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In this paper we discuss quantum-mechanical strong-coupling calculations on a static-
source meson field theory in which only the nucleon isospin degrees of freedom are coupled

linearly to an isovector-scalar meson field. The nucleon source function is of the chiral bag

type, namely a shell source. We perform numerical calculations in the strong-coupling ap-
proximation, namely for g » (8~ pR )', where g is a dimensionless bare coupling constant,

p is the meson mass, and R is the bag size. We demonstrate that the corrections to our
lowest-order approximation to the dressed nucleon wave function decrease as the coupling

strength increases according to the above inequality. We find that there exist reasonable

values of the parameters, say g -4 and R -0.3 fm, for which the lowest-order approxima-
tion to the dressed nucleon state of this model is good. We also find collective excitations of
the dressed nucleon which are rotational and vibrational excitations in isospin space. The
lowest-lying collective excitation is a rotational state which is identified as the 6 in this

model. Furthermore, we generalize the model field theory by introducing a feature of the

cloudy-bag-model Hamiltonian, namely, an intrinsic isobar source coupled to the meson

field. We find that the strong-coupling approximation is realized for significantly smaller

values of the bare coupling constant or larger values of the bag size when compared to the

previous model. We also find a total bare-5 component on the dressed nucleon state of
36%%uo. Finally, we numerically solve the meson-nucleon scattering problem in the first model

by employing the reaction theory of Feshbach.

I. INTRODUCTION

Over the past few years, there has been consider-
able interest in the role played by the mesonic de-
grees of freedom, in particular the pion, in determin-

ing the properties of the baryons, and the connection
of this phenomenology to meson-nucleon scattering
and the long-range part of the nucleon-nucleon
force. Chiral bag models' are possibly relevant
for establishing this connection. In these models, it
is assumed that the meson degrees of freedom are
approximately described by local fields which are
coupled at the bag surface to quarks confined inside
the bag. The form of the interaction is specified by
an approximate symmetry of the strong interactions,
namely, chiral symmetry. As interacting quantum
field theories, the corresponding Hamiltonians of

. these models are extremely complicated to say the
least. In order to make progress in applying these
models phenomenologically, it is necessary to intro-
duce approximations which one hopes to justify
quantitatively. One particular issue, either at a clas-
sical or a quantum level, has been the bag radius of
the nucleon. Aside from the importance of deter-
mining the value of this parameter phenomenologi-

cally, its value has important implications in regard
to the strength of the meson-baryon interaction.
This feature is of course familiar from static-source
meson field theories, such as the Chew model.

For these models, it is known that for sufficiently
large bag-source sizes, say R »1/m, where R is
the bag radius and m the pion mass, the meson-
baryon coupling is weak. Therefore, for sufficiently
large source sizes perturbation theory in the meson-
baryon interaction is expected to be valid. On the
other hand, for small bag-source sizes, say
R «I/m, the coupling is strong and nonpertur-
bative calculation schemes are required. In addition
to the computational differences, the role played by
the meson degrees of freedom in both cases is quite
different.

For example, in the case of the cloudy bag model
(CBM), a generalization of the static Chew model
which includes an intrinsic isobar source interaction
with the pion field, it is assumed that the bag-source
size is sufficiently large, 0.6&R & 1 fm, that trun-
cation at the one-meson level in perturbation theory
is valid, say for the nucleon self-energy and wave
function. The lowest-order approximation to the
nucleon state is a quark-shell-model state or bare nu-

27 2686 1983 The American Physical Society



27 STATIC-BAG-SOURCE MESON FIELD THEORY: STRONG-. . . 2687

cleon state and the small corrections correspond to a
bare nucleon plus a meson and a bare 6 plus a
meson. A similar description applies to the
classical-approximation scheme of Jaffe.

On the other hand, the little-bag model (LBM),
developed by Brown and collaborators, assumes that
the bag-source size is, say, of the order of the proton
Compton wavelength. This model is motivated by a
rather appealing picture of the nucleus which, in a
certain sense, has an analogy in atomic and molecu-
lar physics. For a diatomic molecule in the Born-
Oppenheimer approximation, the electronic motions
are very rapid when compared to the relative motion
between the atoms, so that the electrons and approx-
imately fixed nuclei are a source for the average
Coulomb field between the atoms. This Coulomb
field then acts as a potential which determines the
quantum-mechanical behavior of the relative motion
of the atoms. In the case of hadronic and nuclear
physics, for sufficiently small bag sizes the charac-
teristic quark motion within the nucleon is very ra-
pid when compared to the relative nucleon motion
in the nucleus. Hence, the quarks are a source for
the average pion field between the nucleons, which
is the long-range part of the nucleon-nucleon force.
This force with an additional short-range part can
then be used to determine the relative motion of the
nucleons. In this picture one would expect that the
individual nucleon magnetic moments in the nucleus
would be approximately the same as the free-space
values, which accounts for the success of the shell
model.

Aside from this appealing picture, the strong
meson-baryon interaction for small bag-source sizes
has important implications in regard to the physical
description of the dressed nucleon state. In contrast
to the CBM, for strong coupling the average number
of mesons which dress the bare nucleon can be large
and the bare-6-plus-meson-cloud component can be
substantial. Furthermore, the meson cloud can be
collectively excited such that excited states of the
dressed nucleon exist. For example, in the static
Chew model for strong coupling the 6 is a collec-
tive rotational excitation of the nucleon in spin and

isospin spaces and for sufficiently large coupling or
small bag-source sizes the 5 can be stable, i.e., it lies
below the meson-nucleon threshold. There are also
collective vibrational excitations of the meson cloud,
such as the E*.

Both the CBM and LBM Hamiltonians' are ex-
amples of static-source meson field theories. In this
paper, we consider a simple static-source model in
the strong-coupling approximation and we demon-
strate that both quantum-mechanical and nonpertur-
bative effects are important quantitatively for the
determination of the dressed nucleon wave function
and self-energy. Hence, computational schemes
which are based on lowest-order perturbation theory
are inaccurate for strong coupling. i

In Sec. II we define the Hamiltonian and ela-
borate on the strong-coupling formalism. In Secs.
IIA and IIB we determine the eigenvalues and
eigenfunctions of the unperturbed Hamiltonian. In
Sec. III, we evaluate the effects of the perturbation
and we present numerical results. In Sec. IV we
generalize the Hamiltonian such that it has a feature
of the CBM Hamiltonian, namely, an intrinsic iso-
bar source coupled to the meson field. The same
calculations are performed on this model; however
the consequences are significantly different than the
previous model. In Sec. V we solve the meson-
nucleon scattering problem for the Hamiltonian de-
fined in Sec. II.

II. STRONG-COUPLING FORMALISM

In this paper we perform strong-coupling calcula-
tions on an interacting quantum field theory in
which the nucleon is described by a static-bag-source
distribution and its isospin is coupled linearly to an
isovector-scalar meson field. In the present investi-
gation, we ignore the spin of the nucleon and the
pseudoscalar nature of the meson degrees of free-
dom. However, the method of calculation is gen-
eralizable to the case of the CBM Hamiltonian or
the LBM Hamiltonian and results on these models
will be presented in a forthcoming paper. The
model of interest is of the form

H =MD+ —,f d r[m.; (r)+P;(r)( V+@ )P;(r)—] gr; f d r U(r—)P;(r), (2.l)

where Mo is the bare mass, g is a dimensionless bare coupling constant, the ~; are the usual Pauli isospin ma-

trices, p is the meson mass which we take to be the pion mass, and the source function U is given by

U( ) = 5(r —R)4' (2.2)
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which is of the chiral bag type and is such that its integral is unity. The sum over repeated indices is under-
stood and the fields obey the usual commutation rules given by

[m;.(r),$1(r ')]=—i5 J5 (r —r ') . (2.3)

Note that the model has three free parameters, namely, Mo, g, and the source size R.
As a heuristic guide, we expand the field operators P;( r } in free-field creation and annihilation operators and

evaluate the overlap of P; with the source function of Eq. (2.2), which gives

f d r U(r)p;(r)= f 3 jo(kR}f dQk[a;(k)+a;"(k)] . (2.4)
2(2ir)'co(k)

where the first term in Eqs. (2.5) and (2.6) is the
strong-coupling part and the second term is the
weak-coupling part. F(r) is a normalizable function
such that

The presence of the spherical Bessel function jo in-
dicates that the most important region of integration
is such that k-1/R. Therefore for small source
sizes, say R « I/p, the high-momentum mesons
have the most significant overlap with the source.
Furthermore, the k dependence of the integrand im-

plies that the overlap is large for R « I/p, hence
the effective coupling is strong. The overall cou-
pling strength in Eq. (2.1) depends upon the choice
of the bare coupling constant g; however given a g
there exists a source size R such that the coupling is
strong. The precise definition of the strong-
coupling approximation will be presented in Sec.
IIB. Since the Hamiltonian of Eq. (2.1) involves
linear coupling, we expect, for example, that as the
coupling strength increases the average number of
high-momentum mesons in the ground state of the
system will increase. On the other hand for large
source sizes, say R » I/p, the coupling is weak and
the average number of low momentum mesons is
few in number.

For small source sizes, the heuristic argument
presented above suggests a strong-coupling scheme
in which a sufficient number of high-momentum
mesons are included in the ground-state wave func-
tion and self-energy in first approximation and the
lower-momentum mesons or weak-coupling mesons
are treated as a perturbation. In order to assess the
sensibility of this scheme, we require that the correc-
tions to the wave-function normalization decrease as
the coupling strength increases so that the lowest-
order approximation to the wave function is good.

In order to achieve this goal, we separate the
meson field and its canonical momentum into two
parts, namely,

f d rF (r)=1 (2.7)

and the fields P,'(r} and m (r) satisfy constraint
conditions, namely,

f d rP,'(r)F(r}=0 (2.8)

and

rm,' r I" r =0. (2.9)

It follows from the canonical commutation rules in

Eq. (2.3), and Eqs. (2.7), (2.8), and (2.9} that q; and

p; are canonical, namely,

[p;,qJ ]= i 5;1— (2.10}

and n (r) and P,'(r) satisfy nonlocal commutation
rules given by

[m", (r),PJ (r '}]= i 5 1[5 (r —r') F(r)F—(r')] —.
(2.11)

From the definition of q; and p;, namely,

q;= f d rF(r)P;(r) (2.12)

and

p;= f d rF(r)m;(r) . (2.13)

It follows that F(r) will be chosen such that for
strong coupling it has a large overlap with the high-
momentum components of the meson field P;(r}
that couple to the source. .For the rnornent we leave

F(r) unspecified and continue with the general

development.
Substituting the variables defined in Eqs. (2.5) and

have

P;(r)=F(r)q, +P,'(r) (2.5)

m.;(r ) =F(r)p; +sr,'(r ),

(2.14)

(2.6) (2.6) into Eq. (2.1}we

I

H =M + i(p2+02q2 —2gAr q)+ —,
' f d r[ir,' (r)+PI(r)( 7+@ )P,'(r)]-

+f d r[( 7+p )F(r)]g—i (r)q; —gv; f d r U(r)P,'(r),
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where

0 = f d r F(r)( V—2+p2)F(r) (2.15)
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I
'

I
'

I
'

I
'

I
'

I

is the expectation value of the laein-Gordon opera-
tor which we define as the collective frequenc
squared and

ency

A, =f d r U(r)F(r) (2.16)

is the overlap of the source function with the basi
f

e asks

unction F(r}. The corresponding total-isospin
operator I~ is given by

60

50

40

'~ So

Iy ——T+I,
where the meson isospin T is given by

T= r 'r )(m' r
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FIG. 1 . A plot of the field U as a function of the dis-
tance r, for two choices of the bag size R.

t=qxp . (2.20)

This terminology will become clearer later on.
At this point it is useful to outline our strategy

for the determination of approximate eigenfunctions

E.
and eigenvalues of the Hamiltonian H defined b

q. (2.14). The terms which involve only the p; and

'ne y

q; variables comprise a collective Hamiltonian given
by

i
H, = , (p2+Q—2qz 2gkrq—) . , (2.21)

( —V + )U(r)= 4' (2.23)

with the explicit solution given by

We want to choose F(r) such that the collective fre-
quency 0 and the overlap A, increase as the source
size R decreases. From the definition of Q in Eq.
(2.15) this implies that for such a choice the high-
momentum components of the meson field P;(r)
contribute to the collective Hamiltonian. Further-
more, the interaction energy, namely, the v"q term in
Eq. (2.21), will be large in the strong-coupling ap-
proximation due to its dependence on A, and g.

A choice of F(r} that satisfies the desired condi-
tions is the field produced by the source function
U(r) which is given by

F(r) =NU(r), (2.22)

where U(r) satisfies the equation

1 &R sinhp, r
@

—Pf
+sinhpR 8(r —R )

Pl'

(2.24)

The normalization constant N in Eq. (2.22) is deter-
mined by Eq. (2.7) and is given by

2 8m'LM3R 2e 2P,R

(e""sinhpR —pR )
(2.25)

The collective frequency 0 defined by Eq. (2.15) and
overlap A, defined by Eq. (2.16) are given by

0= pv 2e& (sinhpR)'
(e" sinhpR —pR}'

(2.26)

N &z sinhpR
4mR pR

(2.27)

In Fig. 1, we plot U(r) in Eq. (2.24) as a function of
r for various values of the source size R. From Eq.
(2.24) for U and Fig. 1 we conclude that as R~O
the magnitude and curvature of U at r =R increase
and therefore the overlap A, and collective frequency
0 increase. Furthermore, the source function U ap-
proaches a point source and hence the normalization
constant N approaches a constant. More specifical-
ly, from Eqs. (2.25}, (2.26), and (2.27), we have in
the limit p,R &&1
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and

N:—8ejM

1/2
2Q=p

pR

(2.28)

(2.29)

energy, and a continuous spectrum of meson eigen-
values. The vacuum state and the meson states are
not free-field states. Furthermore, the vacuum ener-

gy is not the free-field vacuum energy, however the
meson energies are free meson energies.

To see this, we define the operator

with

1
3/2

(2ir)'" p&
(2.30)

~ =(1—iF&(F i)(-V'+p, ')(I- ~F&(F I)

(2.32)

These limiting values are consistent with our heuris-
tic discussion.

The purely mesonic Hamiltonian given by

H'= —,f d r[ir'(r) +p'(r)( V+@—)p'(r)]

(2.31)

commutes with the collective Hamiltonian H, de-
fined by Eq. (2.21) and therefore can be simultane-
ously diagonalized. We will discuss this further in
Sec. II A.

Finally, there are the perturbation terms which
are given by

H=X f der U(r)$,'(r)q; gr; f d r—U(r)P,'(r),
where we have set F(r) =N U(r) in Eq. (2.14). It is
not at all obvious that these operators are small in
the sense of perturbation theory. This is especially
true of the second term which depends on g. We
postpone further discussion of these operators until
Sec. IV.

A. The meson Hamiltonian

In order to obtain the eigenvalues and eigenfunc-
tions of H', we proceed as in free-field theory by
specifying a basis which diagonalizes the Ioein-
Gordon operator, however this basis must be chosen
orthogonal to F(r) so that the constraint conditions
defined by Eqs. (2.8) and (2.9) are satisfied. As we
shall see, this implies that H' defined by Eq. (2.31)
has a discrete energy eigenvalue, the meson vacuum

I

which is the projection of the Klein-Gordon opera-
tor onto a space orthogonal to F(r). Note that h has
a zero-energy bound-state solution, namely, F(r).
Furthermore, there are a set of scattering solutions
of h given by

gk(r, '"„,)=fk(r) —C(k, +)f d r'Gk(r, r ', +)F(r'),

(2.33a)

where Gk(+) are free Green's functions with ap-
propriate boundary conditions and

i k-r
fk( )=

(2m )

The constants C(k, + ) are given by

C(k +)= F(k)

f d r d r'F(r)Gk(r, r ', +)F(r')

(2.33b)

which guarantee that the scattering solutions de-
fined by Eq. (2.33a) are orthogonal to F(r) with
F(k) the Fourier transform of F(r). Note that the
scattering solutions imply that there is only s-wave
scattering. This is consistent with the coupling term
of the model Hamiltonian defined by Eq. (2.1).
From the scattering solutions defined by Eq. (2.33a),
we have the S matrix given by

S(k ', k) =5 (k ' —k) —2iri5(ro(k) —co(k'))t(k ', k),
(2.34)

where co(k) =(k +p )' and

F kt(k', k)=t(k )= —f d r tg(r;out)( V+@ )F(r)—
2'(k)

I

For further details of the eigenfunctions of the
operator lt defined by Eq. (2.32) and related quanti-
ties the reader is referred to Appendix A.

The existence of "in" and "out" scattering solu-
tions defined by Eq. (2.33a) implies that there exists
"in" and "out" meson creation and annihilation
operators given by

(2.35)

3

P,'(r)= f [1(k(r,',"„,)a (k, ',"„,)v'2'(k)

+Qk(r, ',"„,)a (k, ',"„,)] .

(2.36)
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It is straightforward to show that the in and out
creation and annihilation operators are related by
the S matrix defined by Eq. (2.34), namely,

al'(k, in)= f d k'Sa(k', k)at(k', out}, (2.37}

where the asterisk on S denotes complex conjugation
and

An intuitive understanding of the physical origin of
Eal, follows from a description of the scattering
process, which is described by h defined in Eq.
(2.32), in a spherical region of space of dimension rp,
which is much greater than the range of the interac-
tion potential. %e require that the scattering wave
function vanish at the boundary of this region,
hence

a ( k, out}=f d k'S~( k, k '}a ( k ', in) . k.,!=k„,l —5I(k., l } 5lp/. , (2.43)
(2.38)

(k', out~ k, in)=(vac'~az'(k', out}a (k, in)
~

vac')

=S(k ', k)5J,. (2.39)

with S(k', k) given by Eq. (2.34). This result will
become important when we discuss the full meson-
nucleon scattering problem.

The ground-state or zero-point energy of the
meson Hamiltonian H' is not the free-field vacuum
energy. In Appendix 8 it is shown that this energy
is given by

I
Evac =Evac Eshift ~ (2 40)

where E„„ is the usual free-field vacuum energy
given by

E„„= f 3 pl(k)
2 (2m )'

with V the volume of all space and E,h ft is given by'
Eah ft 2 f d r d r'F—(r)f(r, r ')F(r') (2.41)

with

dkf(r r')= f e' '' ' ' (k)
(2m )

(2.42)

Note that E,h;ft depends on the source size R
through F(r) and therefore contributes to the
ground-state energy, while E„„is a divergent and
cutoff-dependent contribution. We will absorb E»c
into a redefinition of the bare mass Mp appearing in
Eq. (2.1).

Mathematically, E,h;~, is a consequence of the
completeness relation for the scattering solutions de-
fined by Eq. (2.33a), namely,

f d k fk(r, ',"«)fk(r, ',"«)=5 (r —r ') —F(r)F(r') .

Equation (2.37) implies that the meson vacuum or
ground state of H' is stable, i.e.,

~

vac', in) =
(
vac', out) =

~

vac')

since a (k,in) and a (k,out) annihilate the same
vacuum state. Note that the one-meson state con-
tains scattering since

where 6lp is a Kronecker 5 which indicates that
there is only s-wave scattering in our problem, kn l is
the interacting momentum, k„ l is the free momen-
turn given by

k„ l =(nfr+lm/2)lrp.

and 5l(k„ l} is the phase shift. For sufficiently large
rp the interacting energy is given by

k„ l5l(k„ l )
n, l =n, l ~lp+ 0

rp fp
(2.44)

where co„l=(k„l +p )'~. Hence, the total zero-
point energy of the interacting system is given by

3

Ezera paint g ~ n, l
n, l

k„p5p(k„p)
=Evac

Pp
(2.45)

B. The collective Hamiltonian

The exact numerical solution of the eigenvalue
equation for the collective Hamiltonian defined by
Eq. (2.21} is straightforward. A choice of basis
which spans the space is given by

'Il(q) =&(q, t)@(&,, t)+& (q, 1)@(&„l),
(2.46)

where Qq is the solid angle subtended by the collec-
tive meson variable q. Note that %' implicitly de-
pends on the isospin quantum numbers I and I„
which is a consequence of the fact that the dressed-

where E„„ is the free-field vacuum energy. In
evaluating the sum over n in Eq. (2.45) we note that
the number of levels in a momentum interval, b,k„p,
centered about kn p increases as rp increases. There-
fore, the second term in Eq. (2.45) makes a finite
contribution to the total zero-point energy. This is
the physical origin of E,h'ft.

The multi-meson states are obtained in the usual
manner by applying the relevant meson creation
operators defined by Eq. (2.36) to the meson vacu-
uID.
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H, = —, E(q)+ +A qz 2gk,rq—1 t'
(2.47)

where E (q) is given by

nucleon isospin defined by Eq. (2.19) is conserved by
H, T. he collective meson isospin t defined by Eq.
(2.20) is not conserved because of the presence of the
r q interaction. The isospinor wave functions
@(0»,T) and 4(A», &) are, respectively, the
stretched, I =t + —,, and jacknife, I =t' —,, is—ospin

coupling representations with the collective meson
isospin, t'=t —1. Upon taking the matrix elements
of H, with respect to 4( t) and 4( t) we obtain a set
of coupled equations for R (&) and R (&) which are
numerically straightforward to solve.

Rather than adopting the above procedure, we
will choose a basis which takes advantage of the
simplicity of the strong-coupling approximation.
The collective Hamiltonian is of the three-
dimensional harmonic osci11ator type, therefore we
expect vibrational and angular excitations in isospin
space. The fact that the interaction depends on the
angle between the nucleon isospin v and the collec-
tive meson variable q has important consequences.
For example, the states of lowest energy are such
that r is parallel to q. In analogy with the case of a
one-dimensional harmonic oscillator with a linear
coupling potential, this implies that the functional
dependence of the eigenstates on the collective
meson variable q is such that the radial component
of q is displaced by a classical value. Consequently,
the ground-state expectation value of q is nonzero.
Furthermore, as the classical displacement increases,
the average number of mesons which dress the bare
nucleon increases.

The angular dependence of the r q interaction fur-
ther implies that there is a torque on ~ such that it
precesses around q. In addition, q is a dynamical
variable which undergoes angular motion in isospin
space. Hence, as the bare nucleon isospinor rotates
in this space it drags around a meson cloud with an
average number of mesons. As the classical dis-
placement of q increases, the average number of
mesons increases and therefore the moment of iner-
tia of the meson cloud increases thereby decreasing
the rotational energy of the system.

In order to make these intuitive arguments more
precise we rewrite the collective Hamiltonian in the
orm

and we have made the centrifugal barrier of the col-
lective meson isospin explicit. Consider the situa-
tion in which the ~ q interaction term is large com-
pared to the other terms in the Hamiltonian. As in
the Paschen-Back effect, it is economical to choose a
basis which diag onalizes the interaction term.
Therefore, we choose a basis such that

r qX„(Q»)=r)X„(Q»), (2.48)

where the 7 implicitly depend on I and I„q is the
unit vector pointing in the direction of q given by

q=sin8cosgi+sin8sing j+cos8k

and g is the eigenvalue. It is trivial to prove that

ran =+1 and from theHermiticity of the r q operator
that the X's satisfy the orthogonality properties

X„(Q»)X„(&»)=0 (2.49)

for il&ri' and all angles Q». In Appendix C we
prove a projection theorem which implies that ma-
trix elements of ~ and q in the 7 basis are related
such that

(I'I,' ri
~
r;

~

II,ri) =ri(,I'I,' ii
~ q; ~

II,ri) . {2.50)

This relation will turn out to be important later.
Roughly speaking, the X's are a basis for which r is
either parallel or antiparallel to q. Equation (2.50) is
the matrix element representation of this statement.

It is straightforward to establish the relationship
between the 4's of Eq. (2.46) and the X's defined by
Eq. (2.48) by noting that r q is an operator which
satisfies the following relation:

4(P)=r q4(l)

and therf ore

X„+i —— [@(t )+@(l)]
1

2

In the discussion to follow we refer to the states
with g = + 1 as the low-lying states and with
g= —1 as the high-lying states. The only term in
H, which induces transitions between the low-lying
and high-lying states is the centrifugal barrier. We
now project H, onto the subspace of states diagonal
in ri so that the Schrodinger equation for that part
of the collective Hamiltonian is given by

1 I(I +1)+0.25g ( )+ + + ~ +II2q2 2ggq g(+)(q) ~(+)g(+)(q)

for the low-lying states and
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1 I(I+1)+0.25 p g ( ) ( ) ( )

2
K(q)+ 2 +0 q +2gkq Qr, (q)=el, QI, (q) (2.51a)

for the high-lying states, where QI-„' are radial wave
functions for r) =+1 and the subscript n is a vibra-
tional quantum number. We will treat the off-
diagonal elements in i)t of the centrifugal barrier as a
perturbation in the next section. It is convenient to
plot the potentials in Eqs. (2.51a), which are defined

by

0V'+-'(q) = +gl q2
(2.51b)

and the centrifugal barrier. This is presented in Fig.
2. The low-lying potential V'+' has a minimum
when

qo=g~/fl (2.52)

which is the classical displacement. %e now consid-
er the situation when the classical displacement qo is
much greater than the quantum fluctuation in q,
namely, we define a quantity xo such that

x() ——qo(2Q)'~ &&1 . (2.53)

Using the limiting forms of 0 and )(, defined by Eqs.
(2.29) and (2.30) this becomes

g »(8npR)'~ =.R, (2.54)

Qq + g&q

2 2
(+) G q~V (q) = —g &I, q2

&). /9

} g2&)2/ p g2
0

GROUND-STATE WAVE FUNCTION

FIG. 2. A plot of the potentials V'—+ ', as a function of
the radial component of the collective meson variable q.

where)((, R «1. This is the definition of the strong-
coupling approximation.

While it is straightforward to numerically solve

Eq. (2.51a) for the radial eigenfunctions and eigen-
values, it is possible to infer several results from Fig.
2. For example, when the classical displacement is
much larger than the quantum fluctuation in q, the
low-lying radial wave functions are localized about

q(). Since the centrifugal barrier effects the radial

—X
(Qiy2, 0

l Ql/2, 0&=+De (2.55)

where N() is a factor of order 1 and xo is defined by
Eq. (2.53).

The energy gap between the low-lying and high-

lying states is roughly given by the minimum value
of the low-lying potential, V'+', namely,

2 2
(+) (-) g ~

gap 1/2, 0 ~1/2, 0= 20
(2.56)

The energy spacing between the ground state and
the first rotational excitation is approximately given

by

5E=-—3 1

2 qo
(2.57)

where qo is related to the moment of inertia of the
meson cloud. Note that for the sufficiently large
displacements the rotationally excited levels in iso-
spin space become degenerate with the ground state.
Finally, the first low-lying vibrational level is of the
order of the collective frequency, Q, above the
ground state.

To summarize, the eigenfunctions of the diagonal
projection in g of the collective Hamiltonian, H„
and the meson Hamiltonian, H', are of the form

l
II.&(n =+1)&'.".(& =Ql', "(q)&11,(„=+)) l

(z".".(&,

(2.58)

wave functions in the neighborhood of the origin,
then for large displacements the low-lying wave
functions approach the wave functions of a one-
dimensional harmonic oscillator with a linear cou-
pling potential. Therefore, the ground-state expecta-
tion value of q is approximately qo and the ground-
state energy is approximately given by

(+) 0 1 g A,
2o=

2 +2 2 2qo 2

where the first term is the zero-point energy, the
second is the centrifugal energy, and the last term is
the potential energy at its minimum. Furthermore,
the high-lying potential, V' ', is steeply sloped in
the neighborhood of the origin so that the high-lying
radial wave functions are localized within this
neighborhood. Hence the overlap between the low-
lying and high-lying radial wave functions is ap-
proximately given by
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EIn(p)n' ~p+'sI, n Eshift+ g ~(ki) ~

(p) (g) (2.59)

where ei"„' are the eigenvalues of Eqs. (2.51a), E,h;q,

is defined by Eq. (2.41), and co(k;) is the usual meson
energy with n' the number of mesons in the state

I
a'0"„,). For strong coupling, the low-lying collec-

tive energy eigenvalues are approximately given by

(v i) i [I(I+ 1)+0 25] g A,
Eg =Op n+ +

2q 20

(2.60)

where Qi-„' are solutions of Eqs. (2.51a), n is a vibra-
tional quantum number, the X's are eigenfunctions
of the operator r q, and

I
a","„,) are eigenfunctions

of H' with a' the meson quantum numbers. The
eigenvalues of the states in Eq. (2.58) are given by

n'

N(I= I/2)

N (I=I/2)

a, (I=We)

(I I/P)+ J J 9 / J / 2 / / / / l

N(I= I/2)

I

I
I
I

12m'ps

2
I

9
I

I

I

I

I

I

I

I

I

pMz

(+R)

I

I

I

I

I

I

I

I

I

I

g2
'E SR

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

and upon substituting the limiting forms for 0 and
A, defined by Eqs. (2.29) and (2.30) we have

1/2

(n+ —, )
(g=1)

&rn =P
pR

4irp[I(I +1)+0.25]

g
2

(2.61)

In the next section we discuss the perturbation
corrections and present specific numerical results.

FIG. 3. Schematic representation of the energy levels
of the unperturbed Hamiltonian Ho. Indicated are the
parameters which characterize the energy spacing of the
levels relative to the ground state in the strong-coupling
approximation.

qo=

for our choice of I', we add and subtract a term in

H~„such that

III. PERTURBATION THEORY

Returning to the form of the Hamiltonian defined

by Eq. (2.14) we have
H~«= —

2 +N f d r U(r)P,'(r)q;(q —qp)
2 q

H =Hp+Hp, „, (3.1) —g (r; —q;) f d r U(r)P,'(r) . (3.2)

where

2

Hp Mp+ —, K—(—q)+ +0 q 2gkr q +H'—
q

is the unperturbed Hamiltonian with eigenvalues
given by Eq. (2.59) and

2

H~« ——— +N f d r U(r)P,'(r)q;
2 q

2

gr; f d r U—(r)P,'(r)

is the perturbation. The subscripts d and od on t
refer to the parts of t which are diagonal and off-
diagonal in g, respectively.

Since the radial component of q fluctuates about

qp, which is given by

In order to facilitate the discussion of the pertur-
bative effects of H~,«we refer to the energy-level di-
agram in Fig. 3. Note that there are no first-order
energy corrections. The centrifugal term connects
the low-lying and high-lying states. In doing so, this
operator conserves the dressed-nucleon isospin I and
I,. It also conserves the meson number, n'. Howev-
er, it can induce transitions between the low-lying
and high-lying states with a change in the vibration-
al quantum number, n. Roughly speaking, the
second-order corrections of the centrifugal term
have large energy denominators of the order of Eg p
defined by Eq. (2.56) and numerators which involve
the overlap of the radial functions Q'&&&'p and Q'g2'„
which are small in the strong-coupling approxima-
tion.

The next term, which is linear in the meson field
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~1/2, 0 Eshift+ E(2) (3.3)

where E' ' is the second-order energy correction, in
I

and the unit vector q; of the collective meson
variable, has no matrix elements between the low-

lying and high-lying states. This is a consequence of
the orthogonality property of the X's defined by Eq.
(2.49}. However, the matrix elements of this opera-
tor involve states which differ by one meson. Furth-
ermore, the presence of the operators q; and q —qo
implies that this term can induce rotational excita-
tions in isospin space and vibrational excitations.
Symbolically, this term can induce the following
transitions from the ground state:

N —+N+ one meson,
3N~b(I = —, )+ one meson,

1N~N*(I = —,)+ one meson,

etc. As we pointed out earlier in the strong-coupling
approximation the low-lying radial wave functions
Qq+„' approach the wave functions of a one-
dimensional harmonic oscillator with a linear cou-
pling potential. This implies that the matrix ele-
ments which correspond to the above transitions are
small since they involve radial matrix elements of
q —qo. Furthermore, the vibrational excitations,

1

such as the N*(I = —,), are characterized by a large
energy spacing above the ground state of the order
of 0 which results in large energy denominators in
perturbation theory.

The final term of Eq. (3.2) has matrix elements
between the low-lying and high-lying states only.
This is a consequence of the projection theorem de-
fined by Eq. (2.50). The transition matrix elements
of this term differ by one meson and involve the
overlap of the low-lying and high-lying radial wave
functions. Again, the energy spacing is of the order
of Es,~ so that the second-order energy corrections
are small in the strong-coupling approximation.

In order to make these intuitive arguments more
precise, we present numerical results for the nucleon
self-energy which is defined as

Fig. 4(a}, the change in the nucleon wave-function
normalization in Fig. 4(b), and the difference be-
tween the b, and nucleon energies in Fig. 4(c). Each
curve is determined for a fixed value of the bare
coupling constant g, and plotted as a function of R
defined by Eq. (2.54). In evaluating the second-
order energy corrections and the change in the
wave-function normalization, we have included con-
tributions from the first three excited states for each
of the terms of H~„defined by Eq. (3.2). The
difference between b, and nucleon masses is a
lowest-order calculation.

It is clear from the figures that the wave func-
tion" improves as the coupling strength increases
according to the inequality defined by Eq. (2.54).
Furthermore, it is possible to find values of the bare
coupling constant g and the source size R such that
the 6 is stable, i.e., it is lower in energy than the
meson-nucleon threshold. This is due to the fact
that in the strong-coupling approximation the 6 is a
collective rotational excitation in isospin space of
the meson cloud which dresses the bare nucleon. As
the coupling strength increases, the average number
of mesons which dress the bare nucleon increases.
This increases the moment of inertia of the meson
cloud and therefore decreases the rotational energy
of the system in isospin space. If the coupling is not
too strong then the 5 is unstable and it couples to
the meson-nucleon continuum. We will return to
the description of the physical b, in this model when

we discuss the meson-nucleon scattering problem in
Sec. V.

IV. MODIFIED HAMILTONIAN
WITH ISOBAR SOURCE

It is possible to generalize the model Hamiltonian
defined by Eq. (2.1}so as to include a feature of the
CBM Hamiltonian, namely, an intrinsic isobar
source coupled to the meson field. We assume that
the nucleon and 5 have only isospin degrees of free-
dom which are coupled linearly to an isovector-
scalar meson field such that

H=MO+ —, f d r[n; (r)+P;(r)( P' +p )P—;(r)] g~; f d —r U(r)P;(r), (4.1)

'
QÃ

hN bPa~l
(4.2)

where Mo is now a diagonal 6&(6 matrix with de-
generate eigenvalues and the matrices ~; are now
given by

where the matrices v; ~ are defined in Ref. 12. The
coupling constants a and b have the SU(4)-quark-
model values given by

a=( —} ' b= —.72 ~ 2 4

25 & 5 (4.3)

All remaining quantities of Eq. (4.1) are the same as
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FIG. 4. (a) A lot fp of the nucleon self-energy (NSE) as a function of R the bare coupling constant . For
we have included the corresponding bag-sourc

'
R f h R.

rgy, e~/20, ,h;f, and the second-order energy correction due to H &. (b) A lot of the ch
function normalization for the nucleon stat f ' f R

'
an

~ ~

cons a e as a unction of R and thebare cou lin constant . T
zation is computed to second order in H ( ) A l f

p
'

g an g. he change in normali-

ence asafuncti fR d h b
er in ~„. c p ot o the lowest-order a roxi

'on o an t e are coupling constant g.
pp oximation to the 5-nucleon mass differ-

previously defined.
The method of calculation for the Hamiltonian

defined by Eq. (4.1) remains unchanged, however
the consequences are quite different. To see this,
consider the eigenvalue equation

z.i~&„,(Qq) =rttX„,(Qq), (4.4)

where the J' implicitly depend on the dressed-
nucleon isospin pvhich is now given by

0

Lhh,
0

2

with t defined by Eq. (2.20). Note that the eigen-
value gl depends on I. It is convenient to expand
the X eigenfunctions in a basis which couples the
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TABLE I. Tabulation of the probability amplitudes defined by
~

4') = grr C(M)
i
M ) for

various components of the dressed nucleon and 6 states for the modified Hamiltonian with an
isobar source. N' '= bare nucleon, 5' '= bare 6, and t= collective meson isospin.

Amplitude

C(W");t =0)
C(X' ', t =1)
C(h' ', t =1)
C(t(0); t =2)

0.57
—0.57
—0.43

0.43

(2)
g1/2

0.43
0.43

—0.57
—0.57

(3)
g1/2

0.43
—0.43

0.57
—0.57

(4)
g1/2

—0.57
—0.57
—0.43
—0.43

Amplitude
C(X(0', t =0)
C(X"',t =1)
C(h' ';t =0)
C(A' ', t =1)
C(h"', t =2)
C(h' ', t =3)

(1)
g 3/2

0.57
—0.57

0.30
—0.13
—0.30

0.40

(2)
93/2

—0.43
—0.43
—0.40
—0.18

0.40
0.54

(3)
g 3/2

0
0

—0.5
0.67

—0.5
0.22

(4)
g 3/2

0
0

—0.5
—0.67
—0.5

0.22

(5)
g 3/2

—0.43
—0.43
—0.40
—0.18

0.40
0.54

(6)
93/2
0.57

—0.57
0.30

—0.13
—0.30

0.40

bare nucleon and 6 isospinors to the collective-
meson-isospin wave functions. For I= —, , X is a
linear combination of four basis functions. Two of
these couple the bare nucleon isospinor to t =0 and
t=1 and the remaining two couple the bare 5 iso-
spinor to t =1 and t =2. There are four eigenvalues

gi/2, given by

rl ir2(1) =2.0422,

rilr2(2) =0.842 22,

riir2(3) = —0.842 22,

riir2(4} = —2.0422 .

(4.5)

rlr(1) =2.0422,

rir(2) =0 84222

rir (3 ) =0.6000,

q, (4)= -o.6ooo,

re(5) = —0 84222

rir(6) = —2 0422

(4.6)

The lowest-lying states have the eigenvalue ri|r2(1).
A straightforward computation indicates that the
dressed nucleon state has a total bare-nucleon-plus-
meson-cloud component of 64% and a total bare-b;
plus-meson-cloud component of 36%. The detailed
proportions are presented in Table I. For I)—,, the
X's are a linear combination of six basis functions.
Two of these involve the bare-nucleon components
and the remaining four involve the bare-b, com-
ponents. There are six qi eigenvalues given by

In contrast to the previous model, the classical
displacernent qo, is larger by approximately a factor
of 2. This is a consequence of the value of r)r(1).
The strong-coupling condition defined by Eq. (2.54)
is now replaced by the inequality

' 1/4
p,Rg»v4~ "

2
/rir(1) =R' . (4.7)

V. MESON-NUCLEON SCATTERING

In this section, we perform meson-nucleon
scattering calculations for the model Hamiltonian
defined by Eq. (2.1). The method is sufficiently gen-
eral so that various models can be studied, such as
the CBM or the LBM. We shall adopt the elegant
and lucid formalism of Feshbach. '

Therefore the strong-coupling approximation for
this model is realized for larger R or smaller g than
in the previous model. This is to be expected since
the isobar-source terms of the Hamiltonian defined

by Eq. (4.1) add more attraction when compared to
the previous Hamiltonian defined by Eq. (2.1).

The perturbation theory computations for the
model Hamiltonian defined by Eq. (4.1) proceed in
the same manner as outlined in Sec. III. We restrict
the unperturbed eigenfunctions to the subspace of
states with eigenvalues rlr(1) and gr(2). This is a
valid approximation since states with rir(i) and i & 3

are much higher in energy. The detailed numerical
results are presented in Figs. 5(a)—5(c). These re-
sults are to be compared to the results in Figs.
4(a)—4(c}.
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ass difference as a function of R ' and the bare

Following Feshbach, we define a set of open-
channel projection operators P and a set of closed-
channel projection operators Q, which provide a rep-
resentation of the Schrodinger equation of the form

eff
Upp ——0pg, , HgpE'+' —e~

with the total energy given by

E=M~+co(k) .

(5.2)

~pp+~pg, , Hgp EP
I
4'+') =0,—8 + —Hgg

(5.1)

where the effects of the "closed channels" are in-
cluded in an "effective potential" defined by

The physical nucleon mass Ms is obtained from
Eq. (2.59) by making an appropriate choice of the
bare mass Mo. For the explicit construction of the
projection operators, we choose the basis states de-
fined by Eq. (2.58). More specifically, we restrict
the total energy E in Eq. (5.1) such that only elastic
and charge-exchange meson-nucleon scattering can
occur. Therefore, the open-channel projection
operators are given by
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P'"'""= g f d'k
I
I(I,I„k,T,('."„,) ) (I(I,I„k,T,('."„,) I, (5.3)

where the meson-nucleon states are obtained from Eq. (2.58) and the closed-channel projection operators are
given by

Q(in, out) 1 p(in, out) (5.4)

which include states such as the nucleon, the 5, the nucleon plus two mesons, etc. It follows from the com-
pleteness of the in and out scattering states defined by Eq. (2.58}, that the in and out projection operators are
equivalent, namely,

p(in) p(out)

In what follows, we suppress the in and out labels on the projection operators. Using the eigenfunctions of
H~ given by Eq. (2.58), we obtain an expansion of the effective potential U' defined by Eq. (5.2) of the form

Upp ——QHpg (0) Hgp+ g dE Hpg
'

( )
'( ), Hgp,

ff I
a)(a

I (o) IP&"'&&0,E'"
I (5.5)E( ')

P

where the first summation is over discrete states
starting in energy with the nucleon state and the
second summation is over the continuum states
which starts at the two-meson-plus-nucleon thresh-
old.

We now assume that the total energy E is such
that the nucleon and 5 states in the discrete summa-
tion are the most important. This implies that

Q —=Q +Q where Q and Q~ are the nucleon and
projection operators, respectively. Hence, we

neglect the two-meson cut, etc. The effective poten-
tial is now Hermitian and of the form

Upp -= Upp+ Upp, (5.6)

where the nucleon-pole contribution is given by

N N l N
Upp ——Hpg HQpE—MN

(5.7)

where Hptt PHQ and th——e b, contribution is given

by

Upp
——Hpg gp,

1

b,

(5.8)

where Hp~ PHQ~. At this le—v—el of approximation,
the only operator in H~„defined by Eq. (3 2) which

contributes to the scattering is given by

H, =I(I J d r U(r)gi(r)qt(q —qo) . (5.9)

This is a consequence of the fact that H, is the only

operator in H~„which has nonvanishing matrix
I

I

elements within the subspace of low-lying states.
At this point it is useful to describe the various

scattering contributions. As we pointed out earlier,
the meson-nucleon state defined by Eq. (2.58) con-
tains scattering information. This is a consequence
of the diagonalization of H' in Sec. IIA which im-

plied that there exists in and out meson creation and
annihilation operators. The one meson in state
described the elastic scattering of a meson from a
background potential which is related to the field
produced by the source. The elastic t matrix for this
process is given by Eq. (2.35). In addition to this
background scattering, there is the so-called
"direct-reaction" part that arises in our approxima-
tion from the nucleon-pole contribution to the effec-
tive potential defined by Eq. (5.2}. Unlike the previ-
ous contribution, the nucleon-pole term contributes
to elastic and charge-exchange scattering. Since the
nucleon state defined by Eq. (2.58} couples to the
off-energy-shell meson-nucleon states via H, defined

by Eq. (5.9), then the nucleon mass, M)v, will ac-
quire an additional self-energy contribution with
real and imaginary parts. Finally, there is the
resonant part of the scattering which is a conse-
quence of the 5 contribution to the effective poten-
tial. Again, the fact that the 5 couples to the
meson-nucleon continuum implies, that the 6 mass

M~, acquires an additional real part and a width.
To see this more clearly, in Appendix D we deter-

mine the total T matrix given by

T(I,', T,', k', I„T„k)=5, 5, t(k', k)+Tg(I,', T,', k', I„T,k)+Tf((I,', T,', k', I„T„k), (5.10)

where t(k', k) is given by Eq. (2.35), the direct-reaction T matrix Td is given by

Td(I,', T,', k', I„T„k)= (1(I,I,', T,', k'out
I Upp I

4,k, in) (5.11)
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and the resonant T matrix, Tz, is given by

Tt((I,', T,', k';I„T„k)= ((I&, k', out
~ HPg

with the scattering wave function
~

(Ii ) is given by

Hgp
~

4, k, in)
1

E'+' —Hpp —Upp

(5.12)

i
4, k, (',"„,))=

i
N, I„T„k,(',"„,))+ (+) HpgE~-'~-a» ' Hgp i

N, I„T„k,(',"„,) )
~1v IIN

E'+' —Hpp

(5.13)

where N is defined by Eq. (2.24), f(k,R ) is defined
by Eq. (AS), and U is the Fourier transform of the
source function defined by Eq. (2.2). In the low-
energy limit the s-wave phase shift is approximately
given by

5o(k) =-—2k
(5.15)

which is similar to the hard-sphere scattering result.
This result implies that the background scattering
contribution from t(k ) is repulsive and that the
cross section is finite in the limit k —+ 0.

For the 3 channel, the direct-reaction part, Td, de-
fined by Eq. (5.11) is zero. This is a consequence of
isospin conservation which implies that

From the form of Upp defined by Eq. (5.7) and its
dependence on H, defined by Eq. (5.9), it is clear
that Td defined by Eq. (5.11) contributes to elastic-
and charge-exchange scatterings. Furthermore, the
form of the energy denominator in Eq. (5.13),
demonstrates that the nucleon mass M&, acquires an
additional self-energy with real and imaginary parts.
Finally, we note the characteristic resonant energy
denominator of Tt( defined by Eq. (5.12) and that
the width of the resonance depends on the off-
energy-shell meson-nucleon scattering via Upp.

For the model Hamiltonian defined by Eq. (2.1),
there is only s-wave scattering and therefore the T
matrix only depends on k. As a special application
of our formulas, we consider elastic scattering for

1

the state I,= —, and T, =1, which corresponds to
scattering in the 3 channel. We now discuss in se-
quence the various terms which contribute to Eq.
(5.10). In Appendix A it was shown that the
partial-wave amplitude for the background scatter-
ing t matrix, t(k ), defined by Eq. (2.35) is of the
form

is,(k) .
k

2' kN U (kR)
i)o——e '

sin5() k =
N

7

co (k) — f(k,R)
4mR

(5.14)

Hgp i
N, , , l, k, (—',"„,))=0.

Using this result, Eq. (5.14) becomes

i
4, k, (',"„,))= iN, , , l, k, (',"—„,))

(5.16)

which simplifies the evaluation of Tt( defined by Eq.
(5.12). We will not present a detailed evaluation of
Tt( which is straightforward, but tedious. Instead,
we will concentrate on the physical description of
the interplay between the background and resonance
scattering.

In Figs. 6(a)—6(d) we plot the contributions to
elastic scattering in the 3 channel from background
scattering, resonance scattering, and both contribu-
tions taken together for various values of the bare
coupling constant g, and source size R. Since the
scattering is s wave, the background scattering
which is a consequence of t(k ) defined by Eq.
(2.35) is large at low energy and decreases to zero at
high energy. Furthermore, this scattering is repul-
sive. On the other hand, the resonant scattering
which is a consequence of Tt( defined by Eq. (5.12)
increases with increasing energy until it reaches a
maximum, when the resonant phase shift passes
through ir/2. As a function of the bare coupling
constants g and R, note that as the coupling in-
creases, the width of the resonant peak decreases,
and the position of the peak moves to lower energy.
These features are consistent with our previous re-
sults, namely, that the 6 becomes more stable as the
coupling strength increases. When the background
and resonant scatterings are taken together as in Eq.
(5.10), the repulsive background scattering
overwhelms the resonant scattering such that the to-
tal s-wave phase shift does not pass through m./2.
However, the bump which appears in the cross sec-
tion is due to the presence of a resonance. Finally,
in Fig. 7 we plot the width of the 6 mass as a func-
tion of the meson laboratory energy for various
values of the bare coupling constant.

For the case of the CBM or LBM the above
description will change since the scattering proceeds
through a p wave. The threshold factors for p-wave
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FIG. 6. Plots of the elastic meson-nucleon cross section for the model Hamiltonian defined by Eq. (2.1) in the total-

isospin —and z-component —channel as a function of the meson energy. The solid curves correspond to the total T-

matrix contribution, the dashed curves correspond to the background-scattering contribution, and the dash-dot curves cor-
respond to the resonant-scattering contribution.
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scattering will suppress the background scattering at
low energy so that the resonance scattering will sit
on top of the background.
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In this appendix we determine the eigenfunctions
of the operator h defined by Eq. (2.32) and the per-
tinent scattering information. The relevant eigen-
value equation is given by

FIG. 7. A plot of the 5 width obtained from the
resonant T matrix Tz, as a function of the meson labora-

tory energy for several values of the bare coupling con-
stant g.

( V+@—)P(r) F(r) f—d r'[( V' +p —)F(r'))g(r')=co g(r), (Al)

where we have used the orthogonality condition,
namely,

f d rF(r)g(r)=0. (A2)

Equation (Al} has no bound-state solutions which
are orthogonal to F(r), however it has two sets of
scattering solutions with eigenvalues co =k +p .
The scattering solutions with appropriate boundary
conditions are given by Eq. (2.23a), where C(k, + ) in
Eq. (2.33a) is defined by

C(k, +)= f d r'[( —V' +p )F(r')]gk(r ', ',"„,)

and

1 k(r, in) =hp(kr)Ii(k, r)+jp(kr)I2(k, r)

1 k(r, in) &
——hp(kr)I3(k, r )+jp(kr)I4(k, r),

I

where U is the Fourier transform of the source func-

tion defined by Eq. (2.2}, N is given by Eq. (2.25},
and

I'k(r, in) =8(R —r)I'k(r, in) +B(r R)I k(r, in)—
(A6)

with

and Gk in Eq. (2.33a) satisfies

(A3) where hp and jp are the sPherical Hankel and Bessel
functions, respectively, and

[—V +p —co (k)]Gk(r, r ', +)= —5 (r —r ') .

(A4)

Upon substituting Eq. (2.33a} into Eq. (A3) and us-

ing Eq. (A4) and the normalization condition for F
which is given by Eq. (2.7), it is straightforward to
show that C(k, +) is given by Eq. (2.33b). This im-

plies that Eq. (A2} is satisfied. For the choice of
F(r) defined by Eq. (2.22), a straightforward com-
putation gives

U(kR )I'k(r, in)

(2ir) [I'k(R, in) —1/N ]
k(r, in) =

(A5)

pRjp(kR )
Ii(k, r)=

co (k)

e &'sin R coskr+8 slnkr
co (k)

I2(k, r) = (k i@)e'"—sinhuR

ken (k)

e
—pR

I3 ( k, r ) =
2

sinkr coshpr —coskr sinhpr
co (k)

e
—p,R

I4(k, r )= [e'""(ksinhpr+ipcoshpr )
kco (k)

(ik+p)R]
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Equation (A6) takes on a particulary simple form
when r =R, namely,

fk(R, in)
I'k(R, in}=

a) (k)4mR

where

(A7)

fp(R, in) =e' jo(kR ) e—)' io(pR ) (AS)

(A9)

From the form of rio(k) defined by Eq. (A9) and

fk(R, in} defined by Eq. (AS}, we conclude that the
partial-wave amplitude has a double pole when
k =ip Ho.wever a careful examination of the
scattering wave functions defined by Eq. (AS)
demonstrates that the wave functions do not have
these poles. Therefore they do not correspond to
eigenvalues of the operator h defined by Eq. (2.32).
The analytic structure of rio(k} is such that it has
poles in the lower half of the complex k plane,
namely, Imk &0. However the poles are much too
far from the physical region of the scattering to
have any sizable effect.

APPENDIX B

In this appendix we determine the ground-state or
vacuum energy of the meson Hamiltonian H' de-
fined by Eq. (2.31) subject to the constraints defined

I

with io is a modified spherical Bessel function. The
partial-wave amplitude can be obtained from the
asymptotic behavior of Eq. (A5) or from Eq. (2.35).
In either case the result is

iso(k)
5 (k)

2)r k N U (kR )

Pf'2
a) (k)— fk(R, in)

f d r'd r ij)k (r ')f(r ', r)it)k(r)=co(k)5 (k' —k),

where

3

f(P~ ~~) f ik (r —r') (k)
(2m )i

(83)

(84)

The relation of Eq. (83) will become useful shortly.
Substituting the expansion of P,'(r), given by Eq.
(2.36) and the corresponding expansion of m,' (r ) into
H' defined by Eq. (2.31) we have

by Eqs. (2.S) and (2.9). The constraint conditions
are satisfied for the expansion of P,'( r ) and ir, ( r } in
the basis of scattering wave functions, fk(r, ',"«), de-
fined by Eq. (2.33a). For the discussion to follow,
we will suppress the "in" and "out" labels since they
are of no consequence. It follows from the eigen-
value equation of Eq. (Al) and the orthogonality'
condition of Eq. (A2), that the scattering wave func-
tions defined by Eq. (2.33a) diagonalize the Klein-
Gordon operator, namely,

f d rPk (r)( —V +(M )Pk(r)=co (k)5 (k' —k) .

(81)

Using the fact that the Green's function for the
Klein-Gordon operator of Eq. (A4) and the Green's
function for the square root of the Klein-Gordon
operator are related, namely,

Gk (r, r ') =2e)(k)Gk(r, r ') (82)

it follows from Eqs. (2.33a} and (2.33b) that the
scattering wave functions defined by Eq. (2.33a) also
diagonalize the square root of the Klein-Gordon
operator such that

H'= —, f d kd k' f d rd r'f*(kr)f( rr ')gk. (r ')[a;(k)at(k')+at(k)a, (k')], (8&)

where we have used Eqs. (81) and (83) to obtain this
form of H'. The vacuum state is defined such that

a;(k) (vac)=0.
It then follows from Eq. (85), the commutation rela-

+

tions between a;(k) and a; (k'), and the definition
of

~

vac) that the vacuum energy is given by

E„'«———, f d kd rd r'P' (rk)f~( rr')fk(r'),

f d kg" (rk) (1(trk')=5 (r r') F(r)F(r')—, —

(87)

then the vacuum energy E„„canbe rewritten in the
OHIl

Eying

2 r

(86) ——, f der der'F(r) f(r, r ')F(r') (BS)

where the subscript A on f indicates that we have
introduced a cutoff. If we now use the completeness
relation, namely,

which is equivalent to Eq. (2.40). Note that in Eq.
(BS) we have taken the cutoff to infinity.
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Q qX»(fl)) =gX„(&»), (Cl)

where g are the eigenvalues, Qq is the solid angle
subtended by q, and the X implicitly depend on a set

I

APPENDIX C

In this appendix we prove the projection theorem
of Eq. (2.50}. Suppose we are given two vector
operators Q and q, where Q is an N XN Hermitian
matrix of vector operators and q is a unit vector
operator. Consider the eigenvalue equation of the
scalar product of these operators, namely, X„(f)»)X„(f)»)=0 (C3)

for»)&rl' and all angles, 0». Taking the inner prod-
uct of Eq. (Cl} and inserting a complete set of states
we have

of rotational quantum numbers, say I and I,. We
want to show that

(I'I,' g I Q; I
II,g ) =rl(I'I,'

q I q; I
II,g ) (C2)

for all I, I„I', I,', and g. From the Hermiticity of
the operator Q q and Eq. (Cl) it follows that

g ( —1)"(II,q I
Q„'"

I
I'I,'q)(I'I,'q

I q.'" I
II,q) =q, (C4)

where we have used the orthogonality condition in Eq. (C3) and we have introduced the usual irreducible ten-
sors. Similarly, from the fact that q is a unit vector operator we have

g ( —1)"(II,») I q„ I
I'I,'»))(I'I,'»1

I q „ I
II,g) =1, (C5)

where again we have used Eq. (C3). We can perform the sums over I,' and z with the aid of the Wigner-
Eckhardt theorem so that Eqs. (C4) and (C5) become

g (IqllQ("III'q)(I'qllq'"III')c(I, I') =q (C6)

and

(C7)

where

C(I,I')=, , g( —1}"(I'I,' lz
I
II, )(II,1 —a II'I,' ) .(2I+ 1)'~'(ZI'+ 1)'~', ,

From the vector nature of Q and q Eqs. (C6}and (C7) become
()) ())Q I I +9(I+lril lq()l II»1&C(I I+1)+(VIIQ I I q&Irjl lq(1)l II'�&C(I I)

7l '9

and

&Inllq"'III+ln) &I+lnllq("III'&c(I, I+1)+(Iqllq")III')(Iqllq("III')c(I, I)
+ (Iql lq'"I II—lq) (I—lql lq("III~) C(I,I—1}=1. (C9}

The proof proceeds by induction. Take I= —,, then
the last term in Eq. (C8) and Eq. (C9) is zero and
therefore the solution to the simultaneous equations
is given by

(Cl 1)

Now consider I= —, and using Eqs. (C10) and (Cl 1)
we can repeat the procedure and so on, hence

(I'vgI IQ'"III') =ri(I'gI Iq"'I II') (C12)

which is equivalent to Eq. (C2).
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APPENDIX D

In this appendix we determine the meson-nucleon
T matrix for the model Hamiltonian H defined by
Eq. (2.1). The total in-scattering wave function is
given by

~

ql'k ') =
~
k, in)+ (+) (H Ek)—

~
k, in),

E,'-"—a
(Dl)

where the state
~
k, in) can be any of the meson-

nucleon in-states defined by Eq. (2.58) and Ek is
given by

Ek =MN+co(k),

where
~

k', out) is the corresponding meson-nucleon
out-state defined by Eq. (2.58). We note that

~
k, in) and

~

k', out) are related via Eq. (2.38) and
therefore from Eq. (D2) we obtain the relation

f d'k'S(k', k)
~
+k ')

=
~
k, in)+

l ~
(H —Ek)

~
k, in), (D3)

E,'-' —a
where we have used the fact that the background-
scattering S matrix conserves the magnitude of the
momentum. Substituting Eq. (D3) into Eq. (Dl) we
have

~

qk+'&= f d'k'S(k', k)
~

qk-'&

where M& is the renormalized nucleon mass which
is obtained from Eq. (2.59) by an appropriate choice
of the bare mass Mo. The corresponding out-
scattering wave function is given by

( )
(H Ek)

~
k, i—n)

E,'+' —0
1

(H Ek )
I
k,—in & .

E,'-' —0 (D4)

i
4'k ') =

i
kout)+

~ ~
(H —Ek )

i
k', out),

E,'.-' —a
(D2)

It follows from Eq. (D4) and the definition of the
scattering matrix, namely, &%k '~ qlk+'), that the
total S matrix is given by

(D6)

Introducing the open- and closed-channel projection operators defined by Eqs. (5.3} and (5.4) and substituting
the projection operators into the left-hand side of Eq. (D6) we have

&out, k I(H Ek'}
I
qk+—'&=&out, k

~
(Hpp Ek }P

(
qk+'&—+&out, k ~HpgQ ~

q'k+'& (D7}

The first term on the right-hand side of Eq. (D7} is zero since the state
~

out, k ) is an eigenstate of Hpp with
eigenvalue Ek. By definition the closed-channel scattering wave function, Q ~

4'k+') is given by

S„„~(k',p;k, a)=5p S(k', k) 2mi5(Ek —Ek)&+k '—
~

(H Ek)
~
k, in—), (D5)

where a and P are the quantum numbers which specify the states
~
k, in) and

~

k', out), and S(k', k) is given

by Eq. (2.34). It is straightforward to show that on the energy shell we have

& out, k'
f
(H Ek )

J

%'k+'—) =
& @i '

f
(H Ek )

J
k, in) —.

Q ~

q„'-"&= „,' Hg, p
~
q,"'&

E,'+' —0« (D8)

which in fact was used to obtain the form of the Schrodinger equation of Eq. (5.1). Substituting Eq. (D8) into
Eq. (D7) we have

&out, k ((H Ek) ~%k+')=&o—ut, k ~Hpg
~ ~

HgpP ~%'k+') .
E,'+' —0« (D9)

If we now restrict the closed-channel space Q to the nucleon and 5 states of Eq. (2.58), we obtain an approxi-
mate relation, namely,

&out, k'((H Ek)
~
%k ')—= &out—, k'~Hpg HgpP ~9k+ )+&out, k'~Hpg

M HgpP
~

q'k ),
Ek MN Ek —Mg

(Dlo)

where the 6 mass Ma is fixed by Eq. (2.59) for given values of the bare coupling constant g, and bag-source
size R.



2706 JOHN A. PARMENTOLA 27

The complete determination of the right-hand side of Eq. (D10} requires the open-channel wave function
P

t
4'k+'&. To this end, we consider the Schrodinger equation for the open-channel wave function defined by

Eq. (5.1) which is given by

Ht'P+HPQ (~) HQP +k P
I
q'k' & =o1 (+)

Ek+' —H«
(Dl 1)

Again, restricting the closed-channel space Q to the nucleon and 6 states and solving for the open-channel
wave function we have

(D13)

Ak= HQPP I
qk &= Hgp C' k in&+ HQP

(y) 1 g 1
HpgAk .

Ek —Mg Ek —Mg Ek+ —Hpp —Upp

(D14)

Solving for Ak we have

P
I

q"k"&=
I
@ k in&+ (, ) ~ HI'Q HgpP I

q'k (D12)
Ek+' —Hpp —Upp

where Uzz is given by Eq. (5.7) and the scattering state
~
4, k, in &, satisfies the Schrodinger equation given by

(Hpp + Upp —Ek )
~
4, k, in &

=0 .

An explicit solution to Eq. (D12) can be obtained upon multiplying Eq. (D12) by (1/Ek Mt, )H—gz and defin-
ing a quantity Ak which satisfies

Hpg ~

c', k, in& .

Hgp Hpg
Ek+' —Hpp —Upp

Therefore, Eq. (D2) for the open-channel wave function is given by

(D15)

P
~

ql'k+'& =
( 4,k, in & y, , Hpg

EI',+' —Hpp —Upp

1
Hg~

~
4, k, in& .

Ek M& HQp ( ) N Hpp
1

E,'+' —H» —UN

(D16)

Following an analogous procedure for
~
4, k, in & we have

~@,k, in&=
I
k, in&+

( )E,'+' —Hpp

N 1 N
Hpg Hgp

~

k in& .
Ek —MN —Hgp ( ~ ) HpgEk+ ' —Hpp

(D17)

Substituting Eqs. (D16) and (D17) into Eq. (D10) and using Eq. (D15) for Ak and the definition of 4, k, out,
we obtain

(out, k'
~
(H Ek )

~

%k+'& —=T~—(p, k';ak)+ T~(p, k', aL-), (D18)

where Td and Tz are given by Eqs. (5.11}and (5.12), respectively. Therefore the total T matrix follows from
Eq. (D5},namely,

T(P, k';ak) =5tk t(k', k)+ Td(P, k', ak)+ Tz(P, k';a, k), (D19)

where t( k, k) given by Eq. (2.35).
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