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It is shown that a specific symmetry of the dipole ghost models allows one to derive a good
probabilistic interpretation for a particular spin-half model. The arguments given indicate that

the interpretation presented holds for any model in which the interaction does not break this

symmetry,

It is known that the dipole ghost models (DGM's),
in which the mass condition has the quadratic Klein-
Gordon form, are not unitary because of the in-

decomposable nonunitary representation of the
translation group T(4).'2 The space of states is of an
indefinite metric, and therefore the physical interpre-
tation cannot be given as usual. The general opinion
is that the dipole ghost states have no physical signifi-
cance and thus they must be eliminated by using a
reconstruction method of the physical-state space. '
Another attitude is to try to find a new probabilistic
interpretation for the DGM's, so that positive and
conserved probabilities should be derived directly
from the non-Hilbert dipole ghost space. Such an at-
tempt has been made by Kiskis' who defines a
particle-dipole transition probability which is con-
served but not always positive, in the first order of
the perturbation theory. On the other hand, in Ref.
2, another interpretation is suggested so that the pro-
babilities are positive but their conservation is not
certain. Thus there appears the problem of the con-
ditions for which the transition probabilities should
be conserved and positive in each order of the per-
turbation theory.

Here, we want to point out that the method of Ref.
5 leads to positive probabilities if the DGM has a
specific symmetry. Our arguments will be illustrated
on a simple example of the spin-half DGM, the phys-
ical content of which would be easily compared with
the QED one.

Let us consider the spin-half free DGM construct-
ed, by analogy to the Froissart6 spinless model, start-
ing with two coupled free Dirac equations:

(i y"6„m) P& =0, (—iy"8~ m) &2 = m&&—

If we denote

we obtain the spin-half equation of Ref. 2 in a suit-
able form for the Lagrangian theory:

(i P"6„nm) Q
=—0

The corresponding free Lagrangian density is

~ =
2

(4P'f),4 f),AP'0) m—4~—4 ~

where Q = (Q~, f2) is the Dirac adjoint of the eight-
component spinor P. The invariance transformations
of the Lagrangian are the Poincare transformations,
the Abelian gauge, and a new class of transforma-
tions of the form

$2+i Apt, A. C R

which will be called the dipole-gauge (D) transfor-
mation. As will be shown. in the following, this is a
characteristic symmetry of the free DGM's.

The solutions of a free DGM can be written in co-
variant' or noncovariant' form, the latter being pre-
ferred for spinless models. In the spinorial case, the
covariant form, which contains only Dirac spinors, is
the simplest because, in the noncovariant form, there
also appear the derivatives of these spinors. In the
covariant form, the system of fundamental solutions
of Eq. (1) contains two particlelike solutions
U'~ (x) (i =1,2), and two antiparticlelike solu-

tions, V'-, (x), of momentum p and spin projection
a-. These solutions depend on two pairs of spinors,
U'(p, o.) and V'(p, o.), related to the Dirac spinors,
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uD and uo. By using the compact notation U'= W' (~ =1) and V'= W' (e= —1), we can write the dipole ghost
spinors as

0
W'(p, n, e)=. . . W(p, n, e)=

wD&p, ~, ~) t

wD(p, o, e)

0 (3)

and the fundamental solutions

W-' (x, e) =(27r) i (m/E)'i exp( ie—px) W'(p, o., e)

W- (x, e) =(2') (m/E)'i exp( —iepx) [cW'(p, n, e) + W (p, n, e) —icpxW'(p, n, e)]

where E = (p'+m')'i', and c is an arbitrary con-
stant. We choose c =

2
so that the following condi-

tion should be satisfied:

d3x W'- (x, e)POW~ (x, e')

= ~'&s,s,s'(p —p'),

where the 2 x 2 matrix q has the elements q" = q
=0, and q" = q" = 1. With this condition, the solu-
tions of Eq. (1) can be written as

P(x) = „d'p X [ U'-, (x)q'~a'( p, n)
i j, cr

+ I"-, (x)g""b"(p, )],
depending on the particlelike annihilation dipole ghost
operators a' and antiparticlelike creation ones, b '.

According to the naive quantization procedure, we

l

obtain, as in the spinless case, ~ the anticommutators
of these operators; the nonvanishing ones are

(a'(p, o),a '(p', a')] = [b'(p, o),b '(p', o')]

=~'~s, s'(p-p') . (4)

These relations lead to the well-known dipole ghost
structure of the space of states. This is a non-Hilbert
space with a sesquilinear Hermitian form, defined in
the one-dipole sector [ ~ i,p o ) = a '( p, o.) ~

0 ),
i =1,2] as follows:

(i, pal/, p'n') =n"s s'(p —p )

The Hermitian adjoint of the operators is considered
with respect to this form.

From the Noether theorem, we can calculate the
momentum operators P„and the generator D of the
D transformations (2). These are Hermitian opera-
tors of the form

and

P„= d'p gp a '(p, o.)a'(p, o) + Xa '(p, o)g" (ap, o) +antiparticle terms
CT l,j

D = „d3p /la '(p, o) a'(p, o) —b '(p, o) b'(p, o) 1

[D,a '(p, n)]=0,
[D,a"(p, n) l = a"(p, o), (6)

is related to the nilpotent part2 of the translation gen-
erators. This means that the D symmetry is charac-
teristic of all DGM's with indecomposable translation
representations.

Now we shall discuss the probabilistic interpreta-

According to Eqs. (4), we obtain the following rela-

tions:

[P„,a"( p, o-) ] =p„a"( p, o-)

[P„,a"(p, n) ] =p„[a"(p, n) +a"( p, o)],
which show that the operators P„are the generators
of a nonunitary indecomposable representation of the
T(4) group. " On the other hand, we must observe
that the generator D, which satisfies

I

tion of the model, starting with the method of Ref. 5,
which generalizes the definition of the probability of
unitary case, so that the conservation of the probabil-
ity should be certain. In Ref. 5 the transition proba-
bility of a particle-dipole process is defined as the ex-
pectation value in a particle state, of the projector of
the dipole ghost subspace, associated to a single phys-
ical state. Following this idea, we shall also associate
the one-dipole ghost subspace (~i, n)) with the physi-
cal state ~n). In the free DGM, the probability may
be calculated, only between the two above-defined
physical states, as the expectation value in the state
of the projector of the subspace (~i, p) ), correspond-
ing to the physical state ~ p). The form of the projec-
tor is known'5:

X I i. P) n'-(J, Pl,
i,j

but the expectation value in a dipole state has not yet
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&~ I ~ I ~ &
= —,

'
X & ~; ~ I ~ Ij, ~

&
q" (7)

As can be easily seen this is invariant under transla-
tions and D transformations. According to the above
definitions, the probability in the one-dipole sector of
the free model can be written as

'$ (—I, ~lk, p&(I, plj, ~&ps'"' . (8)

This probability is conserved by definition5 and, ac-
cording to Eq. (5), it is equal to ( (1, a~2, P& ~', which
is the positive probability of Ref. 2. It can prove that
these properties stand for any dipole (or antidipole)
sector of the free model. Thus, the two discussed in-

terpretations are equivalent in the free case, and lead
to well-defined probabilities.

In the presence of the interaction, the conserved
transition probability will be defined as the expecta-
tion value in the "out" state of a projector of the

been defined. We suggest the following definition for
the expectation value of an operator A, in the ~n& state,
corresponding to the one-dipole subspace ( ~ i; u& ):

"in" subspace. The expectation value, in the states
containing many dipole ghosts, can be obtained by
generalizing the definition (7), when, for the pure
particle states, they will be calculated as usual. The
transition probabilities which result will depend on
the transition matrix elements derived from the per-
turbation theory. Particularly, the dipole-dipole tran-
sition probability will be obtained by replacing the
corresponding transition matrix elements in Eq. (8).
These definitions are consistent only if they lead to
positive transition probabilities in each order of the
perturbation theory.

A simple model, in which this condition is fulfilled,
is that of the spin-half dipole ghost, interacting with
the minimally coupled electromagnetic field. This
DGM is D symmetric, since the interaction Lagrange
function

Z;„,= j(x)P~q(x)A„(x)
is D invariant. The behavior of the model can be il-

lustrated by analyzing the dipole-dipole transition, in
an external field, in the first order of the perturbation
theory. The resulting matrix elements, which are

(i, out pa~j, in p'o'& = iem(2n—) (EE') '~ U'(p, o)p~UJ'(p', o')A„(p —p')

have a remarkable property which comes from the
form of the spinors (3). This is

(i, out po ~j, in p'o'&=g"'(out, po ~
in p'o. ')Qpo

The probability (8), calculated with these matrix ele-
ments, is positive and equals that of the correspond-
ing processes of QED. Moreover, preliminary calcu-
lations show that the renormalization has the same
content as in QED. Thus we can conclude that the
discussed probabilistic interpretation is valid in this
case. As a matter of fact, our model is equivalent to
QED and brings nothing new.

The above results are a direct consequence of the
D symmetry of the considered model. The connec-
tion between this symmetry and the probabilistic in-
terpretation seems to be general. If the interaction
does not break the D symmetry, then we have
D;„=D,„,=Dand, according to Eqs. (6), the dipole-
dipole matrix elements satisfy, in each order, the
conditions

(1.o« I 1, in) =0, (1, out l2, in) = (2, out I1, in&

which lead to the positive probability

~ (1, out ~2, in) ~'. For the process involving many di-

pole ghosts or dipole ghosts and particles, the con-

I

served transition probabilities have complicated ex-
pressions but, after a few D manipulations, one can
verify that these are also positive. In the same way,
it results that there is involved only one self-energy
matrix element ((1~2& = (2~1&). This indicates that
the renormalization has the same content as in the
unitary case. In our opinion, the conclusion can be
that any D-symmetric DGM, with the presented pro-
babilistic interpretation, is equivalent with a usual un-

itary field theory.
In the case in which the interaction breaks the ori-

ginal D symmetry of the free DGM, the dipole-dipole
transition probability (8), calculated in the first order,
is not positively defined. This confirms the results of
Ref. 5 where the model was also non-D-symmetric.
Another property of the DGM is the appearance of
four self-energy matrix elements ( (i, ~j& ), the diver-
gences of which cannot be eliminated by using the
standard renormalization method; here, a single nor-
malization constant Z2 will not suffice to assure the
one-dipole stability condition. Thus it seems that
there is an incompatibility between the structure of
the non-D-symmetric DGM and the usual perturba-
tion method. Therefore this must be adequately re-
formulated before analyzing the possibilities of physi-
cal interpretation.
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