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Results of weak-coupling approach to dynamical symmetry breaking within SU(2)L x SU(2)&
x U(1) are presented. The mixing of the neutral vector bosons is wrong, and a simple reason
for this failure is given.

Recently, the possibility of dynamical symmetry
breaking (DSB) within scalarless SU(2)L, x U(l) was
studied using an effective potential approach in the
weak-coupling limit. ' Two potentially fatal problems
arose in that study. One was the loss of the
Mp = Mz cos8 relation which was due to the in-
clusion of vector self-couplings (in the Hartree-Fock
approximation). The other difficulty was that
physical Goldstone bosons were almost unavoidable.
Only three gauge bosons acquire mass, and for most
choices of fermion content more than three genera-
tors of the theory's chiral symmetries will be broken
when the fermions acquire mass. That leads to the
hope that things could be better —or at least
different —in SU(2) r, x SU(2) „xU(1),2 in which
more mass-gaining vectors are present to consume
unwanted Goldstone bosons. In SU(2) L x U(1), for
example, a massless left-handed quark doublet plus
the two accompanying right-handed singlets have an
initial SU(2)L, x SU(2)s x U(1) chiral symmetry. If
the quarks acquire different masses, the residual
symmetry is just U(1), resulting in three massive
vector bosons and three massless Goldstone bosons.
If the gauge group were SU(2) r. x SU(2)& x U(1),
on the other hand, there would be just enough gauge
bosons acquiring mass to allow the chiral SU(2) r,

x SU(2)s x U(1) to break into U(1) without the ap-
pearance of any Goldstone bosons. In practice, the
number of additional vectors is insignificant com-
pared to the number of Goldstone bosons which

would arise if three generations of massless fermions
gained unequal masses. Nevertheless, SU(2)L, x SU(2)s
x U(1) is a serious electroweak candidate theory and
deserves DSB consideration in its own right. There is
considerable aesthetic appeal to treating the left- and
right-handed sectors in the same manner. In addi-

tion, it is quite natural for the neutrino to have a
(Majorana) mass in such a theory, 3 and the U(1)
charge can be (8 —L ).'

Pagels briefly treated DSB in SU(2)L x SU(2)s.
Recently, Konetschny pointed out problems in ap-

plying a standard hypercolor treatment to SU(2) L

x SU(2)~ x U(1), a point to which we shall return
later. This report will present the effective potential
as a functional of composite operators for the
SU(2)L, x SU(2)s x U(l) theory without fundamen-
tal scalars. The effective potential is obtained
through two loops in the Hartree-Fock approxima-
tion. The Dyson-Schwinger equations resulting from
minimizing the effective potential are solved in the
linear approximation (LA), with special attention
paid to the mixing of the neutral vector bosons. A
massless vector results, but it couples not to the elec-
tromagnetic current, but rather to the third com-
ponent of isospin. This failure is traced to the exotic
quantum numbers of the Higgs representations in the
standard treatment of SU(2)1. x SU(2)s x U(1).

Assuming all fermions are in SU(2)r, R doublets
and there are no fundamental scalar fields, the
SU(2)L x SU(2)s x U(l) Lagrangian can be written
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where the sum is over all doublets d, and Yqq ( Yqs)
is the hypercharge of the left- (right-) handed d
doublet. In a true left-right-symmetric theory,
YR = YL and x = 0, but for illustrative purposes we al-
low x to be nonzero for now. In constructing the
generating functional W [J ] for the theory, one must
add to Lo gauge-fixing terms and the accompanying
ghost terms. However, ghost terms do not affect the

present treatment, ' and so we shall just state that the
Landau gauge is used and will not explicitly display
the gauge-ghost terms.

The effective potential is constructed using the
prescription of Cornwall, Jackiw, and Tomboulis. 7

The entire calculation parallels that in Ref. 1, with
only some details changed, and we follow the nota=
tion and conventions used there. The effective po-
tential is given by

4
V [G, 5]= const —i X JI ~

Tr[lnG'(k ) —S '(k) G'(k ) ]
(2 )'
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The G "s and 5 v's are, respectively, the fermion and vector-boson propagators, with S and D the bare propaga-
tors. The g 's are ghost terms (cf. Ref. I) and are irrelevant to the present development. The matrices 5; are
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The two-loop terms are given by (I =A, B )
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where in V~v,
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masses become
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The requirement that the effective potential be sta-
tionary under variations of the G's and 6's leads to
Dyson-Schwinger equations. In the linearized ap-
proximation (LA)' the equations for the fermion

p,.(p) =m. —p2 a
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for small r„ if Y,L Y,R )0. If Y,L Y,R ~0, no non-
trivial solution exists. The first real difference from
the SU(2)r, x U(1) case occurs at this point. Since
both members of a doublet have the same YL and
Ys, if one fermion can acquire mass ( Yr, Ys )0) so
can its doublet partner. In SU(2) r, x U(1), on the

other hand, there is no such requirement on YR, and
whereas the electron and up quark have YL YR & 0
and can acquire mass, the neutrino and down quark
have YL YR ~ 0 and are doomed to remain massless
(in the LA). '9

Continuing in the LA, the mass matrix for the
neutral vector bosons takes the form

2
gA ga~/

2
ga ~i

gA gUxl5/ gg gUx/~/

2 1
gw gsv'(

gU I IR iL

gA gUxi~i

gB gUxi~i
2 .2gU Xi ~i

where the sum is over all doublets i and where

Cr; —= m/] + m/2, 5/=—m/] —m/2 (9)

are, respectively, the sum and the difference of the
masses squared of the two members of the doublet.

Considering for simplicity the case of one left- and
right-handed doublet, the eigenvalues of 9R are

}

5 = 1, the masses are

Mi =0,
2+ 2

(I —~')
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The corresponding eigenvectors are
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V3 =»}—g~A3 +gs83

(10)

(gA +gB' —~ )/(3rgv~) U'-1, (11)

V3 N3[ ggA3 +gs83

+ (g. '+g.' I.)/(xgvr) U -],

provided x5 & 0, where the N; are normalization fac-
tors. For x = 0, as it is in a true left-right-symmetric
theory, Mt = M3 = 0, M3'= 2o. (g~ '+ gs')/
(3 Yr, Ysgv ), and there are two massless vector bo-
sons. ' For x ~0, (Il(= (mt —m31/(mq+m3) (( I,
the masses are given approximately by

M) =0, M2 = — xo.,
3 YLYR

(12)
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In this limit there is one massless vector, and the ra-

tio of masses squared for the other two vectors is
x'gv'/(g~'+gs'), which can be safely small. For

M, '=0 M,'=, ~z, 3 —, ~~+,2 1 M2 2 1

3gU YL YR 3gU YL YR

1~+ 3 ((gA +gB +x gv )+~(gw +g'a x gv )'

2g2(g2 +g2)g]1/2}

Again M3 can be much larger than M2, although
now M2' is small compared to fermion masses
squared. There is therefore no trouble in achieving
the desired spectrum for the neutral vector bosons.

The problem arises when we investigate the cou-
pling of the massless vector to fermions. The lack of
a U(1) component in Vt in Eq. (10) should make us
apprehensive, and that fear is borne out when the
Lagrangian is rewritten in terms of the V;. The
current to which V~ couples is

J]'=N, " ' Xq, r3y&q;,
I

(14)

which is not the desired electromagnetic current.
This failure can be understood if we recall the Higgs
content of the standard SU(2)r, x SU(2)s x U(1)
treatments. In Ref. 3, for example, there are scalars
in SU(2)q x SU(2)s x U(1) representations

(—,, —,, 0), (1,0,2), and (0,1,2). In a DSB scheme the

role of the Higgs bosons is played by fermion-
antifermion bound states. In the present treatment
the only fermions are the fundamental quarks or lep-

tons of the theory, and it is impossible to construct a

(1,0,2) state from qq or II." This same cause under-

lies (some of) the problems noted in Ref. 6. It
would require an unusual hypercolor scheme to pro-
vide composite scalars with the quantum numbers re-

quired, in particular, with (8 —L) = 2.
We have not addressed the question of whether

DSB occurs in SU(2)q x SU(2)s x U(1). The LA
has nothing to say about that matter. To investigate
that question, one needs to determirie whether the
vacuum energy density is lower for the broken-
symmetry solution than it is for the symmetric vacu-
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um. This could be done by using the LA solutions as
test functions in the effective potential of Eq. (2) and
minimizing V with respect to the fermion and boson
masses. ' In view of the undesirable vector mixing
we do not pursue this any further. SU(2) 1. x SU(2)q
x U(1) without scalars may or may not undergo
spontaneous symmetry breaking, but, if it does, the

mixing of the neutral gauge bosons is wrong (in the
LA); and if it breaks because of techniscalars, they
would need to have unusual quantum numbers.
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