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Data are presented on the inclusive production of 7%, K ¥, p, and p for =+, K *, and pro-
tons incident on nuclear targets at 100 GeV. The results cover the kinematic range
30<P <88 GeV/c for P,=0.3 and 0.5 GeV/c. The observed 4 dependence of the invariant
cross sections exhibits remarkable simplicity, which does not naturally follow from current
models of particle production. The results show that the hypothesis of limiting fragmenta-
tion can be extended to include collisions with nuclei.

I. INTRODUCTION

The mechanism of hadron fragmentation and
resultant particle production in high-energy
hardron-hadron collisions is not well understood. In
order to investigate the main features of the frag-
mentation process we have carried out an extensive
experimental survey of the forward-particle spectra
for incident pions, kaons, and protons, and a broad
range of targets and incident energies. The results
on the projectile and energy dependence of the spec-
tra for a proton target have been presented previous-
ly.! In this paper we concentrate on the target
dependence of the spectra.

There are several motivations for investigating
projectile fragmentation from such apparently com-
plex targets as nuclei. From the point of view of the
study of the hypothesis of limiting fragmentation,?
nuclear targets add a new dimension. Consider, for
example, a hadron-nucleus collision in the rest
frame of the incident hadron, i.e., in which the nu-
cleus is the projectile. Two interesting questions

arise.
(1) At high energies, do hadron targets fragment

in an energy-independent way for projectiles consid-
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erably more massive and complex than nucleons?

(2) If so, to what extent does the fragmentation
depend on the projectile?

We know from previous hadron-nucleus experi-
ments that at high energies the multiplication of
hadrons within a nucleus is relatively weak.® This
has been interpreted as evidence of long formation
times of the produced particles.* If this is a correct
interpretation, nuclear targets can be looked upon as
filters analyzing the wave function of the projectile.’
From this point of view, the leading-particle spectra
reflect that part of the wave function which has not
been absorbed by the target.

Finally, the A4 dependence of the leading-particle
spectra can give information on the rate of energy
loss of strongly interacting particles as they pass
through nuclear matter.® In contrast to the exten-
sive knowledge of the energy loss by ionization when
charged particles pass through ordinary matter, lit-
tle is known about the nuclear stopping power for
hadrons. This information is not only important for
a better understanding of the interactions that take
place when two hadrons pass through each other,
but also is needed for predicting the kind of nuclear
densities that may be achieved in head-on collisions
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TABLE I. Targets used in this experiment. Most data
were taken with the thicker targets. The thin targets were
used primarily for finite thickness corrections.

Target A Thickness (gecm™?)
C 12.0 1.37
393
5.79
Al 27.0 5.99
Cu 63.5 2.89
5.94
9.94
Ag 107.9 6.71
Pb 207.2 2.06
4.00
7.38

of large nuclei.

Previous measurements of the A dependence of in-
clusive processes in the beam fragmentation region
include 7%, K%, p, and p production in proton in-
teractions at 24 Gev (Ref. 7), A% A% and K? pro-
duction by protons at 300 GeV (Ref. 8), Z° produc-
tion by protons at 400 GeV (Ref. 9), and neutron
production by protons at 400 GeV (Ref. 10). In this
experiment, we have measured the inclusive produc-
tion of 7%, K*, p, and Fin 100-GeV 7+, K+ and p
collisions with C, Al, Cu, Ag, and Pb targets. Since
essentially the same equipment was used in an ear-
lier measurement of these same processes for a hy-
drogen target, an accurate comparison between hA4
and hp interactions, free of many systematic errors,
is possible. Preliminary results of this experiment
have been discussed in Ref. 11.

II. THE EXPERIMENTAL METHOD
AND MEASURED CROSS SECTIONS

The data were collected using the Fermilab Single
Arm Spectrometer facility in the M6E beam line.
An incident positive beam of 100 GeV/c was used.
The production of the fast secondaries was mea-
sured over a momentum range of 30 <P <88 GeV/c
and transverse-momentum range 0.18<P,<0.5
GeV/c. Data were taken simultaneously for the
nine reaction types (7w, 7K, mwp, etc.). Good m-K-p
separation was achieved over the entire kinematic
using the seven Cerenkov counters of the facility.
Full details of the apparatus, data-taking, and
analysis procedures are described in Ref. 1.

A list of the targets used in the experiment is
given in Table I. Typical data consisted of a sequen-
tial set of measurements using the thickest targets of
C, Al, Cu, Ag, and Pb along with an empty-target
run at a fixed spectrometer momentum and angle

103 T T T T T T T T T

C pA — pX 7
Pb . R . ‘ o, i

B Ag © 3 ° ° ¢ 0

Cu x x x x x X x
2f .
F no -
L F . o o o =
> L o o 3
S L Co B
< L 4

2
= 4
”

e . *
w ool . . .
IO: . .
= . 3
- pe .

1 1 1 1 L | | 1
o 0.2 0.4 0.6 0.8 10

FIG. 1. The invariant differential cross section for
pA—pX plotted as a function of x for an incident
momentum of 100 GeV/c at transverse momentum of 0.3
GeV/c.

setting. In this way, the 4 dependence of the invari-
ant cross sections for each channel could be studied
without requiring detailed knowledge of absolute ac-
ceptance apertures, particle identification efficien-
cies, etc. The thinner targets were used at P =40
and 80 GeV/c to study finite-target-thickness effects
by extrapolation to zero target thickness. The aver-
age corrections to the thick-target data were x in-
dependent and <8%.

In a manner similar to that described in Ref. 1,
the interaction rates were corrected for particle ab-
sorption and decay in the spectrometer, multiple-
scattering losses in the spectrometer, particle
misidentification, and track-reconstruction ineffi-
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FIG. 2. The invariant differential cross section for
pA—m+X plotted as a function of x for an incident
momentum of 100 GeV/c and transverse momentum of
0.3 GeV/e.
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FIG. 3.. The invariant differential cross section for
m*tA—>mX plotted as a function of x for an incident
momentum of 100 GeV/c and transverse momentum of
0.3 GeV/c.

ciencies. The corrected rates were then used to ob-
tain the invariant differential cross section for every
channel.

In addition to the nuclear targets, data were taken
on a hydrogen target at P=40 and 80 GeV/c for
P,=0.3 GeV/c. The invariant cross sections for
the high-statistics 7*p—7*X and pp —pX channels
measured in this experiment agree on the average
with those previously quoted’ to (4+2)% in absolute
value. Throughout this paper the quoted hydrogen
cross sections are the statistically more accurate
ones measured earlier.
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FIG. 4. The invariant differential cross section for
7tA—-K*X plotted as a function of x for an incident
momentum of 100 GeV/c and transverse momentum of
0.3 GeV/c.
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FIG. 5. The invariant differential cross section for
pA —pX plotted as a function of A for x =0.3 and 0.8 at
transverse momentum of 0.3 GeV/c. The straight lines
are the best fits of the data to Eq. (1).

The complete set of measurements of the invari-
ant cross sections is given in Table II. The errors
are primarily statistical, but contain a small contri-
bution from particle misidentification. The overall
normalization uncertainty is estimated to be 10%.
The only significant systematic uncertainties in the
particle-misidentification corrections are those in
the fractions of kaons called pions and nucleons.
These systematic errors are estimated to be 5% and
0.4%, respectively. The corresponding systematic
errors in the cross sections are everywhere less than
the quoted statistical errors except for the reaction
K+—7t at x =0.88, where in any case the statis-
tics are insufficient to determine a cross section.

As an illustration of the results, in Figs. 1 —4 the
invariant cross sections for p—p, p—7t, 7t —7~,
and 7t —>K* at P,=0.3 GeV/c are plotted as a
function of Feynman x.!?

In order to exhibit explicitly the A dependence of
the data, at every kinematic point the invariant cross
sections were fitted to the empirical form

3
ELY _gpae. (1)
dp

Hydrogen data were not included in the fits. A typi-
cal data set and the fit to it are shown in Fig. 5.
The results of all the fits are given in Table II. As
can be seen from these results, as well as from most
other nuclear target experiments, the extrapolation
of Eq. (1) to A =1 does not yield the hydrogen re-
sult. This makes clear that conclusions drawn from
experiments that use only one nuclear target in con-
junction with hydrogen should be treated with cau-
tion.
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III. DISCUSSION OF RESULTS

The A dependence of the inelastic cross sections
on nuclei at 100 GeV can be parametrized as'’
25.84°%75, 20.94%™, and 38.24%" mb for incident
«*, K%, and protons, respectively. The correspond-
ing hydrogen cross sections are'* 20.2, 16.7, and 31.4
mb. A comparison of these values with those in
Table II indicates that, over the entire projectile
fragmentation region, and for all produced particles,
the ratio of the inclusive cross section to the total in-
elastic cross section is smaller for a nuclear than for
a proton target. Furthermore, this ratio decreases as
the size of the nucleus increases.

As a test of the hypothesis of limiting fragmenta-
tion,2 we can compare our incident-proton data at
100 GeV with those of Eichten et al.” at 24 GeV.
We find that the absolute values of the cross sec-
tions on nuclei are slightly higher at 24 GeV than at
100 GeV. A similar change is seen in proton target
data over this energy range.!> The 4 dependences at
the two energies are in very good agreement. We
conclude that while the fragmentation of the projec-
tile does depend on the nature of the target, the ap-
proach to scaling in Feynman x does not.

For the kinematic range covered by this experi-
ment, the A dependence as expressed by the ex-
ponent a exhibits a remarkable simplicity. With a
few exceptions, discussed later, it is only a function
of x and incident particle type. It is independent of
the outgoing particle type. To illustrate these
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o p=n Ref. 10
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v p= K"} Ref 7
v p— K~
foX) + v o p—=p ~
y 4 = p—~5p
B
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0.2 0.4 0.6 08 10

FIG. 6. The variation of the parameter @ with x for
various particles produced by protons at a transverse
momentum of 0.3 GeV/c and for incident energies span-
ning the range 24—400 GeV. The curve is a polynomial
fit to the data as discussed in the text. Closed symbols are
used for all reaction channels where the incident and pro-
duced particle have no valence quarks in common.

1.0 T T T T

FIG. 7. The variation of the parameter a with x for
our proton data at a transverse momentum of 0.3 GeV/c.
The curve is the polynomial fit to the world data as dis-
cussed in the text. Error bars are shown slanted only for
reasons of clarity.

features, in Fig. 6 we plot a as a function of x for a
broad range of proton-induced reactions. In the in-
terest of clarity, data points with errors in a greater
than 10.03 have been omitted. The curve which
has the functional form a(x)=0.74—0.55x
+0.26x% is a polynomial fit to all previous world
data and data from this experiment. It has no par-
ticular significance other than to guide the eye. Al-
though we have not plotted some statistically less
significant results in Fig. 6, it should be pointed out
that all our incident-proton data are well represented
by the fitted curve, with X2/DF=0.7 (see Fig. 7).
Except for p—p at 24 GeV and p—E° at 400 GeV,
the data in Fig. 6 for x >0.2 suggest that a is a
function of x alone. In other words, they suggest
that, for a given x, the ratios of the production of
various types of particles are independent of the tar-
get and of the incident energy.

If one takes this suggestion seriously and couples
it to the observation that the functional form of
do/dx differs dramatically for various outgoing
particles,! one seems to arrive at a very strong set of
constraints on the possible mechanisms of particle
production. For example, such behavior does not
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FIG. 8. The variation of the parameter a with x for
the 71 data at a transverse momentum of 0.3 GeV/c. Er-
ror bars are shown slanted only for reasons of clarity.

follow naturally from models such as the additive
quark model,'® which assumes that the leading-
particle spectrum is a reflection of the momentum
spectrum of those valence quarks which are not ab-
sorbed in the target, nor does it follow from dual

09 | I E— T T T T T T
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04 L L i 1 L 1 1 1 1
o

0.2 04 0.6 08 1.0

FIG. 9. The variation of the parameter a with x for
the 7t—n*t and 7t—7~ channels at a transverse
momentum of 0.3 GeV/c. The solid curve is the polyno-
mial fit to the proton data shown in Fig. 6. The dashed
curve is the same fit raised by 0.045 (see text).

parton models.”” This is most readily seen in the
similarity of the 4 dependence of channels such as
p—p, p—A% or p—7* (open symbols in Fig. 6),
where the projectile and outgoing particle have one
or more valence quarks in common, to the 4 depen-
dence of channels such as p—A° p—KJ, or
p—K ™ (closed symbols), where there are no com-
mon valence quarks.

The data are also inconsistent with any mecha-
nism whose essence is that the hadronic matter from
the incident particle is slowed down as it passes
through the target, and then decays into different
particles in ratios independent of the final momen-
tum of this hadronic matter. If this were the case,
the ratios of particles at a given x on nuclear targets
would be the same as the ratios from a proton target
at a higher value of x, and not at the same x as is
observed.

Finally, it is difficult to see how any multiple-
collision model could account for the observed
trends, in particular the constancy as a function of 4
of the ratios of the various produced particles at the
highest values of x, i.e., greater than, say, 0.5. One
possible mechanism which could explain such a con-
stancy is that, at high x, particles are produced in
collisions where only one target nucleon is involved.
However, if this were so, a should be independent of
x and should approach a value of about 0.31 for in-
cident protons. This corresponds to the 4 depen-
dence of the probability of a collision with a single
nucleon in the nucleus.

A similar comprehensive study of 7*- and K *-
induced reactions is not possible because, as is ap-
parent from Fig. 8, for most channels our statistical
accuracy is inadequate, and no other comparable
data exist. The only general conclusion that can be
drawn from these data is that for 7*- and K-
induced reactions, a tends to be higher than for
proton-induced reactions. This may simply be a re-
flection of differences in the , K, and p inelastic
cross sections on nucleons.

Among the 7 and K data the only channels with

T
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FIG. 10. The measured difference in the parameter a
at transverse momentum 0.5 and 0.3 GeV/c for various
m*- and proton-induced reactions, as a function of x.
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sufficient data to allow us to investigate the x
dependences are 7t —7" and 7 —7~. These re-
sults are replotted in Fig. 9, together with the poly-
nomial fit to the proton data (solid curve) and the
same fit displaced by 0.045, the difference in the 4
dependence of the inelastic cross section of pions
and protons (dashed curve). These data suggest that
the x dependence of a for 7-induced reactions fol-
lows a universal curve similar to that observed in the
proton data, but that superimposed on it for these
particular channels there is an enhancement in a
around an x value of 0.7. This enhancement can
probably be explained entirely by the coherent pro-
duction of the three- and five-pion states.'® At very
low momentum transfers similar enhancements have
been seen by Whalley et al.'° in the p—n channel.

In the past many experiments using emulsion tar-
gets have claimed that as x increases a first de-
creases and then increases towards a value equal to
that of the inelastic cross section. This trend has
been interpreted by some!® as an indication of a
multiperipheral type of interaction. We see no evi-
dence for such a trend.

Consistent with earlier experiments over the limit-
ed range in transverse momenta covered by our data,
we find no significiant variation of the A4 depen-
dence as a function of P,. In Fig. 10, for example,
the difference of a at a P, of 0.3 and 0.5 GeV/c is
plotted as a function of x for 7t —7t, 7t 7",
p—m*, and p—p. This behavior also excludes the
interpretation of particle production in nuclei in
terms of sequential collisions.

To summarize, we observe from our data and

from a comparison of our data with earlier experi-
ments that the A dependence of the inclusive cross
sections in the projectile fragmentation region exhi-
bits a remarkable simplicity. For most channels the
A dependence is a universal, weakly decreasing func-
tion of x independent of the outgoing particle, its
transverse momentum, and the incident energy. The
difference of the 4 dependences for various incident
particles probably arises from the different inelastic
cross sections on nucleons. We know of no model
which in a natural way predicts such a simple
behavior. However, it should be pointed out that
most current models have sufficient flexibility to en-
compass the data. Our results do not rule out a
weak dependence of a on the produced particle, and
it is possible that a is not very sensitive to the
mechanism of production. In the 7+ —#* chan-
nels, there is evidence in our data for the presence of
some coherent phenomena.
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