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We derive the effective potential as a functional of composite operators for massless, sca-

larless SU(2) )&U(1); and we obtain conditions under which this effective potential is the vac-

uum energy density for the case of composite operators which are nonlocal in time. General
considerations of the number of Goldstone bosons prevent the construction of a realistic

model, but we are able to study dynamical symmetry breaking for various unrealistic spectra
of physical particles. We first use the standard linearized approximation (LA) to solve the

equations obtained for the propagators from the effective potential, and we compare these

results to the most-attractive-channel hypothesis. These LA solutions reproduce the stand-

ard vector-boson mixing and in addition yield a (reasonable) relation between the vector
masses and those of the fermions. However, the linearized equations are also satisfied by
the symmetric (massless) solution. In order to determine which solution corresponds to the
true vacuum, we use the effective potential in a variational calculation. The linearized-

approximation solutions are used to determine the functional forms of the propagators, and

the physical masses are treated as variational parameters in minimizing the effective poten-

tial. In an Abelian approximation, in which the effects of the vector self-couplings are ab-

sent, the mass relations of the LA survive the inclusion of nonlinear effects. On the other

hand, if a Hartree-Fock approximation is used for the vector self-couplings, all the desirable

features of the LA are lost: The breaking is no longer I= —,and the relation between vec-

tor and fermion masses requires fermions much heavier than the vectors (or very large num-

bers of lighter fermions). In either approximation, whether spontaneous symmetry breaking

occurs depends on the number and quantum numbers of the fermions. Significance of the
results and possible future directions are discussed.

I. INTRODUCTION

The presence of fundamental scalars in the stand-
ard model seems distasteful to most high-energy
physicists. The scalars certainly serve a necessary
purpose, but they do not seem to return much more
than was invested. They allow the possibility of
spontaneous symmetry breaking (SSB), but they do
not require it; they provide a mechanism for gen-
erating fermion and gauge-boson masses, but these
masses are not calculable. The mass(es) and number
of the scalars themselves are not known. Some of
the parameters accompanying the scalars require un-
naturally fine tuning in grand unified theories. The
entire framework has all the appearances of an ef-
fective theory for a phenomenon arising from the
fundamental interactions. In that case, one would
naturally prefer to get SSB from, rather than impose
it upon, the dynamics.

Most of the effort in this direction over the past
few years has been devoted to hypercolor-type
models, ' in which very heavy hyperquarks are pos-

tulated, interacting through a new, very strong
force, e.g., an SU(3), with A, =500 GeV. Some of
the bound states of the hyperquarks, the hyperpions,
serve as the traditional scalars, giving mass to the
gauge bosons. This generates masses without
recourse to fundamental scalars, but it leaves the
problem of fermion masses and introduces the new
problem of the origin of the hyperquark masses.
One can appeal to another new interaction at a still
higher mass scale in order to generate the fermion
masses. A suggestion which naturally incorporates
this is the idea of tumbling, in which some initial
large gauge group breaks dynamically at some very
large mass scale M~. This occurs because as one
goes down in energy the running coupling constant
increases (for an asymptotically free theory), and at
some point the binding of fermion-antifermion be-
comes sufficiently strong to alter the structure of the
vacuum, forming a condensate and breaking the
symmetry. In general, some subgroup of the initial
group will remain unbroken by the (first) conden-
sate, and we can track it down to lower energy
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where the same phenomenon can recur, at mass
scale M2. This could then continue down to hyper-
color [conceivably even to SU(2) XU(1)], giving
mass to the hyperquarks at a scale Mz-1 TeV. (No
phenomenologically successful models have been
constructed yet. )

So far as the breaking of just SU(2) XU(1) itself is
concerned, hypercolor schemes are much like the
standard model, with scalars introduced from "out-
side" to break the symmetry. Another possibility is
that SU(2) XU(l) breaks within itself, i.e., that the
theory with only massless vectors and fermions un-

dergoes symmetry breaking, in the manner en-
visioned by Nambu and Jona-Lasinio and alluded
to above in connection with tumbling. The early
work on O(2) XU(1) and U(1) XU(1) by Cornwall
and Norton and Jackiw and Johnson showed that
in a linearized approximation these gauge sym-
metries could break dynamically. Such studies em-

ploying the linearized approximation (LA) share a
fundamental weakness, however, in that they are un-

able to determine whether SSB does in fact occur.
The LA and similar approximations yield homo-
geneous equations which admit trivial solutions (no
symmetry breaking) as well as the symmetry-
breaking solution. Subsequent work by Cornwall,
Jackiw, and Tomboulis (CJT) using an effective po-
tential and including nonlinear effects showed that
dynamical symmetry breaking (DSB) does indeed
occur in O(2)XU(1). These studies indicated that
the mass generated for the vector bosons was of the
same order of magnitude as (the symmetry-breaking
part of) the fermion masses, a major obstacle to
model building so long as only the light ( (5 GeV)
fermions were known. However, as the experimen-
tal lower bound on the mass of the top quark creeps
upward, this problem evaporates and things begin to
look more hopeful for DSB in SU(2) XU(1). Salient
features of such a scheme have been deduced by
analogy to the O(2) XU(1) case and from the LA to
the theory, using one quark or lepton left-handed
doublet plus right-handed singlet(s), and putting in
the mixing of the neutral vectors from the begin-
ning. The next step would be to determine whether
the results of the LA survive the inclusion of non-
linear effects and to determine whether the symme-

try does in fact break. We shall address this ques-
tion, using a variational calculation of the effective
potential. A brief summary of the results has been
reported elsewhere.

At the outset we must recognize general con-
siderations which will preclude the construction of a
realistic model. Because the fermions in the initial
Lagrangian are massless, there are in general global
chiral symmetries in addition to the SU(2)XU(1)
symmetry. If the fermions and appropriate vectors

acquire mass, the chiral symmetry is broken as well
as SU(2)XU(1). The breaking of SU(2)XU(1) into
U(1) entails three broken generators and therefore
three Goldstone bosons, just enough to give mass to
the 8'-+and Z . Any additional Goldstone bosons
from the chiral symmetry breaking will not be con-
sumed, however, a serious embarassment if we claim
to be describing the real world. Any such extra
Goldstone bosons also constitute a problem for the
calculational method we employ. It will be
described more fully below, but the basic point is
that the effective potential as computed for the non-
symmetric vacuum does not include the effects of
any physical Goldstone bosons. Since the true vacu-
um minimizes the effective potential, the effective
potential we compute will be an upper limit on the
true vacuum energy density. Therefore, when extra
Goldstone bosons are required, V(broken) ( V(sym)
is a sufficient but not a necessary condition for DSB
if V(broken) does not take Goldstone bosons into ac-
count.

The presence of Goldstone bosons from chiral
symmetry breaking prevents us from making exten-
sive contact with reality. Nevertheless, the calcula-
tion is worth pursuing. Besides its relevance to the
tumbling schemes mentioned above, DSB figures
prominently in the recent surge of interest in super-
symmetric theories' and in the breaking of chiral
symmetry by the strong interactions, "and of course
the hope of relevance to electroweak interactions
still glimmers. In these circumstances, it is useful to
acquire any available insight into the workings of
DSB in a model which is moderately complex, even
if not realistic.

We shall allow the possibility of different quan-
tum numbers and numbers of fermions. The only
case which is not afflicted by residual Goldstone bo-
sons is one left-handed doublet plus one right-
handed singlet. For the sake of illustration consider
(v,e)L, ex. Then (erez+ezel ) is the condensate,
acquiring a vacuum expectation value. The aspiring
Goldstone bosons egvl, epee —egei, vi eg are con-
sumed, giving mass to the 8'-+ and Z . The
correspondence with the conventional scalar doublet
1s

p+
yo

The breaking of any additional chiral symmetries in
the Lagrangian would result in additional massless
states which would remain in the physical spectrum.

For choices of fermion representations which
would lead to Adler-Bell-Jackiw anomalies, we shall
implicitly assume additional appropriately charged
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fermions which remain massless. Provided they ac-
quire no mass, they do not affect the difference be-

tween the effective potential evaluated in the sym-
metric vacuum and in the unsymmetric vacuum.
They are therefore neglected in the effective-
potential calculation.

The calculation itself proceeds as follows. We be-

gin with the Lagrangian for the SU(2)L, XU(1)
theory with only the gauge bosons and (massless}
fermions. The strong interactions are ignored. Any
quark masses generated will be the current masses.
A generating functional is constructed in the usual
manner, except that in addition to the standard
sources for single fields we add to the action sources
of composite fields, e.g. ,

f d xd yf(x)K&(x,y)f(y) .

By performing a Legendre transform with respect to
these sources, we obtain the effective action, which
is also the generating functional for two-particle ir-
reducible vertices. It is a functional of the functions
conjugate to the sources, and these functions can be
shown to be the propagators for the fundamental
fields of the theory. The effective potential can then
be obtained from the effective action by removing a
four-dimensional volume. The next section of the
paper is devoted to construction of the effective po-
tential for SU(2) &&U(1) following the prescription of
CJT. In Sec. III, we require that the effective poten-
tial be stationary against variations of the propaga-
tor functions, as required by the subsidiary condi-
tions of the Legendre transform. This yields
Dyson-Schwinger equations for the propagators,
which we solve in the LA. We obtain the conditions
which determine whether a fermion can acquire
mass in the LA, and a relation between the vector
and ferinion masses also results. Diagonalization of
the neutral-vector mass matrix results in the usual
definitions of the photon and Z fields and in the
M~ /Mz ——cos 8 relation. These results are then
discussed in the framework of the most-attractive-
channel (MAC) hypothesis. Assuming that the
symmetry does break, the LA results agree com-
pletely with MAC expectations.

In Sec. IV, we use the solutions to the LA as test
I

P'[J,K]=expIiZ[J, K]]
r

functions in the effective potential. The LA solu-

tions give the functional form for the masses and
propagators as functions of the momentum, but do
not determine the physical masses. Use of these tri-
al functions therefore means that instead of requir-
ing stationarity of V[G] for arbitrary variations of
G, we stipulate that G be of the form Gi &(m}. This
reduces the problem to one of minimizing

V[GLA(m)], an algebraic function of the masses.
We obtain this algebraic function and minimize it.
The results obtained in the Hartree-Pock approxi-
mation are very different from those of the LA.
Non-Abelian effects, which are neglected in the LA,
tend to restore the symmetry, and when the symme-
try does break they modify mass ratios. However,
the Hartree-Fock approximation for multivector
vertices does not preserve gauge invariance in the
presence of dynamically generated gauge boson
masses; and Cornwall' has argued that the gauge-
boson loop graphs do not contribute to the effective
potential in a gauge-invariant treatment. This leads
us to consider an "Abelian approximation, " in
which such graphs are neglected. Even then, the
LA results can be misleading. The mass ratios are
as given by the LA, but whether the symmetry
breaks depends strongly on the number and quan-
tum numbers of the fermions which acquire mass.
A discussion of the results is contained in Sec. V.
There are two appendices, one devoted to a discus-
sion of whether the V[G] we calculate is indeed an
effective potential and the other containing various
integrals which arise in the calculation.

II. THE EFFECTIVE POTENTIAL

A. Review& of general formalism

The calculation of the effective potential as a
functional of composite operators is based on the
formalism of multiple Legendre transforms of the
generating functional of Green's functions for com-
posite fields. ' If a theory is described by a classical
action S= I d x W(x), where W is the effective
Lagrangian including ghosts if necessary, then one
defines the generating functional for Green's func-
tions of composite (nonlocal) fields,

= I [d@]exp i I d~x W(x)+4;(x)J;(x)+rij J d y C';(x)KiJ(x,y)C'J(y'. (2.1)

where the index i represents all Lorentz and flavor
indices. The factor il,J is —, for i =j bosons, 1 for
i&j bosons, and —1 for fermions, by our conven-
tion. In the rest of this subsection, we shall assume

I

boson fields and diagonal sources, E;J. ~ 5,J. The few
generalizations necessary will be made in the next
subsection.

The quantity W[J,O] is of course the familiar
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(2.2)

where we have suppressed all indices and where p
and G are given by

5Z[J K]
( )

5J(x) (2.3)

5Z[J,K] = —,[P(x)P(y)+G(x,y)] .
5K x,y

The conjugate relations to Eq. (2.3) are

5r[4 G] 4

5$(x)
=—J(x)—f d yK(x,y)P(y),

5r[y, G] =——,K(x,y) .
(2.4)

Since physical processes correspond to vanishing
sources, we have

5r[y, G]
5$(x)

5I [Q,G] (2.5)

5G(x,y)
for physical solutions. If we require translationally
invariant solutions, then the effective action takes
the form

r[p, G]
~ Ti ———V[/, G] f d x, (2.6)

where V is to be identified as the effective potential.
The validity of this identification has been ques-

tioned by Banks and Raby, ' who point out that the
use of sources which are nonlocal in time leads to a
breakdown of the usual demonstration that the
standard effective potential is the vacuum energy

generating functional for the Green's functions of
the theory, and Z[J,O] generates the connected
Green's functions. By Legendre transforming
Z[J,O], one obtains the generating functional for
proper (one-particle irreducible) vertices I [P]. I is
also the effective action and therefore leads directly
to the effective potential as a function of P;, the ex-
pectation values of the fields 4;. By introducing
into our generating functional Z a source K,J for
composite fields, we are able to construct an effec-
tive action which depends on the expectation value
of the composite field 4;4J. This is just what we
need if we are to study symmetry breaking without
fundamental scalar fields. The formal construction
of the effective action is standard '; one performs a
double I.egendre transform on Z[J,K],

r[$,G]=Z[J,K]—f d4x {()(x)J(x)

—
2 f d xd y[P(x)K(x,y)$(y)

+K(x,y)G(x,y }],

density. ' This point is considered in detail in Ap-
pendix A. We are led to agree that in general the
proof fails for sources which are nonlocal in time.
However, there is a simple restriction on the func-
tional form of the sources which allows one to carry
through the proof. Furthermore, we argue that the
restriction to this certain class of sources is implicit
in the use of the test functions we choose for the
variational calculation of Sec. IV. The situation
then is as follows. The Dyson-Schwinger equations
used in the next section follow from Eq. (2.5) and do
not require that V be the effective potential (al-
though at the stationary point it clearly is, since the
sources vanish there' ). The variational calculation
of Sec. IV obviously does require that V be the effec-
tive potential in a neighborhood of the stationary
point; and it is, provided we restrict ourselves to a
certain class of sources. But we have done so by our
choice of test functions, and therefore no further re-
striction or apology is required beyond that which is
already obvious when we adopt a variational ap-
proach. These will be noted at the beginning of Sec.
IV.

Equations (2.5) and (2.6) provide us with a means
of determining the physical Green's functions and
vacuum expectation values of the fields —they are
those for which Vis a minimum. V itself, or I', can
be calculated from the prescription derived by CJT.
Define

5 S[4]
ty ]:

$2
iD '(x,y) = (S[4]—S;„,[4])

(2.7)

I [P,G] =S[P]+—TrI lnDG

+—Tr[~ '[0]Gl+r [4,G]

+const . (2.8)

r2[Q, G] is computed from two-particle irreducible
vacuum graphs in a shifted theory (S[4]
~S[4+P]) with propagators given by G. Clarify-
ing details can be found in CJT or inferred from the
treatment of SU(2) XU(1), which follows.

=[i& '(P;x,y)]p o,
where S;„, contains all terms which are at least cu-
bic in the fields. The effective action is then given
(symbolically} by
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B. Application to SU(2) XU(1)

The Lagrangian density is that of the standard
SU(2)1 &(U(1) with the scalar fields omitted,

Wo= ——.A,'.A'""—
4 8,.8""

+i gR, r) i —Y,BB R,a 2 a

~'

lgB le+i gL, s) — Y,L,B— HA' L, ,
a

(2.9)

FIG. 1. Two-loop graphs contributing to Vz.

and for leptons Y,z ———2, Y„z——0, Yz, ———1. It
will be more convenient to have Wo written in terms
of the different fermion flavors rather than the
right-handed singlets (R, ) and left-handed doublets
(L, ). Defining

8„„d„B,—d„B„—.

The U(1) hypercharge, Y, satisfies Q=II +Y/2,
4 2 1

so that for quarks Y„B———,, Yds ————,, YsL
———,,

l

3a ~aR+ ~aL ~

&a=~aR —~aL ~

Wo takes the form

(2.10)

gA —~; Y5 gB — y 1+x1'Y5 gB — y2+x2YS
q +

2 2 2 2 f) + 28

(2.1 1)

2

i Tr[ln(5,JB ——e' A""8&)]I .

W[E]=exp(iZ[E])

(2.13)
I

For simplicity, Eq. (2.11) is written for only one fer-
mion doublet. To Wo we must add gauge-fixing
terms for both the A' and 8 fields,

WG ———
2 (BqB") ——,(BqA'")(B,A"), (2.12)

and ghosts for the A' gauge-fixing terms. This leads
to the action

S= f d xI&o(x)+WG(x)

Once we have the action, the calculation of the ef-
fective potential proceeds as in CJT or IIA, with
two slight differences. We must allow for 8 —A3
mixing and must therefore include a nondiagonal
source EzB and the accompanying propagator 4zB.
In addition, there were no ghosts in the O(2) )&U(1)
case, whereas they are present here, at least at this
stage.

The generating functional is

= f [d4]exp iS[4]+i f d x d y —g A&(x)E+"(x,y)A'„(y)+ , 8&(x)Kg"(x,y)8—,(y)IJ
i =1,3

+ 8„(x)EAB(x,y )A „'(y) gg, (x)K&,(x,y—)p, (y) (2.14)

The symbol 4 is used to represent all the fields. The source terms for single fields, e.g., J„B which usually
appear, can be neglected in this case because none of the fundamental fields acquires a vacuum expectation
value and because we shall not be using 8' to generate anything other than vacuum graphs, for which we ex-
pand W[J'=O, K =0]. The effective action is obtained by Legendre transforming Z,

I [G„b, ;,bB,DAB]=Z[K]—f d x d y ITr[K~, ](x,y)G, (x,y)]

+. , EAq„(x,y )Ef'"(x,y—)+, EBq„(x,y )Eg (x,y )—
+i3ABI.«y)KN«y)] (2.15a)
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sr
2+V~ +AB ~

&~~a

sr= —E~, Sav
sr
5G,

5Z 5Z
I'y. " tv

From Eqs. (2.15b) and (2.14), it follows that

5Z
5E„ ~AB

G, (x,y) = (0
~
T(f, (y)1(,(x))

~
0)go~pegtgd

r[G,b ]= i Tr[&—~, 'G, +lnG, ']

and similar relations for the b, 's, which leads to the identification of the G's and 6's as propagators.
For the present case, the prescription for calculating I, Eq. (2.8), becomes

(2.15b)

(2.16)

g Tr[S'„; 'b„;+1nh„; ']+—TrPqz 'hq~+ 1»—ethos '+r [2G,E]+ cosnt.
2

(2.17)

I 2 is calculated from vacuum graphs and is described below. The matrix b,zz has elements

~AB ~AB
—1

~AB g g ~ ~AB g —1 —1
AB B AB ~B

(2.18}

and the matrix &qs is similar. The S' s, calculated from Eq. (2.7), are given (in momentum space) by

~e(p q) =(2~)'~'(p —e)~e(p}

i&p, '(p) =p —=iS '(p),

i &~ '""(p)= (p g"" p—"p"}=iD—'""(p),

i S'~s '"'(p) =0,
i&„; '""(p)=iD '""(p)+i9 '(p)~",

(2.19)

d k k"(p+k)"
(2n. ) k (p+k)

where we have chosen to work in the Landau gauge. The 9 ' contribution to V„; ' is due to the ghost term.

Substitution of these N s into Eq. (2.17) and use of Eq. (2.6) leads to the effective potential

4k
V[G,E]= i g f —

4
Tr[lnG'(k) —S '(k)G'(k)]

(2n. )

+—f 4 Tr[lnbs(k) —D '(k)&a(k)+»~ga(k)+»~aa(k)1
d4k

(2m )

d4k
+—g f Tr[lnbq(k) —[D '(k)+ 9 '(k)]b,„'(k)I+ Vz[G, E]+const,2,. (2m )

(2.20)

where Vz[G, &] is computed from the two-particle irreducible vacuum graphs occurring in the expansion of
the generating functional Z.

Z[0]=—i(vac graphs)apt f d~x= —V2 f d x ~
(2.21)

where the propagators in the vacuum graphs are replaced by the G's and 5's. The lowest order in which DSB
could occur is two loops; the relevant graphs are therefore those of Fig. 1. After a little algebra they are given

by



2S06 K. T. MAHANTHAPPA AND J. RANDA 27

~2= ~3A+ ~4A+ ~yV

ig . . d4kd k
~e""i f k k~5' (k )

(2n. )

X[&ap(kg)&rs(k|+kp)+&ap(k)+kg)Ars(kp) —2bas(k~)b pr(k, +k, )],
2 d4k, d4k,

(1—5 ) f ' ' [6 ~(k )b,""(k ) b3 (k )b,".~(k ))
(2.22)

ig„' d'k, d'k,
Vyv= Tr G(k, )r'y„

8 (2m)

1 —y, t

2
G(kp)r'y,

& —xs

2
b,~""(kl —kq)

i 2 d4k d4k
Ga(k )

3a+ ays
G (k )

3 + ays+X +X
8 (2~)s

h~"(k ) —kp )

igAgB d k)d k2g f s Tr G'(k))r„y„
(2m )

ys Ga(k )
3'a ++ad 5

2 Vv Age(k) —kg),

6 = 6'), , J,k =1,2 .

In Eq. (2.22), we have used perturbative vertices only (the Hartree-Fock approximation). If the SU(2)XU(1)
symmetry is broken, with the fermions and gauge bosons acquiring masses, these vertices do not satisfy the
%ard-Takahashi identities. In V~~ this does not matter provided we work in the Landau gauge. Then the
Goldstone pole contribution to the PVg vertex, which is proportional to the boson momentum q&, vanishes
when contracted into the boson propagator b,&„(q). For covariance purposes we must still retain the nonpertur-
bative part of the vertices when Dyson-Schwinger equations are derived for the vector propagators, but this
will be done in the treatment of the LA in the next section. The non-Abelian terms Vs& and V4& are a different
matter. Use of the Landau gauge does not eliminate the nonperturbative contributions to the vertices. We re-
turn to this point in Sec. IV.

III. LINEARIZED TREATMENT

Having obtained the effective potential, Eqs. (2.20) and (2.22), we can use the stationariness conditions of Eq.
(2.5) to derive the Dyson-Schwinger equations for the propagators,

p d"k 3' +x 'Y 3' +& 'Y

p p +
4 f (2 )

'Y
2

'Y b,~g"(p —k)

+ f 4 2' Gg(k)y„
gA d k 1 —ys

4 (2n)
pv

2
~"tv"(p —k)

& —xs+ y„G|(k)y„h"„",(p —k)

gAgB t d k
4

1 —'Ys 3'i +& i ys
Gi ky„+ 1 —'Ys 7&+&hays

yv
2 I yy,

X &gs(k —p), (3.1a)

'""(p)=D '&'(p) f +Tr[G, (k)—y",G, (k —p)I ~,],
(2n )

(3.1b)

d4k
~~a""(p)= — f,g Tr[G.«)Y~.G.« p)I'ab]—

4 (2m)
(3.1c)
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& '""(p)=D '""(p)+& '""(p)+2ig ' f [~g (k)g""—~g(k)]

d4kf g Tr[G, (k)y"„,G, (k —p )I "„,](2n. )

—gq2 f I k~kp[b g(k)b"g"(p +k) bg"—(k)b~g(p+k)
(2m )

b, g(k—)bg~(p+k)+2lPg(k)b g~(p+k)]+[6 g p(p+k)+&s ~p(p k)]—

x [kl'k "b,g~(k) k"k~—A~g"(k) k "k'—h~g(k)] J,
b, a,'""(p)=D '""(p)+& '""(p)

4

+ig„ f t[6~ (k)+bq3 (k)]g""—[b tv(k)+6"„"3(k)]j
(2n )

2

f g I Tr[G j (k)y tvG2(k —P )I gr] + ( 1~2) I4 (2n)
2 4

f [k kp[ha~(k)h"„"3(p+k)+26"p"(k)&„3(p+k)

(3.1d)

ba', (k)~~",—(k+p) bg(k)&„—(p+k)]+ [~„&(p+k)+~„p(p k)]-
&& [k~kihlt'4(k)+k&k"b g~(k) kI'k h~g"(—k) k "k &~/'(—k)]+(A ~IV) J (3 le)

Much of the notation in Eq. (3.1) requires explanation. In (3.1e), fermions 1 and 2 are in the same weak doub-
let. The equation for G2

' is obtained by interchanging all subscript 1's and 2's and changing the sign of the

gzgz term in (3.1a). The sums over a in Eqs. (3.1b)—(3.1d) run over all fermions; the sum over i in (3.1e) runs
over all fermion doublets. We have of course identified IV- =(1/V 2)(A q+iA2) and have used

+ —b, =b, vv. For the—f, Vttt, vertices, where Vis one of the vectors, we have introduced

r"v. =y~v +I ~v (nonpert}, (3.2)

where y~v, is the perturbative vertex and I ~«(nonpert) is the additional piece required by the Ward-Takahashi

identity. As discussed above, the nonperturbative piece is not required in the equation for G . The perturba-

tive vertices are

Ie+&a75
VBa 2

p p V51—
7Aa —7 2

+aa ~

I —y5~P ~p
2

where the subscript A refers to A .
We then write G, ' and hz ' in the form

G, '(p)=S '(p) iA, (p )p+iB,—(p )+iC, (p )y5 iD, (p )py5, —
T

p v—1+V(p) D 1@V(p ) iPPV~ (p2) PPV gPV P P

(3.3)

(3.4)
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and substitute into Eq. (3.1). Linearized in the standard manner, Eq. (3.1a) leads to

4

A, (p)p =— J —, , k+2(p k—)
2n ) (p —k) (p —k)

2

I (x,2+y, 2)[1+A,(k)]—2x,y, D, (k) ja, (k)k —p, (k)

+2' [2[1+Ab(k)+Db(k)]/[ab(k)k pb (—k)]

+ [1+A,(k)+D, (k)]/[a, (k)k' —p, (k)] j

3i 2 d4k
&.(p) = —ga'Y.—z Y.I. J4 (2n)

i d k 1

16 (2m. ) (p —k )

1 1

(p —k)2 a, (k)k p, (k—)
1 1

(p —k)2 a, (k)k —p, (k)

k+2( —k)
(p —k)

(3.5)

2

X I2x,y, [1+A,(k)] (x, +y,—)D, (k) ja, (k)k' —ju, '(k)

+.2g, I 2[1+Ab(k)+Db(k)]/[ab(k)k pb (k)]—

+ [1+A,(k)+D, (k)]/[a, (k)k' —p, '(k)] j

The subscript a can refer to any fermion, with b
then denoting its isodoublet partner.

It is consistent and convenient to take
A„Ab,D„Db ——0+O(g ). The equations for 8, and
C, are then of the standard form

F,(p)= ——gs F,I. Y,g
3l

4
d"k 1 1

(2m) (p —k) k2 —p, (k)

a, (k)—:[1+A,(k)] D, (k), p—, (k) =8,(k)2 —C, (k)

I

where F is 8 or C. It is a good approximation to
neglect the k dependence of p,, (k) in the denomina-
tor, ' letting LM, (k)=m, there. Then Eq. (3.6) has
the solution ' ' '
F,(p) =f,P(1+r, )1 (2—r, )

2

X2F, r„l r,2;, —
~p ~

(m 2,
Ala

(3.6) F,(p)=f,
2 0

2
@la

(3.7)

)i ~+q
+

4 s
1 3'I'a= —1+ 1 — YL YR

16m

3'
2 YaL YaR

64m

' 1/2

FIG. 2. Notation for fermion-vector vertex in Eq.
(3.10).

provided YaL YaR &0 The fact that r is small justi-
fies neglecting the k dependence in the denominator
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and also means that integrals like that occurring in
Eq. (3.6) are dominated by very large k,

~

k
~

&&m, , p . It is easy to see that it is this re-
gion which leads to the 1/ra (and therefore 1/g )

divergence of the integral as gs ~0. Combining
the definition of pa (k) in Eq. (3.5) with the form of
B, and C, from Eq. (3.7},we have

4
Q9 7

2

2

0, v, . (3.9)

p, (k)=m,

' —2'
2

mg
(large ~p ~

),

(3.8)

2
ma ~ Ca

where b, and c, are the constant f, in Eq. (3.7).
The absence of gA from (3.6) results from its pure
left-handed coupling.

The F,L F~ g 0 requirement has interesting
consequences. For one thing, if a fermion has no
right-handed component, then F,z ——0 and it will be
prevented from acquiring a mass (in the LA). If we

consider the standard quantum-number assignments
for quark and lepton doublets, then

I

We therefore see that the neutrino does not acquire a
mass; but, embarassingly, neither does the down {or
strange or bottom) quark. In fact, from

Q =II + Y/2 we deduce that for fermions in a left-
handed doublet and right-handed singlets, only one
member of a doublet can acquire a mass if the
charge of the IL, =+—, fermion is in the range

Q C [0,1].
We then consider the gauge-boson propagators

and masses. If we were to use the perturbative ver-
tices in Eqs. (3.1b)—(3.1e) we would find incon-
sistencies in the gauge on different sides of the same
equation. We could extract the correct result by
keeping only terms proportional to g&", but it is
more reassuring to use vertices which satisfy the
Ward- Takahashi identities in the presence of
dynamically generated masses. Referring to Fig. 2
for notation, the fermion —gauge-boson vertices for
A3(I A ), W+-(I w), and B(I s ) are [cf. Eq. (3.3)]

I Aa(q) 7 Aa++aa
q

l+rs
[B,(p)+ C.(p)]—

2
[B.(p+q) C.(p+q)1—

qPI wab(q) Y w+ 2

&+Xs & —'Vs

[B,(p)+ C, (p)] — [Bb(p+q) Cb(p+q)]— (3.10)

qPI'L(q) =ra. + 0 0[B (p)+1' C (p)] — [B (p+q)+y C (p+q}]

When Eqs. (3.4) and (3.10) are used in Eq. (3.1d) for the (inverse) A propagator, it takes the form

ig 2 4
P""m (PA)= — J QTrIG, (k)yAaGa(k —P)[yA", +I „",( —P, nonPert)]J+O(g )

tt a

Ipp +Ipgp (3.11}

in the I.A (All vector s.elf-couplings are nonlinear and are therefore neglected in the LA.) The integral in Eq.
(3.11) is proportional to 1/gs, so that n A -(g ) . The integrals Ig~" and Ig„~ are divergent and require regulari-

zation. We shall employ dimensional regularization throughout the paper. A subtraction scheme will not be
required since all poles in (n —4) will occur in nonleading orders. Using (3.3), (3.4), and (3.10) in (3.11) yields

]+f (3.12)

The masses have disappeared from the numerator due to the chiral form of the vertex. Introducing Feynman

parameters, this becomes
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g f f da[2ki'k" —k gi'"+a(1 —a)(p g&"—2p"p")+p, (k)g"'](n) v

(2~)"

X[k +a(1—a)p —p, (k)]

2
d "k

(2 )5
g""g f f day, (k)[k +a(1—a)p —p, i(k)] (3.13)

where we have used p, (k —p )=p, (k), a safe approximation for small r, . The first integral would be a familiar
one encountered in perturbative QED' if p, (k) were a constant. The k dependence of p, complicates the
analysis, but it proceeds in the same manner. From Appendix B, (B15)and (B16),

2 d"k

(2 }Ig f f da[2ki'k" kgb'"—+a(1 a)(p g—"" 2p"p"—)+p, (k)g""][k +a(1—a)p —p, (k)]

d "k
=g„~gi "g ' f da f „p,,~(k)[k'+a(1 —a)p —p, (k)] '

n (2ir }"

2
d "k

(p g""—p"p")g f daa(1 —a) f „[a(1—a)p —(1+2r, )p, (k)]
n —4 (2n. )"

X[k'+a(1 —a)p' —p. '(k)] '.

(3.15)

which is finite and proportional to (g ) for n =4. For future convenience we define

(3.14}

The first term has no n =4 pole. The integral is proportional to 1/r, for n =4, and so the contribution to
Izz'"" is of order g and hence nonleading. The second term does have a pole at n =4, but the integral leads to
no powers of 1/r (for n =4) and therefore the second term is also nonleading. That leaves

2

I~p'"" — g""—Q f da f p, (k)[k +a(1—a}p —p, (k)]
a 277 "

M, (p)= i f da f— p, (k)[k~+a(1 —a)p —p, (k)]
(2ir)

Turning to the second integral in Eq. (3.11),

(3.16)

2

I...""=
4 g f „Tr [k+B.(k) C.(k)y, ]g — [k P+B.(k p) —C.(k p)y,—]— —

r

X [&.(k)+C.(k)] —[8.(k —p) C.(k p)]
i+ V5 1 p5

2
I

X[(k—p) —p, (k —p)] '[k~ —p,,~(k)]—'

2
d "k

, 2 f „[i. (k)(k —p)"—p. '(k —p)k"][k'—p,.'(k)]-'[(k —p)' —i .'(k —p)]-' .p, (2m)"
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e~I(")"~= gi P P ~ M z( )
'C

p
p

(3.17)

After Feynman parametrization and use of
p, (k —p )=p, (k), which can be obtained by expand-
ing about p =0 for large k, this becomes

For fermions with quark or lepton quantum num-
bers, . a convenient simplification occurs, since
x, =x,~„=+1 for such fermions. In that case di-
agonalization of M (p) yields the following eigen-
values and corresponding eigenvectors:

Using that and Eq. (3.15}in Eq. (3.11) yields

2

&""m&(p)= &""gM,'(p) .
2

(3.18)

n i(p)
—=n &(p) =0,

V~& B——"c os 8+A~&sin8: A—Ir',

~2(p) =~z(p) (gA +gB ) y Mo (p) (3.21)
The calculations for ~ii(p) and mq3(p) are very simi-
lar. The results are

n. (ipi)= gx, M, (p),0

equi(p)= — gx, v~, (p) .gaga

a

(3.19)

M'(p) = —, gM, '(p)
2 2

gg Xg

3—gaga&a &gg

3—gg ax~ &~&

gw
2

(3.20)

It is easy to see that m.z(p) can also be written this
way, and we therefore obtain the mass matrix for
the neutral gauge bosons,

V~2 ——B"sin8—A ~3coso= Z~,

»n8=ga/(g~'+ga')'"

%e have thus obtained a massless photon and a
massive Z, and have reproduced the usual mixing
pattern. In addition, the Z mass is given in terms of
the fermion masses.

The W mass will also be determined by the
dynamically generated fermion masses. Starting
with Eq. (3.1e), inserting Eqs. (3.4) and (3.10),
linearizing, and proceeding as we did for the neutral
vectors, we obtain

4

nu(p)= i' g—I daa f }u, (k)[k +a(1—a)p —a}M, (k)]
(2m }

(3.22)

(3.23)
2 2 2

1gw +ga m
Mz ——— =Ma /cos 8.

3 g~2, X~1 Y~g

1

The standard I= —, breaking is thus reproduced, and
each quark contributes

mz /(3 sin 8Yqr Fzz ) =3m& /(4sin 8)

(mi /6sin 8 for leptons) to the Z mass squared.
The I= —, pattern of breaking is due to the fact that
only fermion-antifermion intermediate states are

where we have used the fact that only one member
of a quark or lepton doublet acquires mass in the
LA.

The 8' and Z masses are given by
Mi ——mi(Mi ). Since the integrals in (3.21} and
(3.22) are controlled by very large k, we can use
Mi -m~(p =0). The integrals are evaluated in
Appendix B (B17) and result in

2 2
1 ga ~a
3 g

z Y,l Y,a

I

considered in the equation for the gauge-boson self-

energies in the LA.
It is instructive to compare these results with

MAC expectations and to see whether they make
physical sense. For simplicity, we consider one left-
handed quark doublet plus two (or one—it does not
matter) right-handed singlet(s). Considering only
S=O states, we see that only the U(1) interaction
can provide the attractive potential, since SU(2)I
does not couple to right-handed fermions. The ff
potential is then proportional to —Ff~ FfL and is at-
tractive only for Yfa YfL, &0, exactly the condition
for mass generation obtained from (3.7). Pursuing
the matter further, of all ff' or ff' spin-singlet
states, the MAC's are uz dl, dl u~, and

(uguL +ul ug). The condensate is (u~ul +uL uz ),
giving mass to the u, but not to the d. The other
three states are the aspiring Goldstone bosons which
give three gauge bosons mass. The 8"s obviously

get mass from uzdl. and dI uz , and (uzul —uL'uz)
couples to the combination ( —gqAi+giiB), but not
to (giiA3+gqB), producing a massive Z and mass-
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less y. Exactly analogous results are obtained for a
lepton doublet plus singlet(s). The LA results are
therefore consistent with the MAC hypothesis. If
the symmetry does break we would expect the pat-
tern of breaking produced by the LA.

If we inquire no further, things look very promis-
ing. Starting with massless fermions and gauge bo-
sons, we have obtained massive fermions, properly
mixed vector bosons, and a relation between the Z or
IV mass and those of the fermions. With three gen-
erations and assuming the top quark mass dom-
inates the sum in (3.23), one obtains

2sin8
m, = Mz —0.54Mz .

3
(3.24)

For Mz ——93 GeV, this gives a top mass of about 50
GeV. The tt vector meson would have a mass of
about 2m, —binding energy=99 GeV (Ref. 19), not
too far from the Z mass.

Unfortunately, this attractive facade crumbles
1

under closer scrutiny. The fact that the I3————,

quarks have failed to acquire a mass is not viewed as
particularly devastating. It is still possible that they
may gain a mass when the treatment is refined or
when other interactions are included. The first ma-

jor problem arises when we begin counting the num-
ber of symmetries which have been broken and the
consequent number of Goldstone bosons required.
We want no physical Goldstone bosons, both be-
cause none are observed experimentally and because
the variational method used in the next section is
weakened considerably if they are present. There
are, however, only three gauge bosons acquiring a
mass, and consequently only three Goldstone bosons
will disappear. We therefore wish to break the (glo-
bal) symmetry associated with only three generators.
The breaking of SU(2) XU(1) to U(1) results in three
broken generators. Therefore any additional broken
symmetries will result in physical Goldstone bosons.
The only choice of fermion representations we have
found which does not have the additional broken
(chiral) symmetries is the case of only one left-
handed doublet and one right-handed singlet. This
appears to preclude construction of a realistic
theory, except perhaps for the case of preons. How-
ever, we can still study the mechanics of DSB in a
model which is realistically complex, even if it is not
realistic because of Goldstone bosons or too few fer-
mions.

There is an additional obvious shortcoming of the
LA. The integral equations for the fermion masses
(3.5) and (3.6) are homogeneous, and therefore they
admit the trivial solution, m=0, corresponding to
the symmetry remaining unbroken. This is symp-
tomatic of the LA and similar approaches. Even if
one believes the approximation, all that can be deter-

mined is the functional form of the symmetry-
breaking masses if they are nonzero. It is impossible
to determine whether the breaking occurs. Since we
have an effective potential, we will be able to deter-
mine whether the zero or nonzero mass solution cor-
responds to the lower energy density, and conse-
quently whether or not symmetry breaking does
occur. We will find that even ignoring non-Abelian
effects—as the LA does—whether DSB occurs is
critically dependent on the fermion quantum num-
bers Y,x and Y,'L. The neglect of non-Abelian
terms is itself another potential flaw of the LA. We
shall address it in some detail in the next section.

iV. VAR+ nONAX, CALCUX.AnON

A. General and Q@,

Thus far the effective potential has only enabled
us to derive Schwinger-Dyson equations which we
could have written down in the first place. To solve
these equations we merely resorted to the same
linearization procedure used in the past. The effec-
tive potential does enable us to go beyond this ap-
proximation. The V of Eqs. (2.20) and (2.22) is a
functional of the propagators G„b,z, and its
minimization yielded the intractable equations (3.1)
satisfied by these functions. If we knew the func-
tional form of G, (p}, hv(p), then the minimization
of V would yield algebraic equations for parameters
occurring in these functional forms. This approach
was advocated by CJT, who implemented it for
O(2}XU(1). That was one motivation for obtaining
the linearized results in the preceding section: They
will provide the set of parametrized test functions
for G, and b, z. CJT showed that use of the linear-
ized results as test functions assured the absence of
divergences in their calculation. We shall assume
this feature carries over to the present case—unless
compelled to conclude otherwise.

There is, of course, a drawback to the variational
approach —we have no absolute assurance that our
test functions constitute the optimal set. If we find
that our propagators raise the vacuum energy densi-
ty when the symmetry is broken, it is still possible
that there is some other set of propagators giving a
lower energy than the symmetric vacuum. If we
find that the symmetry-broken vacuum has lower
energy than the symmetric vacuum, then the sym-
metry does break; but it is still possible that there is
some other vacuum, corresponding to different
propagators and physical masses, which has still
lower energy. (Recall ' that use of the LA solutions
as test functions automatically restricts the form of
sources via E; =5V/5G;. ) By restricting ourselves
to such test functions (sources), it is in principle pos-
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G, (p) =
p —M, (p}

'

0, r, &0

B,( p)+ C. ( p)y, , r, &0,
r

p2
8,(p) =b, —

z
ma

—Ta

(4.1a)

C, (p) =c,
2

ma

2 2
ma =ba —ca

p, (p)=—m,2 — 2

' —2

2
ma

sible that we may overlook the true vacuum, but the
LA solutions do constitute a good parametrization
of the propagators. They have the general form one
would expect for massive propagators, and the func-
tional form of the masses eliminates logarithmic
divergences from V. Furthermore, although they
are obtained from linearized Dyson-Schwinger
equations, to leading order in g they do satisfy the
full (sub)set of Dyson-Schwinger equations
(3.1a)—(3.1e)—at least in the Abelian sector. (For
vector self-coupling terms, things are still unclear
due to the aforementioned gauge-invariance prob-
lems. ) It therefore may not be such a serious can-
straint to restrict our attention to those particular
functional forms for the propagators.

Referring to (3.4), (3.8), (3.21), and (3.22), the fol-
lowing forms are used for the propagators:

b,~z"(p) = i—P""
p' —k(p}

Pp}=XC. —
—2p~

2
ma

(4.1c)

~ 1
g~"(p}= iP~—", . (4.ld}

Q = V[G,b, ] V[sym], — (4.2)

we shall see that Q is finite, at least in the order to
which we calculate. If we use Eq. (2.20) for V, we
will obtain an expression for Q in terms of propaga-
tors in the A'-8 basis, whereas the trial functions
have been given in the F-Z-y basis. Writing 0 in
terms of the physical fields, and breaking Q into
smaller pieces, we get the form

The variational parameters are then m„g„b„and
c„although in practice b, and c, only occur in the
combination ma ——ba —ea . The p dependence
given is for large ~p ~, which is all that is needed.
The p dependence of n (p) and g(p} was not given ex-

plicitly in Sec. III, but was obtained in Appendix B
(B17).

The effective potential for the broken symmetry
.vacuum, Eqs. (2.20) and (2.22), contains numerous
divergences. A more manageable quantity to calcu-
late is the difference between that and V evaluated in

the symmetric (perturbation) vacuum. Defining

23
~a =

2 gg Yal. YaR
64m

m(p)= gm,

5"p"(p)= iP""—
p —n.(p)

—2'
2

a ma
(4.1b)

Q = [QG+Qa'+Qrz]+ Qgv+ [Q4A +Q3A l

=kin+ fv +NA

The free-field terms are given by

(4.3)

dk
QG i g f Tr——I ln[G, '(k)S(k)]+S '(k)G, (k) —II,(2~)'

d4k
Qs —— i f —TrIln[b, s '(k)D(k)]+D '(k)hs (k)—I+9 '(k)[hs (k) —D(k)]I,

(2m )

d4k
Qrz ————f Tr{ln[hr '(k)D(k)]+in[A, z '(k)D(k)]

(2m )

(4.4)

+D '(k)[b&(k)+bz(k)] —2+ 8 '(k)[sin Ob&(k)+cos 85z(k) —D(k)] J .

For the interaction contributions, the V's are given by
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V4„[G,b]= f Ib~w„(k|)[bw„(k2)+2b~(k2)sin 8+2bz„(k2)cos 8]
g~ d k)d k2 v 2

2 (2m)

b, w—„„(k,)[bg(k2)+2br""(k2)sin 8+26)'(k 2)c os 8]I,

i' d k)d k2
V3Q — f s k

&
k

& I [b'fp (k t )b w~p( k 2 )drs (k & +k 2 )

(4.5a}

+by(k] )d~p(kg)bwys(k, +k2)+d" (k) )b w~p(k2)b wrs(k$+k2)]

+[by(k))b, wrs(k2)d p(k)+k2)+by(kl)drs(k2)bw p(ki+k~)

+d "(ki)bwrs«2)bw p(ki+k~)l

—2[by(k|)b, w~s(kp)dpr(k|+k2}+by(k()d~s(k2)bwpq(k&+k2)

+dr (k, )b, w~s(k2)bwpr(k)+k2)]I,

d~'(k) =—sin 8b~r'(k)+cos 8bz"(k),

g f bg(k, —k2)Tr[Gi(kt)yp(1 —ys)Gq(k2)y„(1 —yq)]
jg„2 d k)d k2

(2n. )

~ 2 2

g f blr'"(k, —kz)Tr[(1+r„y, )'G, (k))y„G, (kp)yy
32(gg +gs ), (2~}

—(1 r„x,) G—,(k))y„G, ( —k2)y, ]

(4.5b)

g f b~z"(k& —kz)Tr[(cos 8—r„y,sin 8) G, (ki )y„G,(k2)y,32, (2m )

—(cos 8+r gx sin 8) G (k& )y&G, ( —k2)y„],
(4.5c)

where the sums on a are over all flavors and the sum
on i is over all doublets. The corresponding 0's are
formed by subtracting V evaluated in the perturba-
tive vacuum, i.e., with

T

Tr f in[6, '(k)S(k)] J
= —Tr g — ~,(k)ir

J )g k

p, (k)=—ln 1—
k

(4.7)
G, (k)~S(k),

b„(k),bz(k), bw(k)~D(k) .
(4.6} where we have used the fact that

M, (k)AM, (k)=p, (k)y&. Therefore, in n dimen-
sions,

The next step is to insert the functional forms of
Eq. (4.1) into (4.4) and (4.5), thereby obtaining an ex-
pression for 0 in terms of the variational parameters
m„n;, g, . Beginning with QG, the logarithmic term
can be written (in n dimensions)

+2 p, (k)

2(k)
(4.8)
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Appendix B contains the evaluation of various in-

tegrals encountered in the dimensional regulariza-
tion of Q. They are somewhat different from those
normally encountered, due to the k dependence of
p (k). Using (84), (88), and (B1 1), QG' is given by

(„) 4) 1+2r,
QG ———g (n —1+2r, }

ll g 1 —2'
kd k . Pa

(4 9)
(2n)" [k —pa (k)]

The expression derived for V or Q includes contri-
butions through two loops. The same is true for
06'. We shall, however, retain only the most singu-

lar contribution to 0 as g or r, goes to zero. In do-

ing so, we neglect terms of order r, ln(m; /mj )

compared to one, where m; and mj are two of the
dynamically generated masses. Since

Plg
QG-—

a aL aA

(4.10)

The calculation of Q@ proceeds in the same
manner, except for the presence of the ghost contri-
bution. That is given by

3 2 —3
P 88 ~aL ~uR 10

64m

such an approximation should be safe for quark,
lepton, and weak-boson masses.

The integral in Eq. (4.9) is convergent in four di-
mensions for gR &0. The most singular contribu-
tion to Q diverges like gR for gs ~0 and arises
from the large-k region of the integral. The large-k
approximation for p (k) is therefore justified and we
obtain, (810),

n
Q'"'= i f — Tr{8 '(k)[b, g (k)—D(k)] j

(2n }"

z
d"kid "kz (kt.kz)~2' f ~(k]) 1+ {k$ (k]+kg) [k] ~(k/)]j

(2m) " k k
(4.11)

The two terms in parentheses differ only in the angular integration and consequently lead to the same depen-
dence of the integral on (1/gR ). Considering just the first term,

d "k)d "kzf m(k)){k) (k)+kz)z[k) —n(k))]j
(2 )2a

d "k
f n(k(}{k) [k) —m(k)}]j

(2m. )"
E

(2n. )"

The k& integral is proportional to gR . The E integral is independent of g . Therefore, Qa:g„gR cc(g ),
and the ghosts do not contribute to the singular part of Q. The remainder of the calculation of Q ~ proceeds as
that for QG until

d k mz(k)

(2n. ) [k —n.(k)]
—2T

namb Mg

gR a, b ~aL ~aR + ~bL ~bR ma

M 2 —'0
W

mb
(4.13)

There are two small qualitative differences from the QG result, one of them potentially interesting. Because
m (k) is a sum of contributions from different fermions, there will be cross terms in m if more than one fermion
acquires mass. The more interesting point is that the scale for the momentum dependence of m(k) is set not by
the 1Ymass, but by the fermion masses. This leads to factor of (M~ /m, )

' in Q@. For r, ~ 0,

(Mtr /m, ) ' 1 —2raln(M~ /m, ),

so that in the present calculation such factors are ignored. However, it is tantalizing to observe that a calcula-
tion of Q to the next order (in g ) would include such terms, and therefore minimization of Q could yield con-
straints on r, ln(M@ /m, ). That would provide a mechanism for large disparities in masses. For example, if
r lnM /m =O(1), then M/m exp(1/2r )=10,an enormous difference in mass scales.
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Returning to the calculation at hand, Q&z is almost identical to Q~. Inserting (4.1c) and (4.1d) into (4.4)
yields

1 0.0bQz—2', b Y,I. F,Z+Ybi Yb

Combining (4.10), (4.13), and (4.14), we obtain what we call the kinetic contribution to Q,

1 ma 1 2~a~b +ga kb
Qb;„——— +

ga a ~aL aR 2' a, b ~aL aR + ~bL bR

For the case of only one fermion doublet, this reduces to

(4.14)

(4.15)

Q~„(1 doublet)=
2 (Mz +2M' 4mf—),4' ~fi ~fr

where f denotes the fermion which acquires mass.

(4.16)

B. Q~y and linearization revisited

Q~~ arises from the fermion loop graphs of Fig. 1(c),

yv= yw+~yz

() lgg d k)dkg
Qyw= g f IEVr(k~ —k2)Tr[G'j(k&)y (1—y5)G2(k2)y, (1—y5)]g, (2g )~a

D""(k,—k—~)Tr[S(k, )y„(1—y5)S(k2)y, (1—yg)] I,

I (g&'+g~') d "k
&
d "k2

2 3 2 2
Qgz = g I ~z (k ~

—k2)Tr[(cos'8 —r„y,sin'8)'G, (k ~ )y„Ga(k2)y„
32 (2~) "

(4.17)

—(cos 8+r„x,sin 8) Ga(k~)y„G, ( —k2)y„]

Dl'"(k, —kz)T—r[(cos 8—r„y, sin 8) S(k~)y&S(k2)y„

—(cos 8+r„x,sin28)~S(k, )y„S( k2)y ]I

ig 'g ' d"k d"k

32(gg +gg ), (2m.)"

XITr[(1+&,',y, )'G (k, )y„G,(k, )y (1 r x )2G (k~)y G ( k )

— '[(I+&aay. )'S(ki)y„S(k2)y„—(1—r.'.x.)'S(k, )y S(

The W, Z, and y calculations are all virtually the same, and so we do only Q~z in any detail. Using the expli-
cit variational forms for the propagators,
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Qgg ———(n) gg d "k)d "k2d "k3 k~k",

4 g I 5"(k) —k2 —k3) g""— Tr[Ig, y JL2y„(1—y&)]
(2 )2ll

X([[k('—(I )'(k()][k2 —i2(2(k2)][k3 ~(k3)]I [kl k2 k3 ]

d"k(d"k2d"k3 k) k3k2 k3=—gg g 5"(k(—k2 —k3) k) k2+2
(2 )2ll k

X [ [k) —)(i;( (1)][k2 —((2i2 (2)][k3 —m(3)] j

X[)M;) (1}+(M(2 (2)+&(3}—((b;) (1)((2;2 (2)—)M;) (l)n(3) —)M;2 (2)&(3)], (4.18a)

plus terms which are regular at g =0, and where

p(j)=p(k, ), P (j)=p'(j)lkj', &(j)=n(j)lkj. (4.18b)

The integral of Eq. (B14) is then used to regulate the integrals arising from the first three terms in the final
brackets. That results in

(„) d "k)d "k2d "k3 k)-k3k2 k3
Q(bw ———gg g 5"(k) —k2 —k3) k(.k2+2(2n)" k3

X [[k( —P;) (1)][k2 —
(M(2 (2)][k3 —m(3)] J

X[P;( (1)P;2 (2)+)Mi) (l)&(3)+)M;2 (2)f(3)], (4.19)

which is finite for n =4. Using (B19}—(B21}and the fact that only one fermion in the ith doublet acquires
mass, Q~z is then

2 2
2 g~ mg ~b

Q(bW
gii ll, b oL uR ( ~llL ~aR + ~bL ~bR )

Similarly,

(4.20)

2+ 2 2 m4

gs ll, b I aL ~aR aL ~aR + bL bR 3gs a ( ~aL ~aR )

4

Q~= -cos 8+ Q, 2,ga' ~ (I'aL I'aR )'

(4.21}

)

where we have used Q =IL3+ Y'/2 and have done some algebra. The m, contributions to Q(()r and Ql(z were

absent from Q&w due to the pure left-handed coupling of the W [cf. Eq. (3.6)]. Th«a« that Q(br is p«p«-
tional to the charge squared is reassuring, but its sign warrants furthe comment. The fact that QA )0 which

indicates that the photon-fermion interactions tend to restore the symmetry, seems to clash with earlier results

on U(1),'4 and with one's intuition that an attractive force favors condensation and symmetry breaking. The
apparent conflict can be resolved by comparing Q~ to Q~z. The term in Q(bz which favors DSB goes hke
Mz2Xmf2. It is absent from Q~ because the LA gives us a propagator for a massless photon. The fact that

Q+& 0 then indicates not that interactions tend to prevent DSB in U(1), but that they tend to prevent it if we

require that the photon remain massless. In the present case that choice is made for us by the LA (or MAC),
in which the photon does not couple to the condensate.
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We are now in a position to learn a lesson about the linearized approximation and similar approaches leading
to the same homogeneous integral equations for the symmetry-breaking masses. Since non-Abelian effects are
inherently nonlinear, they are neglected in the linearized approximation. Consequently, the linearized equa-
tions of the preceding section would arise from an effective potential containing only the kinetic and gV parts
of Q. We shall call this the Abelian approximation to 0; for the case of one fermion doublet it is

»=~kin+|trav ~ (4.22)

Q~(1 doublet) =
2 (Mz +2M'. 4mf—)

488 ~fL ~fR
2 2 2

'

1 mf
2 Mgr + 1+

2 Mz —16Qf(Qf If )mf3 2

3gB ( YfL fR ) SB gB

Minimizing 0»,
a

gM2» —gM2»—Q = 0 =0,

yields

2
1 go 1

mf
3 gg fL fR

1 g& +goz= ——
gs

2 2 2-mf ——Mg /cos 0,
~fL ~fR

(4.23)

as in (3.23). Thus, the mass ratios of the linearized approximation do indeed correspond to an extremum of
0». However, they do not necessarily correspond to a minimum. Using the expressions for M~ and MZ2 in
terms of mf, 0» becomes

2
ga a. =— mf

4

1—16 Qf(Qf If ) —
1+

3 YfL YfB 36( YfL YfB )

A +(g~ +gB )

ga
(4.24)

In the case of leptons and quarks,
1

Qf(Qf f )I( YfL fB )—

for the fermion acquiring mass. If we use
sin28=0. 22, then

+0.050mf (leptons)
ga &»= —9.8mf (quarks)

(4.25)

Therefore, whether a nonzero fermion mass raises or
lowers the effective potential depends on the fer-
mion quantum numbers. The symmetry will break
(in this approximation) for a quark doublet; it will
not break for a lepton doublet. This demonstrates
the utility, even necessity, of the effective potential
in such a calculation. The LA (or MAC) is virtually
the same for the lepton and quark cases. The effec-
tive potential, however, reveals that for the LA solu-
tion the symmetric (massless) vacuum is a minimum
of the vacuum energy density in the lepton case and
a maximum in the quark case.

I

The form Q=comf requires some explanation.
The original Lagrangian has only dimensionless
parameters gq, g~,' and we are calculating 0, which
has dimensions (E) . In a higher-order calculation
renormalization would be required, and the renor-
malization point would set the scale, replacing one
of the initial dimensionless parameters through di-
mensional transmutation. The present calculation
of 0 goes through the two-loop level and leading or-
der in g, which is the lowest order at which DSB
can occur and which does not require a subtraction
procedure. Consequently, an energy scale is not pro-
vided by renormalization, and one of the dynamical-
ly generated masses must serve this purpose and
cannot be determined in the present calculation.

It is worth noting that the Abelian approximation
is not just of academic interest. In the context of a
renormalizable nonlocal nonpolynomial effective
Lagrangian, Cornwall' has argued that the gauge-
boson loop graphs which contribute to
Q+g —03+ +04+ must vanish to leading order. In
that case the full effective potential reduces to the
Abelian approximation, Eq. (4.22).
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C. Non-Abelian terms and the fu11 0

Finally, we confront the non-Abelian terms aris-

ing from the graphs of Figs. 1(a) and (lb). The
equation(s) for the effective potential, (4.4) and (4.5),
used the perturbative vertices only (the Hartree-Fock
approximation). This is justified in V~i; where the
Goldstone pole part of the vertex does not contrib-
ute in the Landau gauge. The same is not true for
V3Q + V4q. The Goldstone pole parts of the vertices
can contribute to these non-Abelian graphs even in
the Landau gauge. To obtain the nonperturbative
vertices would require derivation of the appropriate
Ward-Takahashi identities and construction and use

I

of triple and quartic vector vertices satisfying these
identities, for all q, not just q ~0. We have not done
this and, consequently, we cannot verify the argu-
ment of Ref. 12, that the non-Abelian terms
Q+g —Q3+ +Q4+ do not contribute to Q to leading
order. Since this point has yet to be verified by a
full gauge-invariant calculation, it may be useful to
determine the effect of such terms if they do not
vanish. We shall use the Hartree-Fock approxima-
tion to calculate Q~q. The perturbative vertices
should be sufficient for extracting qualitative
features arising from the non-Abelian terms (if they
do contribute). The quartic coupling graph is given
by

—3D"„(ki)D'„(kz)—hw„„(k, )[bow'(kz)+2sin Ob~y"(kz)+2cos Obz (k3)]

+3D„„(ki )D""(k3)),
which upon substitution of (4.1) becomes

gz d "kid "k2 (
Q(n)

(2iy)3»

ki kz) &(1) &(2) 2cos g'(2)

ki k2 [ki —n.(1)] k3 —iy(2) k3 —g(2)

(ki k2)—7+ [k i
—iy(1)]

k k

d "k)d"k2
+g. 'f

f ' '
[b&~„(k,)[b w„(k, )+2sin'Oby„(k3)+2cos Ohzv(k2}]

4A 2 (2 )3»

(4.26)

(4.27}

(4.28)

For the cubic coupling graph

(n) (n) (n) (n)
Q3g =N~ +N2 +N3

i' d "kd "kid "k3
COI f 2»

5 (k3 —ki —k2 )k ik iI»p( 1,2, 3)
2 (2iy}'"

i' d "k)d "k2d "k3 0. Pcog"' —— f 5"(k3—ki —k3)kikiI p(1,3,2),
2 (2K}2» (4.29}

I~p(1,2, 3)=[kg(1)hw p(2)d s(3)+b fy(1)d p(2)gw s(3}+dys(l)b w~p(2)b, wys(3) 3Dy (1)D~—p(2)Dys(3)],

d""(i)=sin N z"(i)+c sOob~z'(i),

d "k)d"k d "k3
ig — 5"(k3 —k3 —k i )

(2 )2»

X k, kP[af(1)~ .s(2)d py(3)

+b w(1)d~s(2)hwpy(3)+dy (1)b,w~s(2)hwpy(3) 3Dys(1)D s(2)Dp„(3)] . —

n.(1} .
3O

iy(1) cos [~(1) ~((2)]
k2' —n.(2) k32 k3' —g(2)

The first integral is convergent for n =4. In the second integral the sin O term does not contribute to 0 (1/g ).
The first and last terms do contribute and require regularization, (814}. Upon performing the integrations, the

second integral is found to be —2 times the first. The result for 04„ is

3 gg iy» orb+2 cos~@b
fl4~ =—

2 gB» Y»L Y»R b YbL YbR
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From symmetry, ~&"' and coq"' are equal. Consider only coq"'. Substituting explicit forms for the propagators, it
becomes

(n)
COg

(ki k3)

2
(2m) "Id "kid"kid"k35 (k3 —k, —kp) ki-

k

(k, k~)
2+

2k 2

X Isin 8[S(W, W, y)+S(W, y, W)+S(y, W, W)]

+cos 8[C(W, W Z)+C{WZ, W)+C(Z, W, W)]I,

S(W, W y) = I[ki —vr(1) j[kq —n(2)]k3 ] '[&(1)+&(2)—&(1)&(2)],

C(W, WZ) =
I [ki —m(1)][kg' —n(2)][k3 —((3)]I

X [&(1)+vr(2) +g(3) —f(1)vr(2) —&(1)g(3)—&(2)g(3)] .

All the C 's and S 's are proportional to an expression of the form

gM (i)—gM (i)M (j)

(4.30)

The integral of the g,.+. parts of the integrand is convergent for n =4, whereas the g,. part must be regular-

ized. Using (B14),we find that

gM (i)—gM (i)M (j) —+++M (i)M (j) .
l+J g+J

(4.31)

The i&j terms which arise in the regularization of the g,.M (i) integrals require further regularization, but

can be shown to be nonleading for g ~0, allowing us to write (4.31).
For n =4, therefore,

gg s g 4 z (ki k3) (k] kp)
cop ——— (2m) 1 kid k~ ki — 2+

k k

X I sin 8[S'(W, W, y)+S'( W, y, W)+S'(y, W, W)]

+cos 8[C'( W, W, Z) +C'( W, Z, W) +C'(Z, W, W) ]I,

That can be evaluated using Appendix B, (B28)—(B39),

coz 9' I W(n,——~)+ [W(vr, g)+P'(g, vr)]cos 8I
r

1 ga Kb+ 2 COS 8(b
2 ga ~bi. ~be

KQ

a YuL, Yaw

For co3, regularization yields

co3—gJ [sin 8(&j +Wq+W3) +cos 8(&4+J,+3 6)]

k| krak| k3 (k| kp)
W;=(2n ) d kid kid k35 (kJ +kg k3) 1 — A'

k k k ~

~ i =S'( W, W, y), A p =S'( W, y, W), A 3
——S'(y, W, W),

Ag ——C'(W, W, Z), A5 ——C'(W, Z, W), A6 ——C'(Z, W, W) .

S'(W, Wy)= I[kgb
—m(1)][kq —n(2)]k3 ] '&(1)&(2),

C'{W W Z) = I [k|'—~(1)][k2 ~(2)][k3'—P3)] I '[~(1)~(2)+~(14(3)+%24(3)]
(4.32)

{4.33)

(4.34)
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The W; can all be written in terms of integrals in Appendix B, (B40)—(B45), and all vanish to leading order.
Consequently, ~3 vanishes, and

gg Ka 1Th+2 cos gb
Q3g =2cgjg=

gR a YaL YaR b YbL YbR

Combining this result with that for Qaz, (4.28), yields

5 gg 1Ta 'llb+2cos gb
QNA

2 gR a YaL YaR b YbL YbR

The full effective potential would then be

ga'Q =gR'(Q~a+ QyV+ QN~ }

ma 1 2~ash +ga 0b
4

+,
YaL YaR a, b YaL YaR + YbL YbR

2
2——, cot 8g (2~b+sec 8(b)

aL aR aL aR + bL bR

m4 2 8

g aL aR b bL bR

(4.35)

(4.36)

(4.37)

With Q(m, ,n„g, ) in hand, we can consider two types of questions. For the one-doublet case, we can see
how much of the LA survives in the presence of QNq. For other numbers of fermions, we can consider wheth-
er the minimum of Q(ma, ~„ga ) corresponds to broken (nonzero masses) or unbroken symmetry (zero masses).
If there are two or more fermion doublets, there will be residual Goldstone bosons if the symmetry breaks, and
these are not included in our calculation of Q. Consequently, Q &0 for nonzero masses does not necessarily
mean the symmetry is unbroken. On the other hand, Q &0 for nonzero masses is sufficient for DSB, since
Q(true) & Q(test). (There has been recent work on inclusion of bound-state effects in the effective potential, ' '

but the methods are still in the development stage. }
We first address the one-doublet plus one-singlet case. Q reduces to

gR Q(1 doublet)=2 mf 16 Qf(gf If ) —1 + (2M' +Mz }
YfL YfR 3 YfL YfR 4YfL YfR

Mtv (Ma +2cos 8Mz )——,cot 8 2 (2Mtv +sec 8Mz )+ —,cot 8
(YfL YfR ) (YfL YfR }

(4.38)

Minimizing 0 with respect to Mz and M~ yields

(5+ YfL YfRtan 8)M~ +5 cos 8Mz = —,mf

(4.39)

10cos 8M~ + YfL YfRtan 8Mz ———,sec Omf

Comparison with (3.23) or (4.23) shows that the
non-Abelian terms have destroyed all the attractive
features of the LA results. Noting that each term in
(4.39) is positive, we see that it requires vector
masses which are much smaller than the fermion
mass and, furthermore, MR. /Mz icos 8. In addi-
tion, when the solutions to (4.39) are substituted into
Q, one finds Q=comf, co & 0 for sin 8=0.22. Since
for one doublet plus one singlet there are no physical
Goldstone bosons, we can conclude that the symme-

try does not break, for either quark or lepton quan-
tum numbers. These results depend on use of the
Hartree-Fock approximation for the three-vector
and four-vector vertices. Inclusion of nonperturba-
tive effects in these vertices could change details like
coefficients in (4.39) or even whether Q is positive or
negative for a given value of sin 8. However, in or-
der to regain the I= —, breaking and other LA re-

sults, 03++04+ would have to vanish. In that case,
one is back to the Abelian approximation of the
preceding subsection.

Turning to the question of whether we can find
cases for which DSB does occur in the presence of
Q~~, the answer is yes. For example, for a color
triplet of quark doublets plus accompanying right-
handed singlets, Q(test} & Q(sym) =0 for
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sin 0&0.17. Such a theory has nothing to do with
reality (it would have massless Goldstone bosons),
and furthermore our test functions may not be the
true propagators of the theory. Nevertheless, since
Q(true) & Q(test) and Q(test) & Q(sym), we have
found a case in which SU(2)&&U(1) does break
dynamically. We have also found other cases for
which DSB occurs, but none is any closer to reality
and so we shall not pursue the matter.

V. DISCUSSION

A. Results

As stated in the Introduction, there are funda-
mental problems which prevent us from construct-
ing a realistic model. Nevertheless, from the models
we have considered we are able to distill features of
DSB which we believe will be relevant to realistic
applications and which are not generally appreciat-
ed.

The LA is consistent with the standard model in
most respects. The A3 and 8 fields mix in the usual

way to form the y and Z, and the ratio of W to Z
masses is "correct." The vector masses are related
to (and larger than) the fermion masses. One pe-
culiar feature is that fermions with YL Yz &0 do not
acquire mass, where Y~(YI.) is the hypercharge of
the right- (left-) handed fermion. Thus not only
neutrinos but also I = ——, quarks remain massless.
All these features can be understood in the frame-
work of the most-attractive-channel hypothesis.

When the effective potential is calculated as a
function of the physical masses and then minimized,
we find that the LA results can be drastically altered

by the inclusion of nonlinear effects, in particular by
the contribution to the effective potential of the vac-
uum graphs involving only the SU(2) gauge bosons.
Provided these graphs do not vanish when the full
nonperturbative vertices are used, we can extract
qualitative features of these non-Abelian effects
from the Hartree-Fock approximation. As in the
calculation of the P function for the running cou-
pling constant, the vector loops enter with the oppo-
site sign of the fermion loops and consequently tend
to preserve or restore the symmetry. For a given
choice of fermions the vector loops greatly reduce
(or eliminate entirely) the range of sin 8 for which
the symmetry breaks and lead to entirely different
mass ratios than those obtained in the LA. For
cases in which the symmetry breaks, we no longer
have I=

z breaking (M~ /Mz&cos8), and the vec-
tor masses are much smaller than the fermion
masses.

It is, however, likely that the vector loops do van-
ish when the full nonperturbative vertices are used.

Besides the arguments already mentioned, ' it
would be consistent with the fact that in a Bethe-
Salpeter approach to DSB for a sixnple non-Abelian
gauge group, the vector self-couplings can be shown
not to contribute to mass generation. (They could
still contribute to the effective potential, and so the
Bethe-Salpeter results are suggestive at most. ) If the
vector loops do vanish to leading order, the effective
potential reduces to the Abelian approximation.
The mass ratios of the LA would then be repro-
duced (at least in simple cases) by finding the ex-
tremum of the effective potential, but whether the
symmetry broke would depend on the fermions-
e.g., for a given sin8 and one fermion left-handed
doublet, DSB could occur if the fermions were
quarks, and not occur if they were leptons.

Therefore, regardless of the fate of the vector
loops, whether DSB occurs at all depends crucially
on how many fermions the model contains and what
are their quantum numbers. The obvious moral is
that the LA (or similar approximations) gives no in-
dication whether the symmetry breaks —beyond not-
ing that it does not break if there is no attractive
force; one needs to look at the effective potential to
tell whether symmetry breaking does occur.

B. Critique

Having asserted the inadequacy of the LA, how
reliable do we consider the present results? The ef-
fective potential was calculated to the two-loop level
and then in the variational calculation only the lead-
ing terms ing ( —1/g ) were retained. The approxi-
mation of keeping only the most singular term as

g ~0 is justified. Neglected terms are suppressed
by a factor of (3' YI. Y~/32m )-10 times possi-
ble logarithms of ratios of masses squared. It is true
that we have not shown that the next order in g is
free of divergences. To that extent an act of faith is
required, that nothing too pathological occurs.

Use of the loop expansion is also quite safe.
There is a potential problem when deriving nonper-
turbative results as we have done, that the usual per-
turbative ordering of the loop expansion could be
destroyed. An N-loop graph will have an explicit
g ' " (for cubic interactions), but each loop in-
tegral could lead to an r, ' ~ 1/g, cf. Q~~ and Q&z.
However, Cornwall and Shellard have shown (for
Abelian theories and argued it for non-Abelian
theories as well) that in fact the N-loop graphs
which would lead to r are not two-particle-
irreducible for X&2, and therefore graphs with
three or more loops cannot contribute to the singular
part of Q. The proof was done for nonvanishing
bare mass, and therefore it is not directly applicable.
However, since a nondynamical fermion mass will
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not change the ultraviolet behavior of the loop in-

tegrals, we expect the result to hold in the presence
of massless fermions also. They may make a hope-
less morass of the infrared behavior, but the singular
contribution to 0 originates in the region where all
loop momenta are very large, and so it should escape
unscathed. If that is the case, we have calculated all
1/g contributions to Q.

The momentum dependence of the coupling con-
stants has been ignored. Because only gz enters into
the generation of the fermion mass in the LA, the
momentum dependence of gz should not be impor-
tant. Use of a constant Abelian coupling constant
is standard (and necessary}. It has been shown that
renormalization-group effects prevent DSB in a sim-

ple Abelian theory. A justification for such an ap-
proximation can be constructed on the basis of the
very slow variation of the coupling constants in
SU(2) XU(1) up to around 10' GeV, at which point
other interactions could come to the rescue in the
tradition of deus ex machina Thi.s is hardly satisfy-
ing, but appears to be the best one can do.

The major loophole in the calculation is the ques-
tion of gauge-invariant vertices for the triple and
quartic vector couplings. General arguments indi-
cate that the relevant graphs will not contribute to
the effective potential when the full vertices includ-
ing nonperturbative corrections are used. If con-
firmed, that would reduce the full effective potential
to the Abelian approximation. The LA mass rela-
tions would be unchanged, and Qzq would deter-
mine whether the symmetry breaks, DSB would
occur for a number of simple (interesting) cases. If
03+ and 04& do contribute to 0, then one loses
I=—, breaking and the LA mass ratios, and the
range of parameters for which DSB occurs is greatly
reduced.

require "extra" Goldstone bosons (and are amenable
to the weak-coupling approach we have used). In
that case, it would be worthwhile to try to overcome
the technical problems and attempt a realistic calcu-
lation. Even for SU(2) X U(1) the issue is not entire-
ly closed. For one thing, it is far from certain that
quarks and leptons are fundamental. If they are not,
then it is the preon representations and quantum
numbers that are relevant and not those of quarks
and leptons, as considered here. Another possibility
is that the inclusion of other interactions could
ameliorate some of the difficulties present when
SU(2) XU(1) is treated in isolation.

To summarize, then, Goldstone bosons pose a
basic problem. Even in their absence, there are
grave potential difficulties. It is very important to
confirm that the vector loop graphs can be neglect-
ed. If present, they ruin the "good" mass ratios and
tend to prevent DSB. The choice of fermion repre-
sentations is crucial in determining whether DSB
occurs. On balance, a realistic model for DSB in
SU(2}XU(1) looks improbable, but perhaps not yet
entirely hopeless.
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APPENDIX A:
V AS THE EFFECTIVE POTENTIAL

C. Outlook

We have encountered significant problems which
have prevented construction of a realistic model
with DSB within SU(2)XU(1). The fundamental
problem, which indicates that such a model may not
even be feasible, is the presence of Goldstone bosons
from chiral symmetry breaking if we require a real-
istic fermion spectrum. There is also the technical
problem of deriving and using multivector vertices
which satisfy the %ard-Takahashi identities in the
presence of DSB. Lurking in the background are
questions of renormalization-group effects, behavior
of higher orders, . . ..

Despite these difficulties, prospects for practical
applications of this DSB formalism are not entirely
bleak. In theories other than SU(2) XU(1), it may be
that the interesting fermion representations do not

That the usual effective potential V(P) is the vac-
uum energy density was proved by Symanzik.
CJT adapted the more accessible version of Cole-
man' to show that V[/, G] is the energy density for
static sources (though in their DSB calculation they
did use nonstatic sources). We wish to extend that
treatment to nonstatic sources which are invariant
under time translations.

The outline of the problem is as follows. Given a
Hamiltonian II, we wish to find the state

~
g}

which minimizes the expectation value (f
~

0
~
P},

subject to the constraints (g
~
p}= 1, and

G(x,x +z) —= (g
~

4(x)4(x +z)
~
f} is independent

of time xo. In order not to clutter things up with ir-
relevant details, we shall ignore noncomposite opera-
tors, assume spinless particles, and impose the first
constraint by hand. Using Lagrange multipliers to
impose the second constraint, we have
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min, ,[(li ~

H
~
li) j =min 1( H+ ,

' -f d x d z[4(x+z,xp+zp}A (z)4(x)

4 ( x +z t p+ zp )M( z)4( x tp )] (A 1)

On the other hand, for space-time-translationally invariant sources, we have

I [G]= —V[G]f d x =Z [M]——,f d x d z M(z)G(x +z,x) .

Therefore, if we can show that

Z[M]= —I dxo(g H —, J d'x—d z4(x+z, to+xo)W(z)Six, &oi g)
—:—f dxp(g ~

H'
~ f)

(A2)

(A3)

then we will have shown that minimizing V[G] is
equivalent to minimizing (1(

~

H
~ p) subject to the

desired constraint. The standard way to show this is
to note that the vacuum-to-vacuum amplitude in the
presence of sources is given by

~(O,r/2
~
0, r/2)~ —e' (—— (A4)

—irE(M)=e (AS}

for sources which are local in time. Banks and
Raby' made the point that for nonlocal sources
M, H' will have explicit time dependence in the
Schrodinger representation, and there will not be
stationary states of H', preventing us from identify-
ing Z[A"] with fdxp( H')—

To appreciate this better, and to seek a way to cir-
cumvent it, let us consider a simple quantum-
mechanical system consisting of a single harmonic
oscillator at one point in space, in the presence of a
source which is nonlocal in time. The role of the
field operator 4 is played by the oscillator displace-
ment x, and so we consider the Hamiltonian
H =Hp —P where Ho is the simple harmonic-
oscillator Hamiltonian, and & is defined by

where v is the time over which the sources act
(r +00). In a—ddition, of course,

~(O, r/2
~
0, r/2)~—=~(O,r/2

~

e ' '~ O, r/2)~

Hermiticity is most convenientlyensured by defining
W by its matrix elements; certain things are just
more cumbersome in quantum mechanics than in
relativistic field theory. The parameter A, is dis-

played explicitly because our interest lies in the
neighborhood of the extremum (P -K
-5V/5G =0) and we therefore need only treat low
orders in A, . As promised, P and consequently H'
have explicit time dependence. We then search for
states

~

4) such that

4 i ~11 —= (4
i

H'
i

ill )(
. d
dt (A7)

for all
~

4). Letting

P(x, t) =f(t)h„(x),

p(x, t) =g QJ(t)hl(x), (A8)

Hph„(x) =E„h„(x),

we obtain

(e(tp)
~

&
~

0 (tp))

2A—fd,x f dt'Re[K(t'}P'(tp, x)

Xx'g(tp+t', x)] . (A6)

if*(t) g„(t)=f*(t)E„—P„(t)
d

—2A, Re f*(t)f dt'K(t')I(n+ , )f„(t'+t)+ —,[(n+—1)(n+2)]'~g„+2(t'+t)

(A9)

We then expand g„(t}about A, =0,

g„(t)=g g„"(t)A,', (A10)
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and consider the case where the oscillator was in the unperturbed ground state at some time
t, f(x, t*)=$0(t*)h0(x). From Eq. (A10), we then obtain

y(0)(t) y(0)(t) ' 0(

but

if'(t) —()((0"(t)=f'(t)E0$0("(t)—Re[f'(t)e ' K(E,)],
dt

K(E0)—:f dt'K(t')e
. (All)

=0, (A12)

We therefore need K(E0)=0 if we are to have a sta-
tionary state. If K(E0)=0, then

y,")(t)=C„e

51 [G] 5V[G]
5G (x,y) 5G (x,y)

(A14)

The condition on K, therefore, means that we mini-

mize V by varying G, but consider only those G such
that

and we can obtain a similar result for p0 '(t} There. -

fore
5V[G] rEO—

ZQ e =0.
5G (z)

(A15)

—ivE(K)=e

E (K)= (%(t)
~

H'
~

%(t}}=E, .

(A13}

Consequently, the identification of V[G] as the ef-
fective potential does go through if we restrict our-

selves to sources which satisfy K(E0)=0.
What does this result mean? For the quantum-

mechanical case it means that if the source has no
Fourier component of the oscillator's fundamental

frequency, then the ground state remains a station-

ary state with energy unchanged. In the quantum
field-theoretic generalization of this, it is not im-

mediately obvious what should correspond to EQ,
but we shall see that it does not matter.

To understand the effect of restricting ourselves

to only a certain class of sources [K(E0)=0], we re-

call that, Eq. (2.15b},

f(x, t}=h0(x)exp[ iE0(t ——t )]

satisfies Eq. (A7} up to terms of order A, for all 4,
if K(E0}=0. It then follows that Eq. (A5) does
hold in this case,

()II(r/2)
~

%'( —r/2) ) = ('P(r/2)
~

e ' '
~

'V(r/2) &

We obviously risk overlooking the true minimum in
this manner, but the risk may not be too great —it is,
in fact, related to the risk taken in choosing test
functions for the variational calculation. If we set
out to minimize V[G] we wish to choose functional
forms for the propagators which satisfy the DS
equations

5V[G]
~Gi 6;=8;(ak )

=0, (A16)

where the 9'; are the test functions and the ak are
the parameters upon which the 9'; depend. But
(A16) may be satisfied for a range of a;, say
a;e(a;,a;+5;), and the preferred values for the a;
(—:a*;) must then be determined by minimizing
V[9(a;)]=V(a;). Since a;*e(a;,a;+5;), S(a;}
must satisfy Eq. (A16) in a neighborhood of a*;, and
therefore (A15) is obviously satisfied and the func-
tion V(a;) which we are minimizing is the vacuum
energy density. We then note that our test func-
tions, GiA(m;), do satisfy Eq. (A16)—at least in the
Abelian sector. In particular, if we use Eq. (4.1) in
Eq. (3.1), we find

5V[G, b,] 5V[G,E]
G,A=G(LA), A(LA) G(LA), A(LA)

5V[G,E]
5~~a(p)

G(LA), 5(LA)

to leading order in g, for all values of the parame-
ters m„n;, g, Therefore, . for the sources

K~,Kg,Kqti, we ensured that K(E0)=0 when we

(A17)

I

chose to use the LA results as test functions.
The question of K~ and the non-Abelian sector is

not so clean, unfortunately. Equations (4.1a)—(4.1d)
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do riot satisfy Eqs. (3.1d) and (3.1e). The failure
looks suspiciously like a consequence of the gauge
noninvariance of the vertices in the presence of vec-
tor masses, and this suspicion is strengthened when
we note that if gauge invariance does lead to the
vector loop graphs being absent from 0, then they
also do not contribute to the DS equations to leading
order. In that case the LA solutions do satisfy
5V[G,A]/5hz(p) =0, and the Kz(EO) =0 constraint
has also already been imposed by our choice of vari-
ational test functions.

APPENDIX 8: INTEGRALS

This appendix is devoted to results for various in-

tegrals encountered in the calculation. Because of
the momentum dependence in the mass, there are a
few departures from standard results, particularly in
regularizing integrals which would be divergent in
four dimensions. We shall evaluate a few represen-
tative integrals in detail as illustrations. For the
remaining integrals we merely tabulate the results.

The one convergent (in four dimensions) integral
which recurs throughout the calculation, appearing
first in the LA, is

Ip(l)= f „ Ik [k —p, (k)]I 'p,'(k),
(2m )"

I &0 . (Bl)

m,'8-(2 lr„—lr, ),
16m

(82)

where 9( xy) is the Euler P function. For small

r, =3g~zY,I Y,g/(64m ),
I

Io(I)=-4i ~a
(83)

3~ ga ~1.~~
This result differs from the l =4 result of Ref. 8(a),
but they have used the incorrect approximation

fd kp(k) f,(k)=m3 f d kp(k) f(k) .

The first integral encountered which requires reg-
ularization is

p''(k)
I~(n, a)= f ln 1 ——

(2m )" k

f d" 0 Ii(n, a) .
(2n )"

(84)

Integrating by parts in the usual manner yields

Using p, (k)=m, ( k—/m, )
' and going over to

Euclidean space,

Io(l)= m,' f dz (z )
8& 0 z +1

A p, (k}
I, (n, a)= ——, f dkokof d

~

k
~ ~

k ~" ln 1—
0

k k--: dk d k k -2 k'-'l. 1-"', + k -' '- ln 1-"''
d[k/ k'

Using the explicit form for p, (k) and regrouping,

7f —2 w p, (k)2

I&(n,a)= — I&(n, a) —(1+2r, )f dkod
~

k
~2 k —p, (k)

and therefore

2 d "k p''«}
I&(n,a) = ——(1+2r, )fn (2~)" k —p~ (k)

(85)

(86)

(Bj)

(88)

The right-hand side of (88) is well behaved for n =4; and so, defining I;(a)=—I;(n =4,a),

The integral on the right-hand side of (87) is still not convergent for n =4. We proceed as above and obtain

p, (k) 2(1+2r, ) d&k p, (k)
Ip(n, a)=

(2'}" k p,, (k) n 2 —4r, (2g)" [k —p—, (—k)]

I)(a)=—

1+2r, d4k p, (k)
Iz(a) =

1 2r, (2m)4 [k ——p, (k)]z

1+ 2'
2

I,(a) .
(89)
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The remaining integral is equal to Io(l =4) for small r„
d k P (k) d k P (k) p+ =I (i =4),f (2m) [k —p, (k)] (2n. ) k [k —p, (k)] k —

JM, (k)

since the second term in brackets leads to a convergent integral even for r, =0. Therefore, for small r„

(810)

4 4maI)(a)=——
6 eI2(a)=-

gB aL ~aR gB ~aL ~iR
(811)

A large number of the two-loop integrals encountered are of the form

I'&"'(i,j,k;a, b,c;a,p, y) =f d "kd "k2F,'b, .~p&,

Fg. z„—~,(k, )(k, k, )'(k, .k, )J(k, k3)"[(k&')'(k~')'(k3')'(ki —~i) «z —~) ("3 —
3 ]

k3 ——k)+kg,
(812)

where the subscript on the ~s'in the denominator represents both the flavor and momentum subscripts
~&

—~&(k &). Integrating by parts and assuming r, is small,

I3"'(ij,k;a, b, c;a,p, y) =— f d"k)d"k2 k) „+k2 k
F,'b, ;~pr2' & ()k) l" Bk2p

k)f d k&d "k2F'Jb", .
&&

2i + 2j + 2k —2a 2b 2c ———2a
k z

7T]

k k2P—
772 k 3 7/3

(813)

writin k2/(k2 ~)=1+~/(k —~) and regrouPing, we obtain

I'3"'(ij,k;a, b,c;a,13,y)=(n +i+j+k —a b —c —a —p——y)

~ ~ 77]x f d "k)d "k2Fabc;apy
k )

—m. )

7r2 773
+P , +y

k22 —~2 k32 —~3
(814)

ln the calculation of vector masses in the LA, we must evaluate

dkM ~(p) —
& f da f p,, '(k)[k'+a(1 —a)p' —p, '(k)]

(2m )

Going to Euclidean space and letting x =k/rn„

(815)

4 2

M, (p2)=m, f daf q(x )
'

& +a(1—a) 2+1(2n. ) ma

—2

2 2

8(2 2r„2r, )f—da a(1—a) 2+1
16~ ma

' —2Ta

(816)

For large p and small r„
2

M, (p)= 2 m,
3gB ~aL ~aR ma

' —21'a

(817)
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where we recall that p is a Euclidean momentum here. For@ =0, Ma (p) is of the form Io(1=2) of (81) plus
nonsingular terms.

Other integrals needed in the LA treatment of vector masses are

d "k
I4"'(a)= f [k +a(1—a)p —p, (k)]

(2m )"

d "k
n —4 (2~)"f [a(l —a)p —(1+2r )ap a(k)][k +a(1—a)p —p, (k)]

d "kf (2k~k"—k g&")[k +a(1—a)p —p, (k)]
(2n. )"

d"k
=g& a(1 a)pzI—4"'(a) gi'" 1—+ f p, (k)[k +a(1—a)p —p, (k)]

(2~)"

Integrals arising in the evaluation of Q~b include

d k, d k3d k3f 5 (ki k2 —k3—)k3 k3p, (1)&(3)[[ki —pa (1)]k2 [k3 —n(3)]j
(2m )

(818)

(819)
9g~ Y,L Y,R b Y,L YaR + YbL YbR

f Q (ki —k3 —k, )k, k3kz k3pa (1)m(3)I[kl —p, (1)]k3 [k3 —~(3)]k3 j
d kid k2d k3 4 2 ~ 2 2 2 2 2 —1

(2~)s
2

(820)9' YaL YaR b YaL YaR + YbL YbR

d kid k2d k3 4 2 2 ki kf 5 (k3 —k3 k3)p, , (1)pa (2) k& kz+2 t[k& —p, (1)][k2 —p, (2)]k3 j
(2m ) k

y0, (821)
1

ga

f s Pa (1)Pa(2)[[k& Pa (1)] [k3 Pa (2)](k&+k2) j(2n. )'

2
4 ma

9' YaL YaR
4

'2

(822)

d"kid"k3f 3„p,(1)p,(2)I[ki —p, (1)][k3 —p, (2)][(k&+k2) —g(1+2)]j

2
'2

8 Nla

9' aL aR

4 Ptla
(823)

9g~ YaL YaR b YaL YaR + YbL Yb

d kid k2f s pa(1)pa(2)g(1+2)[[k3 —p, (1)][k3 —p, (2)][(kl+k3) —g(1+2)] j

where (823) required regularization.
For 04& the finite integral is

ma
(824)

9gR ~aL ~aR b ~aL ~uR + ~bL ~bR

d4k, d4k,

(2m )
—7+ &(1)g(2)I [ki —n(1)][k3 —n(2)] j

Ka 0b

ki k2 g~ a YaL YaR b YbL YbR

(825)
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(826)

(827)

For the integrals in the evaluation of Q3&, we introduce some notation. Let

Aij (X1~X2~X3)=[(k —Xl )(k2 —X2)(k3 —X3)] XiXj ~

d k)d kid k3 4f s 5 (k]+kg k3)f (k„k~,k3)=I[f(k),k~, k3)]
(2m )'

where the X's can be m., g, or 0, ( W Z, y), where m; =m (k;), and where X;=X;/k; . Thus, for example,

d'k, d'k, d'k, , 2 2 2 —1I[k) A)3(Wiy, Z)]= J s
5 (k|+kz —k3)k&~&(k&)g(k3) [(k~ —m(k&))kz (k3 —g(k3))]

(2m }s

Then the integrals of 03& can all be written in terms of

I[ki A |p(X|,Xp,X3)]= —4P'(X|,Xg),

(k| k~)~I
~

A lp(X1,Xp,X3) = —W(X|,Xp),
2

(k).k3)~I A ig(Xi,Xg,X3 ) = —4P'(X|,Xp ),
k z

(k) khaki k3)I
q q q

A |z(X|,Xz,Z3) — LF(Xf Xp),
k] kp k3

I[k) A)3(X] XQ X3)]= 4P'(X),X3)—,

(k| kg)I A f3(X$ Xp X3) =—4P'(X),X3),
k, '

(k).k3)I A|3(X] Xg X3) — P(X| X3},
k

(k| khaki k3)I
q q

A )3(X),Xp,X3 } = —P'(X),X3},
k) kg k3

I [ki Aq3(X|,Xp,X3)]——4[X'(Xp,X3)+P (X3)XQ],

(k).kg)I Ag3(X|,Xg,X3) — 4P (XpiX3) P (X3yXQ),
2

(k| k3}I Ap3(X),Xg,X3) ——A(X2iX3) —4P (X3,Xg) ~

k3~

(k|.khaki. k3)I
A /3 (X|,Xp,X3 ) = —W(Xp, X3 }—W(X3,X2),

2k 2k 2

k).krak) k3I A)g(Xi, Xp,X3) =0,
k

(k|.kg) k).k3I
~ ~ ~ A|g(X),Xp,X3) =0,

k) kg k3

k).krak) k3I A )3(X),Xg,X3) = —W(X),X3),
k

(k|.kq) k) k3I A|3(X(,Xg,X3) — P(X| X3),
k) kp k3

(828)

(829)

(830)

(831)

(832)

(833)

(834)

(835)

(836)

(837)

(838)

(839)

(840)

(841)

(842)

(843)
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k).k2k). k3I
2

A 23 (Xt,Xz,Xs ) = +3P'(Xp, X3),
k3

(kt kz) k) ksI
2 z 2 223(Xt,X2,Xs ) = +3&(X2,X& )

k( k2zks

where

5 (Xt,XJ)= qgX;,Xjb, X;=m, g, or 0,1 1 1

9' g, b aL aR aL aR + ~bL bR

and only the most singular term (1/gs ) is given.
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