real representation of Gpc and R3~1pc. Good ex-
amples here are the adjoint representations of SO(N)
and SU(N) as well as any other real representations
of SU(N) such as the 20’ of SU(4) and the 75 of
SU(S5). Note that in this case, because we have real
representations all the color-triplet and color-singlet
states for models I and II can be precolor singlets.
Also, since we have real representations, the ABJ
anomalies associated with Gpc all cancel.

(iii) In this case we have a complex representation
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R of SU(N) such that R’R ~1pc. Examples of this
case are the 10 and 15 of SU(3). There are four pos-
sible labelings of preons in this case:

1. A, B~R, C~R,
2. A~R, B,C~R,
3. A~R, B,C~R,
4. A,B~R, C~R.

Table I shows the combinations of preons 4, B,
and C which yield color singlets and triplets and
which are also precolor singlets for cases (i) and (iii)
above. We will discuss these models in detail below.

(iv) In this case we have preons in the fundamen-
tal representation n, its complex conjugate # and the
adjoint X; the product n X7 XX then can yield a
precolor singlet. We can use any of the SU(%)
groups in this case and we find six possible preon la-
belings:

1. A,B~n, C~X,
A~n, B~n, C~X,
A~X, B,C~n,
A,B~X, C~n,
A~n, BC~X,
A~n,B,C~X .

A O

Table II shows the result of considering such a
model for the color triplet and singlet states shown
in the previous table. In cases 3, 5, and 6 there are
either no color triplets or no color singlets; in 4 only
one of each kind. In both cases 1 and 2 we find two
color triplets and two color singlets but both color
singlets have the same electric charge (=Q¢) and
thus these models can be ruled out. Thus we dismiss
models of this class (iv) from further consideration.
(v) Here we consider two complex representations

TABLE I. Color-triplet and -singlet states which are also precolor singlets for models I and
IT of types (i), (ii), and (iii). X labels a precolor-singlet state.

(iii)

@) (ii) 1 2 3 4
Color triplets
ABB X X X X
ABB X X X X X
ABB X X X
ABC X X X X X X
ABC X X X
ABC X X X
ABC X X X
ACC X X X X X
ACC X X X X X
ACC X X
A AB : X X X X
AAB X X X
4 4AC X X
AAC X X X X X
AAd X X X X X
Color singlets

AAA X X
BBB X X
BBB X X X X X
BBC X X X X
BBC X : X X
BBC X X X X X
BCC X X X X
Bgé_ X X X X X
BCC X X X
ccce X X
ccC X X X X X
AAB X X X X X
AAC X X X X X
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TABLE II. Same as Table I except for models I and II
of type iv.

(iv)
1 2 3 4

(V]
(=)

Color triplets
ABB X
ABB
ABB
ABC X X
ABC X X
ABC X
ABC X
ACC X X
ACC
ACC
AAB
AAB
AA4AC
AAC
AAA

Color singlets
AAA
BBB
BBB
BBC
BBC
BBC X X
BCC
BCC X
BCC
ccc
ccC
AAB X X
A4C X X X X

in SU(N), the fundamental representation n and ei-
ther the symmetric (S) or antisymmetric (4)
second-rank tensor representation. We then can
have

(nX1n)g X4 ~1pc
or
(nXn)s X8 ~1pc,

where the subscript a or s denotes the symmetric or
antisymmetric combination of nXn. Note that
within SU(N), 4 has dimensionality N(N —1)/2
while S has dimensionality N(N +1)/2. There also
exists the possibility that 4 or § may be real as in
the case of the 6 of SU(4). Table III shows the eight
possible labelings for 4, B, and C and which compo-
sites are precolor singlets; R denotes the cases al-
lowed when either 4 or S is real. The eight labelings
are

1. A,B~n, C~X,
A~nr, B~n, C~X,
A~X, BC~n,
A~X, B,C~n,
AB~X, C~n,
A~X, B~X, C~n,
A~n, B,C~X,
A~n, B,C~X.

® XN ok wDN

Here X is either 4 or S. As can be seen from the
table, models 3, 4, 7, and 8 are ruled out since there
are either no color-triplet or color-singlet states;
models 5 and 6 are ruled out since they each yield
only a single 1, and 3, composite. Models 1 and 2
are allowed if X is a real representation only. We
will come back to these cases below.

(vi) The last case we will consider is the case of
two real representations in SO(N); specifically the
cases involving the vector representation:

(nXn), X4 ~1pc,
(nXn)sXS~1pc,

where S is [N(N +1)/2]—1 dimensional here, and
also products involving the spinorial representations
of SO(N):

(N odd) (SPXSP),Xn~1pc,

(N even) (SPXSP);Xn~1lpc.

Note the spinorial representation SP is 2N —172
2V/2=1) dimensional for N odd (even). There are
two possible labelings of 4, B, C in this case:

1. 4,B~f, C~X,
2. A~X, B,C~f,

where f is either n or SP and X is either one of 4 or
S when fis n and X is n when f is SP. Table III
shows the results of these two labelings; we see im-
mediately that case 2 is out since it yields no color
singlets. Case 1 will be examined below.

Let us now turn to an analysis of models of types
I and II which have survived the brief comments of
our survey.

III. ANALYSIS OF MODELS I AND II

Looking at Table I we immediately see that (iii)
cannot be used for models of type I since, in this
case both color-singlet states have the same charge.
In case (i) we see that we have two color-singlet
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TABLE III. Same as Table I except for models I and II for types v and vi. R denotes the

cases allowed when either 4 or S is real.

(v)

(vi)
5

[[S))
AN
oo
—
8]

Color triplets
ABB
ABB
ABB
ABC
ABC
ABC
ABC
AcCC
ACC
ACC
AA4B
AAB
A4C
A4AC
AAA

= X

Color singlets
AAA
BBB
BBB
BBC
BBC
BBC
BCC
BCC
BCC
cce
ccC
AAB
AAC

X

X X X X
XX XX XXXXXX

X X
X mX =™

X X X

states for type I models 444 and BBBI; it is easy to
see that both of these cannot be spin- states. The
total wave function for the composite can be written
as

\Pcomp -~ \ycolor X W recolor X \I/ﬂavor X \PLorentz .
|2

Since the composite is a fermion we must produce a
totally antisymmetric wave function W .., for both
AAA and BBB—both of which are flavor symmetric,
i.e., Wiavor is symmetric. BBB involves no color de-
grees of freedom, hence, if it is antisymmetric in
precolor it must be symmetric in the Lorentz (spin)
degrees of freedom and vice versa. However it can-
not be spin symmetric otherwise it would be spin %
so we thus demand it be precolor symmetric and
Lorentz antisymmetric. A4A however is antisym-
metric in color so if we also make it precolor sym-
metric and Lorentz antisymmetric we end up violat-

ing Fermi-Dirac statistics. Thus if 444 is spin %,
BBB must be spin % and vice versa; in the case of
SU(3)pc both A4A4 and BBB must be antisymmetric
in precolor forcing BBB to be spin % Thus case (i)
does not work for model I at all and for model II we
see that both BBB and CCC are spin-% states and
are presumed heavy. In case (ii) both models I and
II work but II is quite complex so we will only con-
sider type I models in this case in any detail.

We are thus left with analyzing (ii) for model I
and (i) and (iii) for model II. By examining Tables
IT and III we see that all types of (iv) are ruled out
and only type II models are allowed for (v) and (vi).
Let us first examine the preflavor symmetry groups
for each of these cases; it is easy to see what these
are by simply reading off the representation con-
tents. We find the following global preflavor
groups:
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Gpr=SU(5); XSU(5)g XU(1)y
for I1(i), II(ii), and II(iii) ,

Gpr=SU(4), XSU(4)g X[U(1)]?
for II(v) and II(vi) ,

Gpr=SU(4); XSU(4)g X U(1)y for I(ii) .

If we try to embed the usual
SU3)c X SUR), XU(1)y electroweak group inside
Gpr we fail except for SU(5); XSU(S)z X U(1)y
since SU(4)—SU(3)xU(1). The U(1)y factor corre-
sponds to globally conserved preon number. If we
gauge only the SU(5); XSU(5)z subgroup of Gpg
and leave U(1), as a global charge we can use the
usual embedding

SU(5); —SU(3); XSU(2); X U(1);

so that Gpg can contain the subgroup

SU(3); 4 XSU(2); XSU2)g XU(1) 4z -

We then can identify SU(3), , r, the vectorial sub-
group, as SU(3)c; note that the weak-interaction
gauge group we have produced appears to be the
left-right-symmetric model.!” This will be the case
if both Q and B —L can be written as a sum of
SU(5);, XSU(5)z generators.

If we gauge any subgroups of
SU4);, XSU(4)g X[U(1)]" the best we could do is
reproduce QCD with several extra U(1) factors:

SU(4);, XSU(4)g X[U(1)]"—-SU3)c X [U(1)]* 2.

Thus if we demand that the electroweak gauge
group be a subgroup of Gpg then only models II(i),
(ii), and (iii) are allowed. Note that if the global
U(1)y is broken at the scale of Apc (where it must

be if it were broken at all) it would lead to a super-
light superweakly coupled Goldstone boson similar
to the Majoron'® and the invisible axion.!® This is
along the lines of the work of Albright, Schrempp,
and Schrempp.

Although they do not explicitly contain any SU(2)
subgroups we will also examine models II(v), II(vi),
and I(ii) below for the sake of completeness; we will
see that in these models although both SU(2); and
SU(2) are absent it is possible to define one or two
of the U(1) groups as T'5; and/or T3z so that the or-
dinary quarks and leptons can be put into doublets,
triplets, etc., of weak isospin to a limited extent.

Models II(v) and II(vi) are quite similar in their
particle content so we treat them together; keeping
T3, and/or T3y in mind we see that we can arrange
the color triplets and color singlets into multiplets:

ABC AAC ABC
ABC AAC ABC

BBC
BBC

BBC,

b b ’

if C distinguishes between “up” and “down,” or
ABC| |ABC BBC
ABC|” |ABC) |BBC
A4c, 44C, BBC

’ ’ b

if B plays the role of “isospin” changer. In each
case there are several alternatives depending upon
the choice of (v,e) and (u,d) among the various mul-
tiplets. For C carrying “isospin” six possible cases
are shown in Table IV which gives the electric
charges and values of B +aL for each of the
preons (a is arbitrary }n general). Note that in cases
1-3 BBC is a Q = — 7 state with B =L =0 while in
cases 4—6 its charge is Q =% with B =L =0 again.

In each case we find other exotic color triplets
with the quantum numbers:

TABLE IV. Charge and B +aL assignments for model II types v and vi.

1 2 3 4 3 6
BBC=v BBC=v BBC=v BBC=v BBC=v BB=v
ABC =u AAC=u ABC =u ABC =u AAC=u ABC=u
5 1 1 1 1 5
Q4 i - Ty - - 5
1 1 1 1 1 1
Os -7 -7 ~3 ¥ ¥ T
1 1 1 1 1 1
Qc 7 7 7 7 7 7
(B+aL)y  7-a/2 -5 Fta/2z j+an2 -+ t-an
(B+aL)p a/2 a/2 a/2 —a/2 —a/2 —a/2
(B +aL)¢ 0 0 0 0 0
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(1 0=-3 B 2 ABC: 0= |
)A_z‘-{é Qz_% ’ +aL--—;+a, AEE QZ% ’ B+aL=7—a,
ABC: Q=+ ABC: =1 1
2) - =—2 _ —L_
()AM1Q=—%’B+d‘ 6+m@,wC:Q=—§’B+d;6 a/2;
ABC: Q=7 . ddc: o=3
3) B = Do —_2_
( )ABC Q=—% , B+aL =5+a; 141G g=_1| B +aL a;
AAC: Q=% ABC: Q=% 1
—— = == _— B ==
(4)AAC. Qz—% ’ B+aL 3 a; ABC' Q=—% ’ +aL 3+a ’
ABC: Q=7 ABC: Q=+
(5)  pe. o1 Bial=—5-a/% == o—_2| B+aL=—5+a/2;
_ : : : :
A4C: Q=—+ ABC: Q=+ 1
o B = __ B =t—a.
© 14c. g=—+| Brob=—5+% g5 gL | Btel=5-a

Note that in cases 2—5 we obtain two sets of color triplets with Q= %, — %; the second set, however, has exotic

values of B +aL unless it is chosen wisely.

If B carries isospin then if we identify v=BBC and e ~=BB C we find Qp =Qc/2= %, (B +aL)p=0, and
(B +aL)c=—a with a arbitrary. If u =ABC, then Q= —-:; and (B +alL), =—;—+a; if however, u =ABC

1

then Q=+, (B+aL) =5

ABC: Q=+ | Aic
—— B = - —_———
ABC: g=—1 | Brel=2+5 276

BBC: Q=2 L=—1;

or, if u =ABC then

ABC: Q=+ ] 44C: Q
_ , B+aL =~—2a; - _ -

ABC: g=2| PTHTI T 11¢ 0

BBC: Q=2, L=—1.

If we were to go further with these models we
would next have to demand that both TrQ and
Tr(B —L)=0 if both Q and B —L are to be com-
bination generators of Gpg. It is easy to see that the
simple condition TrQ=0, which should be satisfied
even in the SU(4), XSU@)g X U(1) case if the U(1)

a. This case is also full of exotics; for example, if u =ABC then

1

3

, B+aL=—3a—

, B+aL=—3+a;

of electromagnetism were a subgroup of Gpg is not
satisfied for the model I(ii). The condition TrQ=0
plus the fact that one lepton must be neutral leads to
the unphysical result that all color triplets and sing-
lets are neutral. We conclude then that we cannot
embed SU(3)c X U(1)gy inside SU(4); X SU(4)g (so
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that there are no anomalies) within the context of
this model. Model I(ii) is thus quite an unrealistic
model of preon structure.

On the other hand, for models II(v) and II(vi) we
can find embeddings for SU(3)- X U(1)gy at least
since it is relatively easy to satisfy the TrQ=0 con-
dition. It may also be possible to embed B —L or
some other combination of B and L as well although
this possibility will not be pursued here.

Let us now turn to models II(i), II(ii), and II(iii)
and demand TrQ=0 and Tr(B —L)=0; the later
condition is mnecessary in this case if the
SU(2), XSU(2)g XU(1), 4 g electroweak subgroup
is to be identified with the left-right-symmetric
model. Let us first examine model II(i) which is the
simplest of the three; the condition TrQ=0 is easily
satisfied in this case. Remembering that at least one
of the color singlets must be neutral (i.e., the neutri-
no) we find the following possible relationships be-
tween the charges:

(1) Q=0,

(2) Q4=0,

(3) Qp=304,
(4) Qp=—6Q,,
(5) Qp=—3Q4,

and 3Q4 +Qp+Qc=0 in all five cases. Turning to
the color triplets we find possibilities (1), (2), and (5)
to be, perhaps, relevant—each of these lead to at
least one, or possibly two, pair of u- and d-like states
for Q4y==*+ or QB:i%. Next we try to enforce
Tr(B —L)=0; we get information on the B—L
values for 4 and B (C’s value is fixed by the trace
condition) by demanding that one of the color-triplet
states be the u and another the d both of which have
B—-L= % This gives us conditions on the two un-
knowns and we thus fix the B —L values of 4, B,
and C. Then we calculate the B —L values for the
color-singlet states; we of course must find two
states (with charges 0 and —1) with the same value
qf B —L,ie, —1. Remembering the}t if AAA is spin
5 then BBB and CCC must be spin 5 and vice versa
we find no two states with B —L = —1. Thus we
can conclude that model II(i) does not allow an
embedding of U(1)p_; into SU(5); X SU(5)g.
Model II(ii) has the largest number of states and
is attractive in that it only involves real representa-
tions, hence, no anomalies in Gpc. Noting that at
least one of the color singlets must be neutral and
using the vanishing of the trace of Q we find only
six possible charge relationships: 1—3 and 5 above
along with either Qp=—Q, or Qp=—2Q,. Given
the large number of states we must simplify

somehow—we will do this by assuming that B and C
form a weak SU(2); [or SU(2)g] doublet with A4 as
a weak singlet; then Qp=Qc+1 and we obtain the
following multiplets for the color triplets:

Al AAC A AB

> |AAB|” |AA4Ac|’
ACC ABB ABC
ABC|, |ABC|, |ABB,ACC|,
ABB ACC ABC

and the following multiplets for the color singlets:

BBB _Bee
spc| (u7p| |BBB CCB
BeC | lagc| | ot | 444
ccc BBC ccc
BBC

Given that there are only two doublets of 3.’s and
one must be the (u,d)1 doublet we immediately find
the charges Qy=—7, Qp=1, Qc=0, and thus
u=AACandd=A448B.

Now we impose the Tr(B —L) constraint; we find
that (B—L)p=(B—L)c=1, (B—L);=—=, and
thus it is the antiparticles of one of the lepton doub-
lets which corresponds to (v,e ~) as is also indicated
by their charges. Also note that the usual
SU(2);, XSU(2)g XU(1)g_; charge relationship is
satisfied Q =T +Tagr+(B—L)/2. Model II(i)
obviously provides a possible embedding of both
U(1)gm and U(1)p_; within the SU(5); XSU(5)g
symmetry group. Table V shows a complete listing
of all the composite states in this model.

We now turn to model II(iii) which has four sub-
cases and try to impose TrQ=0 and incorporate B
and C into a weak isodoublet. In cases 1, 3, or 4 we
find either that u and d are members of an extended
weak multiplet such as a triplet or that quarks of the
right charge do not exist. In case 2 we find a viable
possibility with Q,=—7, Qp=0,0c=—1 such
that (4,B,C) form a 5, or 5g under
SU(5); XSU(5)g. Next we must check that B —L
is also traceless for case 2; we find that
(B—L)p=(B—L)c=—1,(B—L),=—+ leading
to a traceless B —L. Hence model II(iii) case 2 pro-
vides an embedding of both U(1)gy and U(1)p_;
and, hence, the left-right-symmetric model as does
model II(ii). Table VI shows a complete listing of
all the composite states in this model; they may be
grouped in the following manner:
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TABLE V. Charge, B—L, and weak-isospin T'; as-
signments for the composite states of model II(ii) which
satisfy TrQ=Tr(B —L)=0.

Q B—L T,

Color triplets
iic 2 Lo
A8 - T
A7s H T
A4C 2 ; _%
ACC -5 -3 1
ABT -3 -3 0
ABEB -3 -3 -1
ABB = . 1
ABC 2 - 0
Acc -3 = -1
ABC = -3 1
A(BBE—CC)/V2 -3 -1 0
4Bc -3 -3 -1
A(BB+CC)/V2 -5 -2 0
AAZ -5 -2 0
Color singlets
CcCC 0 -3 %
BCC -1 -3 1
BBC -2 -3 _%
BEBEB -3 -3 -3
AAC 0 —1 %
A4B -1 -1 -3
BBC 0 -1 >
BBEB -1 1 _%
ccC 0 —1 _;.
CCcB -1 -1 -
AdA -1 -2 0
BBC -2 1 _.i_
BCC 1 _1 +%

BCC

BCB| |B44| |BCcC

BBB | |c44| |ccC

}|CBB

for the leptons and

TABLE VI. Same as Table V but for model II(iii).

Q B-L T,
Color triplets
ABB -5 -3 1
ABC -3 -3 0
ACC - -3 —1
Ais 3 P
AAC - % % _ %
ABC 2 -2 1
A(BB—-CC)/V2 -+ -2 0
ABC _g _g —1
AAd —é _% 0
A(BB+CC)/V2 — -2 0
Color singlets
B BB 0 1 %
BBC —1 1 -
AAB 0 —1 %
44C —1 1 —1
BCC 0 ~1 ?l
ccC -1 1 _%
BCC 2 1 %
BCB 1 1 _%
ABB _ A_BC _ 1B
ABC |, AAA, |ACC,ABB |, iic
ACC ABC

for the quarks. We obviously identify the
(AAB,AAC) doublet with (u,d) and either lepton
doublet with (v,e).

This model, although involving a successful
embedding into SU(5); XSU(5); has nonvanishing
anomalies since we are dealing with SU(N) complex
representations.  Anomaly-cancellation require-
ments, if strictly adhered to, would then kill this
model and we are thus left with model II(ii), which
involve either SO(N) or real, anomaly-free represen-
tations of SU(N). Model II(ii) will be dealt with fur-
ther after a discussion of models III and IV.

IV. MODELS OF TYPES III AND IV

A. Type III model labelings

In these models both 4 and B are 3’s and we wil_l_
assume that they are in a representation R or R
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under Gpc. There are three possible cases:

(i) A,B~R, R*~1pc, with R complex,
(i) Same as (i) with R real,
(iii) A ~R, B~R, R®~1pc.

Table VII shows the results of these labelings; we see
immediately that case (i) is ruled out since there are
no color triplets. Cases (ii) and (iii) both seem to
work and we will return to them below.

B. Type IV model labelings

In these models 4 ~ 3¢ while B ~3; there are a
large number of possible labelings some of which are

1. A, B~R
2. A~R, B~R{, R’~Ipc,
3. A~R, B~R

4. A.B~R

5. A~R, B~R}, R*R~1pc,
6. A~R, B~R

7. A,B~R (R real), R3>~1pc.

Table VIII shows these models and we see that cases
2, 3, and 5 are ruled out since they do not have ei-
ther color singlets or triplets; models 1, 4, and 6 ap-
pear acceptable. It should be noted that 1 is the
Harari-Seiberg”® model that has been widely dis-
cussed in the literature so it will not be discussed
further here.

C. Analysis

Let us now look at the two possible models of
type III; in both cases there is an explicit symmetry

TABLE VII. Color-triplet and color-singlet states
which are also precolor singlets (labeled by X) for models
of type III.

(@) (ii) (iii)

Color triplets
AAA
AAB
ABB
BBB
BBA
AAB

XX X X X X
X

Color singlets
AAA X
BBB X

X X
X X

TABLE VIII. Same as Table VII but for models of
type IV.

_.
)
%)
TN
I
=N

Color triplets
AAB X
ABB
AAA
BB B
Ad A
ABB X

X X X X
XXX XXX

X X X X X X

Color singlets
AAA X
BBB X
AAB
ABB

X X X X
X X X X
X X X X

between preons A and B. In case (iii) we are thus
free to choose u =ABB and d = BAA from which we
find

B—L

A
B

wl- o |10

1
3

RS
3

and thus e " =B BB and v=A4 A 4 so that B —L is
a conserved quantum number at this level. Ir} case
(ii) we must again have Q,=0 and Qp==7; we
thus would find

Q(A444)=Q(BBA)=0,
Q(BAA)=Q(BBB)=Qj ,
Q(ABB)=2Qp; Q(BAA)=—Qp .

If we choose QB=% we find the same quantum

numbers as in (iii), so

u=ABB, v=AAA ,

d=AAB, e=BBB,
so that the color triplets BAA and BBB have B =
and Q=7 while 444 and ABB are B=+,0=0
states. The binding of these exotic quarks into had-
rons (color singlets) along with the usual quarks
leads to fractionally charged states which should be
observable since they are also precolor singlets.

Now let us turn to type IV models; let us consider

case 4 first. We see immediately that the color-
triplet states come in two different charge varieties:

ABB BBB

Il—[ ’ QA; B-A.A—

:QE;
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with A<—>B symmetry. We can choose (o) ——i— and
Qp= and (B—L)y=—(B~— L)B— 75 this implies
v=ABB and e ~=A AB in this model. We thus gen-
erate two ordinary “families” of quarks and a single
lepton family within this scheme.

In case 6 we can either choose (a)
u =AAB,d =4 B B such that Q,=+,05=0 or (b)
choose the charges as in case 4 above; either choice
leads to exotic states. In case (a) we find v= BBB
and e"=A A A since (B—L),=—(B L)B— T, we
also have the states

ABB gl BBB o B 1
aqf 255 B=3 pyg) 90 B=—33
AAB, Q=—%, L=1; ABB, Q=—+, L=1.

In case (b) we find the exotic states

’ QZ_Z’ L=1,

5 1

AAB, Q=3, B=+; 444
ABB, Q=—% B=1; BBB, 0=+1, L=1

besides those found in case 4 above.

All models of types III and IV naturally have
troubles when it comes to unification; all of these
models have a global preflavor symmetry
Gpr=SU(6), XSU(6)g XU(1)y and thus if we try
to embed QCD and the electroweak interactions into
SU(6); XSU(6)g such as to have no anomalies [as
we have done with the SU(5); XSU(5)x model
above] there are some obvious problems. Since Q
must be a linear combination of SU(6); X SU(6)x
generators we must again have TrQ=0 which im-
plies Q4==*Qp. It then becomes impossible to
simultaneously have both neutral and charged com-
posites as long as there are only bound states of an
odd number of preons. We thus conclude that a
six-preon model must contain a 3; and three 1.’s if
it is to work at all. A similar problem arises when
we try to embed the B —L generator, i.e.,
(B—L)4=%(B —L)g which we cannot handle con-
sistently. Since the 3¢ plus 1. model is merely an
extension of the five-preon model II(ii) which ap-
parently works as well, we will not consider it fur-
ther here but in a subsequent publication.

V. UNIFICATION CONSTRAINTS

If we want to unify the precolor forces together
with the color and electroweak forces at some mass
scale, 10 <M, <10 GeV and we want the
precolor forces to become strong in the 100—1000
TeV energy range this imposes severe limitations on
the group structure of Gpc (Ref. 21) as well as the
representation content. We already know that since
model II(ii) involves triple products of real represen-

tations which yield precolor singlets, R>~ lpc, our
possible choices of representations are quite limited.
One set of possible representations satisfying the
above criterion are the adjoint representations of ei-
ther SU(N) or SO(N).

The one-loop B function can always be put into
the form (neglecting scalars)

B=4Cy(G)—2S,(F)

with C,(G)=N for SU(N) and 2(N —2) for SO(N).
S,(F) depends on the choice of fermion representa-
tion. For the case at hand [model II(ii)] we have
five four-component preons each of which given an
identical contribution to S,(F) which we shall call
T. Thus we have

11

Bre=5N—3T [SUN)]

or
Brc="2(N—2)— 2T [SO(N)].

Now at energies right above Apc the fermions con-
tributing to all the 8 functions are preons. Since
apc(Apc)>a.(Apc) we must have (at least)
Bpc > B, otherwise no simple unification will take
place at all independently of M. Now, above Apc,
B.= T so obviously we must have Bpc> 5. We
can easily see that we cannot put our preons in the
adjoint representations in either case since then Bpc
would in fact be negative. Thus we must look for
other representations which would satisfy these con-
straints; the elimination of SU(N) as a candidate
group is rather easy. Obviously, for T to be as small
as possible we must pick the dimensions of the
SU(N) representations as small as possible. Thus we
must consider only the 6 and 20’ of SU(4), the 75 of
SU(5), the 20 and 175 of SU(6), etc.

The 6 of SU(4) and 20 of SU(6) can be eliminated
right away since they do not satisfy R3~1. The 20’
of SU(4) has T=8 while the 75 of SU(5) has T=25;
since T obviously grows faster than N for real SU(N)
representations we must conclude that SU(N) must
be eliminated from the possible Gp since it leads to
nonasymptotically free theories. Our only possibili-
ties lie in SO(V) with nonadjoint representations
which satisfy 22N > 754 20T.

An examination of the representations of SO(N),
however, reveals? that the value of T is too large for
any representation which satisfies R;~1. For ex-
ample, some of the second-rank symmetric tensors
in SO(N) [with T =2(N +2)] and satisfy R;~1; T
is even larger for higher dimensional representa-
tions. Hence, we conclude that for models of type
II(ii) not only can we not unify Gpc with the usual
gauge groups but, in addition, that GPC is not even
asymptotlcally free.
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VI. CONCLUSIONS

Our major conclusion is that there do not exist
any four- or five-flavor preon models which satisfy
all the constraints one would like to impose on any
realistic model such as grand unification.

We started out very simply by assuming that we
have a collection of several spin-% preons which can
form color-triplet and -singlet composites. We next
demanded that there be at least two 3¢’s and two
1¢’s and that a normal electric-charge assignment be
possible. This eliminated a large number of candi-
date models. If we then assumed that the preflavor
group Gpp is sufficiently large to contain an SU(2)-
type subgroup so that the electroweak interactions
are a gauged subgroup of Gpg we eliminate all four-
_preon models. .

For the five- and six-preon models that remain we
try to embed the strong and electroweak interactions
into anomaly-free SU(n);, XSU(n)g (n=35,6) so that
no anomalies are present. This leads to the condi-
tions that TrQ="Tr(B —L)=0 since they are formed
from linear combinations of Gpp generators. All
six-flavor preon models with either two 3¢’s or a 3¢
and a 3¢ are ruled out by this constraint, leaving
open only the possibility of a single 3. plus three
1¢’s in six-preon models—an avenue we have not ex-
plored.

The only remaining model which incorporates
(u,d) and (v,e) into SU(2) doublets is then model
II(ii) which only involves real representations of Gpc
and is thus anomaly free automatically. A further

demand that Gpc be either asymptotically free or
that one can grand unify precolor with the other in-
teractions leads to the elimination of this model as a
candidate. Therefore, the simplest possible models
should be at least as large as the six-flavor
3¢ + three 1- model. It is not yet quite clear if such
models of this type could be found which are
asymptotically free and consistent with grand unifi-
cation.

We thus find that the requirements that the usual
quarks and leptons appear in the correct representa-
tions with the correct charges, together with cancel-
lation of Gpc and Gpp anomalies, asymptotic free-
dom of Gpc, and the embedding of the usual in-
teractions into Gpgr lead to inconsistencies for all
four- and five-flavor models examined. We con-
clude that the smallest viable preon model must then
have at least six preons in it.
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