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Monte Carlo simulation of SU(2) lattice gauge theory with internal quark loops

V. Azcoiti' and A. Nakamura

(Received 15 November 1982)

Dynamical effects of quark loops in lattice gauge theory with the icosahedral group are stud-

ied. We employ the standard Wilson action and calculate the fermionic part by a discrete pseu-

dofermionic method. The masses of the m, p, and ao are computed and the average value of an
effective fermionic action is evaluated.

Since the lattice formulation was proposed by Wil-
son' as a powerful tool to regularize gauge theories,
two important advances have been made in this field.
Creutz and other authors have shown that Monte
Carlo simulation can work really well for investigating
pure gauge theories' and, secondly, dynamical
quarks have been introduced into the calculations.
Since then, interesting and challenging attempts to
evaluate static properties of hadrons started. 7 "

All Monte Carlo evaluations of physical properties
of hadrons so far use a quenched approximation or a
hopping-parameter expansion. ' Though they are ef-
fective methods for reducing computer time, each
has its defect. In the quenched approximation, we
cannot study effects of internal quark loops which are
neglected. At the present time, for the hopping-
parameter-expansion calculations, it is doubtful
whether the series expansion is enough to reach con-
vergence.

In this paper, we report on the first study of Monte
Carlo simulation without these approximations. We
employ the standard Wilson action with gauge group
SU(2), which is replaced by the 120-element
icosahedral subgroup"' in the real calculation. The
simulation is done on a periodic 4 lattice.

The action has the form

S = SG+ Xp~h(m, n) p„
m, n

where the first term represents the kinetic term of
gauge fields, U, with bare coupling g. Meson fields
are written in the form p(x) rp(x), where I' is a
matrix with Dirac and flavor indices. After integrat-
ing over the fermionic degrees of freedom, we get
the formula for meson Green's functions:

G(xy) = X)Ug(xy) e '""
J X)Ue '"", (2)

where

g(xy) =Tr[rh '(xx)]Tr[rh '(yy)]
—Tr[ra '(xy)rb, '(y, x)]

with I'= y4ry4. The first term of g splits p and co

meson masses. ' The effective action, S,ff, is defined

Seff SG +SEF

SFF = —ln det6,

For a small change of gauge fields,

5SFF ———,' Tr[(h"5) 's(h'5) ]

(4)

(5)

We employ the pseudofermionic method, which was
proposed in Ref. 4, to evaluate (5 5) '.

Here is one trick to reduce the computer time; we
use discrete pseudofermionic fields, $. Suppressing
Dirac and site indices, we can write

=r
t

(6)

with IaI'+IpI'=1. Note that a and p satisfy the
same condition as a column vector of a 2 && 2 SU(2)
matrix. We replace this by a set of column vectors of
the representation of the icosahedral group. We have
already employed this finite group for the gauge
fields. Therefore we can use a multiplication table of
the group in the computation.

Before presenting numerical results, we comment
briefly upon the reliability of the program. A pure
gauge part of the program is essentially the same as
that of Ref. 18. Weingarten has reported the critical
value of the hopping parameter K, at which the pion
mass becomes zero, to be 0.220 on a 4" lattice after
averaging 8 gauge configurations. Under the same
conditions, we switch off internal quark loops and
calculate the time slice propagator, G"(r), over 16
gauge configurations, which is shown in Fig. 1(a).
Within error bars, the behavior of G(r) is consistent
with zero pion mass. Next, we compare
(Q(x) f(x) ) of our calculation with that of the
hopping-parameter expansion'9 at ~ =().1 where con-
vergence of the expansion may be very good. In Fig.
2, 8 —(|Ti(x)P(x) ) is plotted as a function of K. The
agreement is quite good.

In Fig. 1(b), we present the value of G(r) when
we switch on quark loops. Values of the parameters
~ =0.218 and p =1.0515 are the same as in Ref. 9.
The behavior is distinctly different from the result of
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FIG. 2. Observed value of 8 —(Tiiili) (circle). The solid

line is a polynomial fit. The crosses (&&) are the results of
Ref. 19 (hopping-parameter expansion). The coupling is

fixed at I/g2 =0.75.

10

the quenched approximation. This may come partly
from higher continuum states, i.e., multimeson
states.

Our numerical evaluation of the m, p, and co

masses and (iTi(x) t'ai(x) ) in the lattice distance unit
for ir =0.24 and I/g2 =0.75 are shown in Table I.
The number of the gauge configurations is 128 +8;
we have not used the first 8 configurations for mea-
surements. For each gauge configuration we gen-
erate 175+25 pseudofermionic Monte Carlo itera-
tions; we have not used the first 25 configurations.
In order to reduce statistical errors, we calculate
G(r) for four directions of the lattice and sum them
up.

For the same purpose, we average the propagators
over all possible charge and spin states. All error

1O
4 I

3

TABLE I. Numerical results on the m, p, and cv masses.
Also the result for (iliili) for one flavor is shown. K=0.24
and l/g2=0. 75. The number of the gauge configurations is

128.

FIG. 1. (a) Numerical results for the pion time-slice pro-
pagator at ~ =0.220 and P =1.0515 when quark loops are
switched off. Normalization is arbitrary. (b) Numerical
results for the pion time-slice propagator at ~ =0.218 and

P =1.0515. The dashed line is a fit of the results of Ref. 9
(quenched approximation) at the same values of the param-
eters. Normalization is arbitrary.

m a

2.5+0.1

m a

2.9 +0.2 3.0+0.6 4.42 +0.01
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bars are given in a very naive manner: we divide the
data into two subgroups and recalculate quantities in
each group.

The mass ratio between m and p is far from its ex-
perimental value. This is mainly because our lattice
is too small. In a 44 lattice, we cannot subtract the
effects of higher masses.

From Table I, we find the co/p mass ratio to be
1.03 which is near the experimental value, 1.02. We
calculate this ratio also for the last 96 gauge config-
urations and get the value 1.1. For K =0.23 and
0.245, the value is 1.04 and 1.03, respectively.

It is interesting to estimate the magnitude of detA
or SaF. This is related to (Q(x) tet(x)) in the follow-
ing form:

&S~~&

N

1, 0

(a)

=N4 x x —8
dK

(7)

for color SU(2) and for one flavor, where N4 is lat-
tice size. In Fig. 2, we show observed values of
8 —(tttP) at several tc for 1/g' =0.75. The solid line
is a polynomial fit for these data. From this fit, as-
suming there is no singular behavior in this region,
we can get (SEF)/N by the formula (7). The aver-
aged effective fermion action per one flavor is shown
in Fig. 3(a). In Fig. 3(b), we show calculated values
of (Sa)/N as a function of K. These figures tell us
that we may discard SEF in comparison with SG below
K 0.1. The loopless approximation is justified for
heavy-quark phenomenology. For K & 0.2, however,
SEF makes a sizable contribution to the total action.

In this experiment, we cannot determine the criti-
cal K and, therefore, we cannot get the quark mass.
Though the values of our parameters 1/g' and tt are
consistent with the SU(3) hopping-parameter-
expansion results, ' there is a possibility that we have
made observation above K,. We think, however, the
sign and the order of the p-m splitting is correct be-
cause the p/co mass ratio is very stable when we

change K.

If we adjust our calculated value of the p mass to
the experimental value, we get for lattice distance
a =0.74 fm. In order to see whether the observed
values are reasonable or not, we try to calculate the
m decay constant using the PCAC (partial conserva-
tion of axial-vector current) relation. We put the
quark mass m to be 5 MeV, which we take from the
"world data. " "c"We get f = 180 MeV, while
the experimental value is 93 MeV. There are several
possible reasons for this discrepancy: (i) The f„is a
sensitive quantity because it depends on wave func-
tions and quark mass. (ii) The PCAC formula is not
trivial in this calculation because chiral symmetry is
explicitly broken in the Wilson action due to the Wil-
son term. However, we pick up only the pole term
and not the continuum term in the formula. (iii)
Each quantity (Pg), a ', and, of course, m~ includes
error. Therefore the values of ~, (tits), and a '

0, 0 I

0, 1

I

O, Z

N

(b)

5

I

0, 1 0, Z

which we have obtained here are not inconsistent.
Though we suffer from low statistics and small lat-

tice size, it is very encouraging that we have obtained
correct p-co splitting because this is the first touch-
stone in the study of the lattice gauge theory includ-

ing dynamical quark loops. The term which splits co

from p consists of an initial qq annihilation and a fi-
nal qq creation. Fermion loops make a significant
contribution to this term and, probably, the problem
of the chiral-symmetry breaking does not matter
here.

We have made an estimate of det4. As far as we
know, there has been no evaluation of this quantity
in physical regions. Therefore, arguments and con-

FIG. 3. (a) Plot of (SaF)/N per one—flavor as a func-

tion of the hopping parameter ~ at I/g =0.75. (b) Calculat-
ed value of (SG)/N~ as a function of the hopping parameter
~ at I/g2=0. 75.
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troversies about contributions of quark loops were
not well founded.

The final and, maybe, most important conclusion
of this paper is that it is now feasible to include quark
loops in Monte Carlo simulation of lattice gauge
theories. There is a chance to investigate low-energy
properties of QCD including the q problem.

All calculations have been done with a VAX11/780
at the Frascati Laboratory. Typical computer time is

1 h for 1 gauge configuration with 200+200 pseudo-
fermionic iterations for two flavors.
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