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Negative-norm states, superselection rules, and the lepton family
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Field theories containing states of both positive and negative norm are considered. With
the correct definition of the number operators for the quantum fields, a11 physical quantities
are rendered canonically normalized. If the theory admits a global symmetry leading to a
superselection rule which forbids transitions between positive- and negative-norm states,
then the negative-norm states are allowed to be physical. Specifically, a spinor theory with

higher-order field equations and multiple excitations is considered and applied to the
charged lepton system: e,p, v. In this model, the negative norm of the muon state a11ows us

to understand the nonexistence of p —+ey decay. For minimal coupling, the theory is renor-

malizable and equivalent to three separate fermion electrodynamics with the additional pre-

diction of equal charge for the leptons. A further anomalous magnetic moment coupling
can only allow one of the decays ~~py or v ~ey.

I. INTRODUCTION

Negative-norm states or Hilbert spaces with in-
definite metric have a long history in quantum field
theory going back to the work of Dirac, ' Pauli,
Heisenberg, and many others. While in general the
indefinite metric is introduced as a tool to overcome
some of the difficulties of field theory (for example,
in the covariant formulation of electrodynamics)
which is eventually to be eliminated, or an indica-
tion of a nonlocal theory, we discuss in this paper
the cases where the appearance of the indefinite
metric becomes a virtue and extends the scope of the
field theory. This happens when the indefinite
metric occurs in connection with a global symmetry
and associated superselection rule. The latter prohi-
bits transitions from one sector of the Hilbert space
to another of opposite norm.

After some general considerations about norms,
transition probabilities, and fields with internal exci-
tations, we exhibit the connection between indefinite
inetric and superselection rules explicitly in terms of
a third-order spinor field theory and apply it to the
lepton family. The appearance of indefinite metric
in higher-order wave equations goes back to Pais
and Uhlenbeck.

II. NEGATIVE-NORM STATES
AND SUPERSELECTION RULES

In the usual formulation of Lagrangian field
theory, the classical field equations are invariant
under a change of scale of the Lagrangian density

A'=aA, (2.l)

where z is an arbitrary nonzero constant. Since the
physical quantities of interest P (energy-momentum
tensor, angular momentum tensor, currents, etc.) are
linear functionals of the Lagrangian density, the re-
scaling

P'[A'] = P[A'] =P [A—)—1
(2.2)

restores the standard normalization of these quanti-
ties, as indicated.

When we pass to quantum theory this invariance
is no longer naively present; indeed, the Lagrangian
density is chosen such that the "kinetic" terms for
the fields always have a definite sign and magnitude.
Relative to such a field, another field appearing with
the opposite sign is said to have negative norm and
is often denoted (slandered) with the term "ghost. "
We will now demonstrate that, with one crucial pro-
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viso, there is no fundamental objection to having
physical ghost states, and the negative norm can be
a virtue in understanding the presence of certain su-

perselection rules.
To begin, we observe that the quantum field

theory will certainly be invariant under both
transfoimations (2.1) and (2.2). However, the in-

teresting nontrivial situation arises when the theory
contains fields of both positive and negative norm.
In this case, no transformation of form (2.1) can
render all norms positive nor can a transformation
of form (2.2) render all physical quantities canoni-
cally normalized. Therefore we take the following
approach. We will assume that all physical quanti-
ties are canonically defined (except for the Lagrang-
ian density). The only change necessary will be a
redefinition of the number operators for the quan-
tum fields.

We will consider and compare free quantum field
I

theories defined by Lagrangian densities A (taken to
be canonical) and A' [given by Eq. (2.1)], where tt in
general may be negative. We take the conjugate mo-
menta to be given by their canonical forms

(2.3)

(2.3')

[II;(x,t),PJ(y, t)]+ —— i5—(x y)—5&,

[II,'(x, t),PJ(y, t)]+ ———i5i(x —y)5J .

Now we expand P;(x) in plane waves,

(2.4)

(2.4')

where P; represents one component of a Fermi or
Bose field.

The equal-time (anti-) commutation relations are
written in canonical form as

P;(x)= f +[Xi+(k,x)a (k)+X; (k,x)b (k)],
(2m)'

(2.5)

where X;~~(k,x} form a complete orthogonal set of
plane-wave solutions to the free field equations of
positive and negative energy. With the usual nor-
malization of these states, Eqs. (2.4), (2.4'), and (2.5)
yield

[a (k),ap(p)]+ ——5 p5 (k —p)

=[b (k),bp(p)]+,

[a (k),ap(p}]+———5 p5'(k —p)
K

(2.6)

= [bp(k ),b p( p)]+, (2.6')

all other (anti-) commutators being zero. In order to
understand the significance of the factor 1/a in Eq.
(2.6') we write this equation as

[a (k},zap(p)]+ ——5 p5~(k —p)

=[b~(k),xbp(p)]+ . (2.7)

If we make the usual interpretation that a and b are
the annihilation operators for the particles and an-
tiparticles, then the creation operators must be aa
and abt instead of the usual at and b . (Note that
there are other ways of including the factor a, all of
which yield the same conclusions below. ) Therefore
the number operators for particles and antiparticles
are

N (p)=a (p)a (p), N (p)=b (p)b (p),
(2.8)

N'(p)=tea (p)a (p), N'(p)=ttb (p)b~(p} .

(2.8')

Since we are considering (for the moment) a free
field theory, all canonically defined physical quanti-
ties are bilinear in the fields, and hence linear in the
number operators. Because the physical quantities
are also linear functionals of the Lagrangian density,
the additional factor of a appearing in the "primed"
formulation is absorbed by the appropriate redefini-
tion of the number operators, and we recover the
standard normalization of the physical quantities.
We stress again that it is important to treat the
quantum theory in this fashion [as opposed to a sim-
ple rescaling as in Eq. (2.2)] because in the situation
in which the theory contains both positive- and
negative-norm states this overall rescaling does not
work. The treatment given here, however, has the
virtue of only changing the signs for the negative-
norm states, rendering all physical quantities ap-
propriately normalized.

The case of interacting fields presents the most in-
teresting feature of these generalized field theories.
In general, the probability that an initial state at
t =—00 is to be found in a final state at t =+ 00 is
given by

I «f I

s'
I

i & I

'
I If I I I

Ii I I

Here (f I
S Ii ) is the scattering matrix element for

the initial and final states in question, and
I Ii I I

and
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(~f~ ~

are the norms of the initial and final states.
This expression is valid for arbitrarily normalized
states. Being a probability it must, of course, be
positive. Observe that there is no problein if ~~i~~

and
~ ~f ~ ~

are either both positive or both negative.
However, the scattering matrix element must vanish
in the case that the initial and final states have op-
posite norm. Therefore, in order for such a theory
to be physically realizable, there must exist a super-
selection rule (and a corresponding global symmetry)
which excludes transitions between positive- and
negative-norm physical states. In other words, the
Hilbert space of physical states must be split into
two disjoint sectors corresponding to positive and
negative norms, and no interaction may exist which
induces transitions between these two subspaces.

We conclude that as long as such a superselection
rule can be derived from the theory in question,
there is no fundamental objection to a theory pos-
sessing physical ghost states.

This rather simple observation has m.any interest-
ing ramifications. Possible applications include
gauge field theories of graded Lie algebras and
theories where negative-norm collective variables
arise. Here we will discuss a theory in which one
field has many excitations.

III. FIELDS WITH MULTIPLE
INTERNAL EXCITATIONS

This result that positive- and negative-norm states
cannot be dynamically connected has important
consequences in any theory in which one field ex-
hibits many excitations. In particular, these excita-
tions (dynamically generated or otherwise) will man-
ifest themselves as additional poles in the propaga-
tor of that field, and the residue of each pole will
determine the norm of that particular excited state.
If the theory in question is unitary, we may con-
clude that all states of negative norm will be stable
against decay into states of positive norm and vice
versa. One specific example is the hydrogen atom.
If one treats the hydrogen atom within the frame-
work of infinite-component fields, the propagator
for the hydrogen-atom field has a pole for each
bound state and a branch cut for the continuous
spectrum of scattering states. One can show that
the bound states all have positive norm. Of course,
this is as expected since all transitions between excit-
ed states are allowed.

Consider, however, the system of charged leptons:
e,p, ~. It is very tempting to conjecture that the p
and r particles are excited states of the electron in
the sense that the electron propagator may develop
additional poles through some dynamical mecha-

nism (of electromagnetic origin or otherwise). Note
that we are not necessarily making any composite-
ness assumptions about the leptons. There now ex-
ists the possibility of understanding why the process
prey seems to be absolutely forbidden. If we as-
sume that the underlying theory, whatever it may
be, is unitary, and that the residue of the pole at the
muon mass is negative, then the decay is dynamical-
ly forbidden. If this is indeed the case, then only
one of the possible electromagnetic ~ decays, r +@@-
or ~~ey, will be allowed, depending on whether the
residue of the pole at the r mass is negative or posi-
tive.

General statements can also be made concerning
the neutral leptons: v„v„,v,. We will assume that
these form the usual SU(2) doublets with the
charged leptons: (e,v, ),(p, v&), (r, v, ) Since. the glo-
bal SU(2) transformations mix components within
each doublet, these components must have the same
norm. (We are assuming a similar dynamical
mechanism for the occurrence of the p and ~ neutri-
nos, and therefore these neutrinos must have mass. )

We see that the decay p ~e v, v& is allowed since
the norms of both the initial and final states are neg-
ative. Note, however, that the processes

p —+e v, v& and p, +e ~p, e+, for example, are
also allowed (they may, of course, be suppressed for
other reasons). Since they are not absolutely forbid-
den, we would expect to see these processes. In
essence, a negative norm for the p doublet acts like a
multiplicative quantum number. Also observe that
v, and v& are not allowed to mix, but one of the
cases v, and v, or vz and v, can mix, depending on
the norm of the r doublet.

The question of what types of interactions might
dynamically generate additional poles in the electron
propagator is one of great interest, but it will not be
discussed in detail here. It is important to note,
however, that the basic electromagnetic interaction
(minimal coupling) is probably not sufficient. This
is apparent if one examines the Kallen-Lehman
spectral decomposition of the electron propagator.
In particular, the spectral functions must satisfy
positivity constraints, and it therefore seems impos-
sible to generate negative-norm poles. From this
point of view, it is not at all surprising that the poles
in the hydrogen-atom propagator all have the same
sign. It appears that there must be a fundamental
negative-norm state in the underlying theory in or-
der to realize this possibility. Such a theory, involv-

ing a negative-norm boson, is currently under inves-
tigation.

For the purposes of this article we will content
ourselves by considering a model theory which ex-
hibits multiple excitations at the bare level. This
theory has been considered previously by ourselves '
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(we will refer to this paper as I) and also by Fried
and Plebanski. '

IV. THIRD-ORDER SPINOR FIELD
THEORY

To include the possible electromagnetic interac-
tions we begin by making the minimal substitution
in the Lagrangian density (4.1):

Our starting point is a spinor field theory exhibit-

ing three excitations:

(4.2)

where we have defined ZJ as the residue of the poles:

ZJ m(m——i —I;) '(mj —mk) ', i&j &k . (4.3)

We will assume that these three excitations represent
the charged leptons. However, before we introduce
interactions, it is important to examine the norms of
these three states. Note that the mass of a fermion

may be positive or negative, '" and we may assume
that the electron mass m i is positive without loss of
generality. We will take m2 as the p mass and m3
» th«mass so we have Imi

I
&1~21& lm3 (

~

There are now four possible cases:

(A) m& &O, ms &O~Zi &O,Z2 &O,Zi &0,

(B) m2&O, ms&O~Zi &O,Z2)O, Z3)0
(C) mz&O, m3(O~Z] (OZ2&OZs&0,

(D) m2 &O,ms &O~Z»O, Z2 &O,Z»0 .

Therefore, the only transition which may be dynam-

ically allowed in each case is

(A) r +ey, -
(8) ropy,
(C) ropy,
(D) r~ey.

A= i7j(i 8 I i)—(i 8 m—2)(i 9—mi)g . (4.1)
m

The factor 3 is for convenience and the factor m is
to ensure that the field f has the canonical dimen-

sion. These factors can be absorbed into the defini-

tion of f without changing the physical content of
the theory. The propagator S(k) for the spinor field

may be written as
~ 2

&(k)= [(k—mi)(k —m2)(k —m, )]
3

D~ =B~+l8Ap . (4.5)

In paper I we have demonstrated that this theory
forbids all transitions between the three excitations,
and therefore the minimal substitution is not the
most general interaction allowed in this case. How-
ever, it is instructive to see how the absence of tran-
sitions comes about in this case. This is most easily
seen by transforming the theory to first-order form.
Although the physical interpretation of this theory
becomes manifest in first-order form, finding the
appropriate transformation is a highly nontrivial
mathematical problem. Since these details are not
of special interest for the purposes of this paper, we
only outline the steps, give the result, and indicate a
remarkable feature of this transformation.

The generating functional for this theory, in the
absence of external sources, may be written as

Z = f [dA][de][dg]exp i f d x A (4.6)

where A is given in Eq. (4.4). We now introduce
two auxiliary fields Xi and X2 in such a way that
the effective Lagrangian density written in terms of
f, Xi, and X2, satisfies the following three condi-
tions.

(i) The spinor part of the effective Lagrangian
density is only first order in the derivatives.

(ii) The effective Lagrangian density is Hermitian.
(iii) Functional integration over the auxiliary field

variables Xi and Xz reproduces Eq. (4.6). The
essentially unique result for the spinor part of the ef-
fective Lagrangian density is

~i Ps 13~

A fr (P Xi X2) P3 +2 Pl Xi

pi pi a3 Xi
)

3+ p(i g —mi)(i g —m2)(i g —m3)$,
m

(4.4)

where we have defined

So we have the interesting results that, in this model
at least, no matter what the choices are for the signs
of the masses, the decay prey is forbidden. where we have defined

(4.7)



27 NEGATIVE-NORM STATES, SUPERSELECTION RULES, AND. . . 2497

ai ———,(A, i+f2+As), ai ———,(4A, i+Az+A3) a3 — (Ap+A3)

131 ( ~2+~3)~ 132 (~2 ~3)~ P3 (2~1 ~2 ~3) i
1 1 1

2 3 6 3 2

A, =, Z, '(i 8 m—i), Ai ——Z2 '(ig —m2}, Ai Z——s '(i g m—i),

(4.8}

and the Z; are given in Eq. (4.3).
We now perform a unitary transformation on the

spinor fields to diagonalize the effective Lagrangian
density. This transformation is given by

X2

v2 v2 v2
1

2 —1 —1
6

0 ~3 —v3
(4.9)

and the spinor part of the effective Lagrangian den-

sity now becomes

A, i 0 0

Agff —(fl $2 lP3) 0 A2 0 f2
0 0 A, s

(4.10)

where the A,; are given in Eq. (4.8). From this result

may immediately draw the following can-
clusions.

(i) The norms of the physical states are Z;, as ex-

pected from Eq. (4.2).
(ii) There are no transitions between the different

fermion excitations.
(iii) The theory is essentially equivalent to QED

with the separate fields (necessarily with the same

charge), the only difference being the different
norms of the physical states.

(iv) Since the theory is equivalent to QED, it is re-

normalizable, though the renormalizability of the

theory in form (4.4} is not immediately evident.

A remarkable property of transformation (4.9) is

the following: If we consider possible permutations
of the physical fields Pi, $2,$3, we see that the fields

g and (Xi,X2) form, respectively, one- and two-

dimensional irreducible representations of the per-
mutation group S3. In fact, the original field f
must form the one-dimensional symmetric represen-

tation, and the auxiliary fields must form the two-

dimensional representation of S& in order to allow

the transformation from Eq. (4.6) to Eq. (4.7). This
is why we stated that the transformation is essential-

I

ly unique [obviously a rotation in the (Xi,Xi}plane
does not effect the final outcome]. This result gen-
eralizes to field theories of order ¹ The original
field P forms the symmetric representation of Sz,
while the auxiliary fields (Xi,X2, . . . , X~ i} form
an (N —1}-dimensional representation (the one below
the symmetric representation on the Young tableau).
The precise nature and reason for this connection
between special representations of the. permutation
group and properties of functional integral is
currently under investigation. However, also note
that there seems to be a connection between the ap-
pearance of the Si symmetry here and the work on
permutation symmetry for the leptons of Derman. '

These issues will be discussed elsewhere. We will
exploit the presence of this symmetry to find in-
teractions which will yield the allowed transition.

It is clear from Eq. (4.10) that there are three glo-
bal symmetries of the Lagrangian density:

f;~e 'f;, i =1,2,3 (4.1 1)

1 0 0

(3 2 1)= 0 —1/2 —v 3/2
0 —v 3/2 1/2

(4.12)

So we assume that the form of the transition La-
grangian density is

A=(P Xi Xi)(T) Xi

X2

(4.13)

where we have defined

where the a; are arbitrary constants. Therefore
there are three superselection rules (i.e., the Hilbert
space splits into separate e, p, and r subspaces). For
this theory to have positive probabilities we require
only one superselection rule. Consider the case in
which all masses are positive [case (A)], so that the
transition z~ey may occur. To preserve the elec-
tromagnetic gauge invariance, the interaction which
allows this transition must be of magnetic dipole
form. In representation (4.7) the matrix correspond-
ing to the permutation (1~3) is given by
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(T)= s 0 1 0 +t 0 —1/2 —v 3/2 op, F."',
0 0 1 0 —v3/2 1/2

(4.14)

(4.15)

It is interesting to note that the transition term for
~~ey induces an anomalous magnetic moment for
p. Finally, it is possible to return to the higher-
order field theory by integrating the auxiliary field
variables, and a condition can be placed on s and t to
ensure that the resulting Lagrangian density is local.
However, this form of the theory is not especially
enlightening and somewhat complicated so we do
not give the result here.

If Eq. (4.15) is added to Eq. (4.10), the resulting
theory now possesses only two global symmetries:

gi~e' Pi and f&~e' P&,
(4.16)

The simultaneous change in phase for all three fields
yields conservation of charge, and the additional su-
perselection rule is the one required for positive
probability. This theory (with transitions) is not re-
normalizable in perturbation theory, neither in "di-
agonalized" forms nor in higher-order form. Our
purpose in introducing the additional couplings of
Eq. (4.15) was only to find a theory with negative
norms preserving positive probabilities in the pres-
ence of transitions.

A final comment on the original form of this
model, without transitions, is in order. We have
demonstrated that the quantum field theory defined
by Lagrangian density (4.4) is equivalent to usual
QED with three independent fields [Eq. (4.10)]. It is
quite clear, however, that the perturbation expansion
of the higher-order theory will have a highly dif-
ferent structure than that of the usual theory.
There exists the possibility, therefore, that a pertur-
bative calculation in the higher-order theory will be
nonperturbative with respect to the first-order form

where s and t are constants. We see that the term t
will induce transitions between ~ and e. This term
will also generate anomalous magnetic moments,
hence the term s is also included for generality. If
we now transform to "diagonal" form using
transformation (4.9), the transition Lagrangian den-

sity is
r

s 0 t

+T—(Qi Q2 17J3) 0 s +t 0 (o„,+"")
t 0 s

In fact, this seems likely since in the higher-order
theory we have treated two of the three spinor fields
exactly. This problem is currently under investiga-
tion.

V. SUMMARY AND CONCLUSIONS

The major result in this article can be stated as
follows: In any theory containing both positive- and
negative-norm states, the negative-norm states can
be physical as long as the theory possesses a global
symmetry and corresponding superselection rule
which forbids transitions between positive- and
negative-norm states.

There are other places in field theory where
negative-norm states arise, but there are no super-
selection rules to allow them to be physical states.
In gauge field theories, the presence of ghost states
is necessary to ensure the gauge invariance and uni-
tarity of the perturbation expansion. In this case,
the ghost states are a mathematical construction in-
troduced to subtract the gauge-noninvariant and
nonunitary parts from the naive perturbation expan-
sion. Another example is in the covariant formula-
tion of quantum electrodynamics where the
negative-norm scalar photon and the positive-norm
longitudinal photon are projected out of the com-
plete Hilbert space to obtain the physical states. In
this case this is necessary since a transition between
a physical photon and a scalar photon is not forbid-
den by a global symmetry (this unphysical process
could occur in Compton scattering, for example).

These facts should not make us develop a "ghost
prejudice. " Indeed, physical ghosts may actually
occur in nature, and our acceptance of them may
lead to a deeper understanding of the world around
us.
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