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Topological theory of hadrons. II. Baryons
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The first paper of this series described a method for incorporating spin into the meson

sector of the topological theory of hadrons. This second paper extends the theory to all had-

rons. It also incorporates into the covariant S-matrix topological framework the group-
theoretic properties of the constituent-quark model.

I. EARLY ATTEMPTS

The early attempts' to include baryons in the
topological expansion corresponded to picturing the
baryon as a set of three surfaces arranged like the
feathers of an arrow, with each outer edge a quark
line and all three inner edges placed in close proxim-
ity to a single "dotted' line called by various authors
a dotted, junction, or mating line. Within the con-
text of the topological expansion this picture arose
in several ways, first as the basis of a simple solution
to the purely topological problem of extending the
meson topological expansion scheme to three-quark
baryons, ' then from ideas based on QCD (Refs. 2
and 3), and finally from attempts to extend to
baryons the idea of the ordered S matrix. ' These
different approaches all led to essentially the same
conclusion regarding the nature of surfaces of zero
complexity, or zero entropy: the zero-entropy sur-
faces were those that could be generated from a disk

by a finite number of operations, each of which con-
sists of attaching two new disks to some linear por-
tion of the boundary of the surface obtained from
the preceding operations, as indicated in Fig. 1. The
surfaces that can be constructed by this procedure
are called elementary surfaces.

One defect of this identification of zero-entropy
surfaces with elementary surfaces arises from the
fact that an elementary surface is separated by a cut
into two elementary surfaces if and only if the cut is
a tree graph. Thus if a non-tree-graph cut separates
an elementary surface into two connected parts, then

these two parts are not both elementary (see Fig. 2).
Non-tree-graph cuts disrupt, therefore, the entropy
property that parts are never more complex than the
whole, and prevent an orderly topological expansion
in which the zero-entropy level is closed in the sense
that the discontinuities of zero-entropy functions de-

pend only on zero-entropy functions.
The ordered S-matrix approach leads to rules '

on the ways two zero-entropy surfaces can be joined
together to give contributions to zero-entropy ampli-
tudes. These rules are, however, not invariant under
the operations of crossing and cluster decomposi-
tion, and consequently the singularities associated
with a given fixed Landau diagram can be classified
as zero entropy in some channels but nonzero entro-

py in other channels. Hence a single singularity sur-
face can belong to different terms in the topological
expansion in different channels. An example is
shown in Fig. 3. According to the ordered S-matrix
rules the diagram of Fig. 3(a) contributes to the
zero-entropy function whereas that of Fig. 3(b) does
not. But channel-dependent classifications of this
kind lead to unacceptable complications in the ana-
lytic structure of the zero-entropy functions, such as
the intrusion into their physical sheets of singulari-
ties that in the physical functions are buried on un-

physical sheets, or are not present at all.

(b)

FIG. 1. Three elementary surfaces.
FIG. 2. An elementary surface separated into two

parts by a non-tree-graph cut.
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(a) (b)

FIG. 3. The graphs that represent in different channels
the discontinuity around a single triangle-diagram singu-
larity surface.

A further difficulty with all these approaches is
that zero-entropy amplitudes contain singularities
corresponding to nonplanar Landau diagrams, and
hence presumably have cuts in the complex angular
momentum plane.

II. THE ZERO-ENTROPY AMPLITUDES

The difficulties mentioned above can be avoided

by treating the three quark lines associated with the
baryon unsymmetrically at the zero-entropy level.
This allows one to impose at this level a planar
structure similar to that obtained in the meson sec-
tor, and to represent a typical baryon ortho-
amplitude by any one of the three equivalent graphs
shown in Fig. 4.

Figure 4(a) is the quark graph G. Its edges are
directed line segments called quark lines. The small
arrow next to each quark-line edge j indicates that
the edge should be replaced by the ortho-propagator
(p,z cr)/m, l in the construction of the zero-entropy
amplitude Z . For a para-propagator case this
small arrow would point in the direction opposite to
the direction of the quark line, and would indicate

(a)
g(G)

{b)

g(G)
(c)

FIG. 4. Three equivalent graphs associated with a typi-
cal hadronic amplitude.

that the para-propagator ( p—&/ o)/msgr should be
used.

Figure 4(b) is the particle-quark graph g(6}. The
dashed-line edges of g(6) correspond to particles,
and the graph g(G) consisting of the dashed-line
edges of g(G) and the vertices upon which they be-
gin and end is a Landau graph.

A vertex i of G corresponds to a meson, baryon or
antibaryon, or baryonium according to whether two,
three, or four quark-line edges are incident upon it.
A vertex i with three quark lines terminating on it is
called a baryon vertex, and a vertex i with three
quark lines originating on it is called an antibaryon
vertex.

Except in the trivial two-vertex case each vertex
of a quark graph 6 is connected by edges to exactly
two other vertices, which are called its neighbors,
and at most two edges connect any pair of vertices.
If exactly one quark edge connects two vertices, then
this edge is called a solitary quark line. If exactly
two quark edges connect a pair of vertices, then
these two edges are called paired quark lines.

The diagrams in Figs. 4(a) and 4(b) are planar
graphs. But they can also be considered to represent
disks bounded by the peripheral quarks lines. Fig-
ure 4(c) is a graph g(G) that can be considered to
represent a surface that is bounded by all the quark
lines, and has three sheets joined together at each
dotted (i.e., junction) line. The ortho-graph or
para-graph character can then be represented by giv-
ing each section of the surface (bounded by quark,
particle, or junction lines} an orientation that in-
duces on the quark-line boundary a direction that ei-
ther agrees in the ortho-graph case or disagrees in
the para-graph case with the direction of the quark
line itself. This surface representation associated
with g(6) relates the present scheme to the ones
proposed earlier. It is used by Chew and Poenaru,
who, however, delete from it a small neighborhood
of each quark-line vertex. This gives a "feathered"
surface analogous to the one bounded by the open
diagram D of Fig. l of paper I.

The function Z (A) associated with 6 depends on
a set of variables A. This set A contains for each
vertex i of 6 a mathematical momentum-energy
four-vector p;. It also contains for each leading end
of each quark line j of 6 a quark variable (aJ, A&),
and for each trailing end an antiquark variable
(p/, pl. }. The aj and pj are lower undotted and
dotted two-valued spinor indices, and A,J and pj are
flavor labels. If the particle associated with vertex i
is a Regge recurrence corresponding to orbital angu-
lar momentum L;, then this vertex i is associated
with a set of L; =L pairs of indices

(I il~+il~Pi2~+i2i &IJ'il. ~+iL ) s
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where p;k is a vector index associated with orbital
angular momentum and cr;k is an associated o. index
that will be discussed later.

The function Z (A} corresponding to an ortho-
graph 6 has the form

Z'(A) =—g
J

where j runs over the edges of 6 and f (A) is a
function of the X's, p's, and 0's, and of the scalar
products of the vectors p; and e(iu;k), which have
components p,"and

respectively. The vector p,j is the vector p; associat-
ed with the vertex i on the leading end of line j. For
a para-graph 6 the vector pz in (1) would be re-
placed by ( —pbj ), where pbj is the vector p; associat-
ed with the vertex i on the trailing end of line j, and
m,j. would be replaced by mbJ.

To recover from (1) the meson result (3.9) of pa-
per I, but with the A of (3.9}now replaced by Z, one
contracts, for each meson vertex i, the two spinor in-
dices aj and Pk associated with the lines j and k
that terminate and originate on vertex i, respectively,
against the two associated spinor indices ai and Pk
of the meson wave function f '(s)=is o '/~2&k~ . —Pk~

corresponding to that vertex.
The variables in the set of variables A occurring in

Z (A) are arranged in one of the n standard linear
orders corresponding to G. Such an ordering is ob-
tained by dividing the set of variables A into the dis-
joint parts A; associated with the various vertices i
of 6, and then ordering these parts A; from right to
left according to the order in which the correspond-
ing vertices i of 6 are encountered by a path that
starts just before some vertex of 6 and runs around
the periphery of G, moving always in the direction
of all the solitary quark lines and against the direc-
tions of all the paired quark lines. The set of vari-
ables A; consists of the ordered set of variables

(pi&pi t&&ii»pu, &&il.}..
l l

followed by an ordered set of spin-flavor variables.
These latter variables are the pairs of variables
(aj, iti) or (Pi,pj ) associated with the ends of those
quarks lines j that terminate or originate on vertex i.
They are ordered from right to left in the way in
which the associated quark lines j are encountered
by the peripheral path if it makes a small inward ex-
cursion around vertex i.

The set of quark variables (aJ, AJ ) in A;, placed in
the relative order in which they occur, in A;, is writ-
ten

(&i1&~il& ' ' &+iN &~iN }
l l

(2a)

The set of antiquark variables (pj,pj ) in A;, placed
in the relative order in which they occur in A;, is
written

(2b)

Z(PA) =+Z(A), (3)

where the sign is plus if Ak is a meson or baryonium
variable and minus if it is a baryon or antibaryon
variable.

The minus sign appearing in (1) corresponds to
any linear ordering of the variables A; of A that is
specified by breaking the cyclic order at a solitary
quark line. Breaking at a pair of paired quark lines
gives a plus sign.

III. THE ZERO-ENTROPY PART OF M (3 )

The physical scattering function

M(Ai, . . . ,A„)=M(A)

corresponding to a set of n particles specified by the
set of variables (A i, . . . , A„) is the connected part
of the 5-matrix element specified by these variables
times

(2m. ) 5 gp;
The zero-entropy part of M(A) is given by the sym-
metrized sum of zero-entropy functions:

These equations define a labeling convention that
will be used later.

By virtue of the ordering conventions established
above the ordered set of arguments A; in

Z'(A, , . . . , A„)—=Z'(A)

determines G uniquely apart from the ortho-
quark —para-quark specifications. The function
Z '"'=Z(A) is the sum of the functions Z (A)
over all 2 possible specifications of the ortho-
quark —para-quark characters of the X quark lines
of 6'(A), which is the graph without the ortho-
quark —para-quark arrows.

There are n different standard linear orders of the
n variables A; associated with an n-vertex graph G.
These are generated from any one of these orderings
by the n cyclic permutations. In accordance with
the spin-statistics theorem for physical particles the
sign of Z(A) depends on the relative order in which
the baryon and antibaryon variables A; occur in A: a
cyclic permutation P of the n variables A; of A that
takes a single variable Ak from one end to the other
of the linear sequence converts Z(A) to
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M (A) = g o (P)Z (PA )ln .
P

The sum is over all permutation operators P of the
form

n;

where Po is any one of the n! permutations of the
order of the n variables A; in A, and P; is any one of
the n; permutations of the order of the quark and
antiquark variables in A;: a permutation P; can per-
mute the order of the quark variables in A; and can
permute the order of the antiquark variables in A;,
but it never interchanges quark variables with anti-
quark variables. Thus n; =n(A;) is 1, 6, 6, or 4 for a
meson, baryon, antibaryon, or baryonium variable

A;, respectively. The function Z(PA) is defined to
be zero unless PA corresponds to some zero-entropy
graph G of the kind shown in Fig. 4.

The number cr(P) is the signature of the restric-
tion of Po to baryon and antibaryon variables A;: it
is + 1 or —1 according to whether the change pro-
duced by Po in the relative order of the baryon and
antibaryon variables A; in A is generated by an even
or odd number of permutations of these variables.

For each permutation Po there is a set of n per-
mutations that are generated from it by the n cyclic
permutations. The nf permutations Po can be ex-
pressed by writing Po ——Po'Po where Po' ranges over
the n cyclic permutations and Po ranges over a set
of (n —1)! permutations Po not connected by cyclic
permutations. The n contributions to (4) arising
from a fixed Po, but with different Po', are all equal,
and hence one can restrict the sum in (4) to the sum
over the (n —1)! permutations Po, and omit the fac-
tor n '. In this form of (4) there is one contribution
from each cyclically ordered set of variables PA that
corresponds to a zero-entropy graph of the kind
shown in Fig. 4: the n different standard linear or-
ders associated with a given graph 6 do not give
separate contributions.

IV. PRODUCTS

The discontinuity around any physical-region
singularity of any scattering function can be ex-
pressed as a linear combination of bubble-diagram

I

FIG. 5. A bubble diagram B.

functions M . ' These functions are represented di-

agrammatically by bubble diagrams B of the kind
shown in Fig. 5.

Each plus bubble b of B is associated with a
scattering function M =M+(A ), where the nb

components A; of A correspond one-to-one to the
nb edges of B that are incident upon b. Each minus
bubble b of B is associated in the similar way with
the function Mb=M (A ), which is the negative of
the connected part of the matrix element of St
specified by A, times

—1

(2n) 5 gp;
The plus-minus sign in M+(A ) is often considered
part ofAb. Then Mb=M(A ).

In general, a bubble diagram B is a Landau graph
g(B) with each internal vertex replaced by a plus or
minus bubble. Each edge jof a Landau graph g (B),
or bubble diagram B, is associated with a particle-
type label t&& =t& . This type variable tj is a par-
tial characterization of A: it can place restrictionsj '

on p~, on the (unordered set of) flavor variables, on
the orbital variables pjk and ojk, and on the quark
versus antiquark character of each spin-flavor label.

Each internal edge j of B connects a bubble b'(j}
of B to another bubble b "(j ), and defines a pairing
of a component A;~J~ of A '1' with a component
A;-~j~ of A . For notational convenience the in-b "(j)

dices i are arranged so that i'(j) =j, where p; ~J~
——pj

is positive.
The bubble-diagram function M corresponding

to bubble diagram B is

M =cr ~ gM H (n ) 'cog' '. (6)
bra

The factor co ' ' is the integrand of the integral that
defines the phase-space factor fg' ' corresponding
to the graph g (B}:

co ' ' = g [(27r)5(p~ my )e(pj )d p—j(27r) ] g'
J b

(2n. )'5 g@j~ 'p,

Here j runs over the set of internal edges of g (B), and b runs over all but any one of the set of internal vertices
of g (B). The matrix elements g. are matrix elements of the incidence matrix associated with graph g.

The function H~ has the form H =ff hj Inj where j runs over the internal edges of B, and
j
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L Nj N

hB gB ~ (
) I"(j)k&jk )g ~ .—ti "(j)k jkf TT .—~jk i "(j)kg

J J ii g +i"j()k+jk iL J li"(j)k jk ++ J ljk i"(j)k
k=1 k=1 k=1

The function 8z is unity if Lj L——; (J), N& ——N; (i),
XJ. ——X;-~J~, pj

———p; ~J~, and AJ conforms to the par-B

tial restrictions imposed by the type variable tj .
Otherwise 6)i is zero. The remaining symbols in (8)
are defined in (2), or as in (2.18) of I, or by Kroneck-
er.

The summation sign in (6) signifies a summation
over the discrete indices occurring in H . For each
of the upper spinor or vector indices of H there is,
according to (2), an equal lower spinor or vector in-
dex in one of the functions M . Hence these sums
constitute covariant contractions. Each flavor and
cr index of H also is contracted with an identical
flavor or 0. index in one of the M .

To fix the sign o in (6) the diagram 8 is drawn
on a plane with no edges crossing through bubbles,
and with the external edges of 8 extended out to a
big circle that encloses 8. The variables A; or A;
occurring in the arguments of the individual func-
tions M(A ) or in the arguments of the bubble dia-
gram function M itself are ordered from right to
left according to the sequence in which the associat-
ed vertices i are encountered by a path that starts at
the top of the bubble or big circle and proceeds
clockwise. The sign (r is then a product of factors
( —1), one for each crossing of a pair of fermion
edges in this diagrammatic representation of B.

The factor n in (6) is the symmetry number of
the bubble diagram 8: it is the number of distinct
perm utations

:(b,j )~(mb, mj.).
&~b, ~, =Eb,, (»1»nd j)
crumb

——ob (all b),

(9a)

(9b)

t i t~ (all j) . —— (9c)

Two bubble diagrams 8' and 8" are topologically
equivalent if and only if there is a permutation m of
the bubbles b and internal edges j of 8' such that

Pb J
——fbi (all b and j), (10a)

on the bubbles b and internal edges j of 8 that leave
8 unchanged in the sense that if e$ J =eh J are the
elements of the incidence matrix of the graph g (8),
and ob is the sign of bubble b of 8, then the follow-

ing invariance conditions hold:

cr„b ——ob (all b), (10b)

e~b, ~j =eh, j (all b and j),
o~b Ob (all b)—,—-

and

(1 la)

(1 lb)

(1 lc)

The sums and integrals that occur in the defini-
tion (6) of M can be regarded as a summation over
the fully labeled 8 compatible with 8. If the vari-
ables pi associated with the lines j of 8 are all dif-
ferent, as they are on all but a set of zero measure,
then M contains the contributions from n topo-
logically equivalent fully labeled diagrams 8. These
n contributions are all equal. Thus the factor
(n )

' in (6) can be replaced by a factor 8 that
takes on values 0 or 1 (except on sets of zero mea-
sure) in such a way as to allow a nonzero contri-
bution from only one of any set of topologically
equivalent 8. On the set of zero measure 8 is
the inverse of the number of permutations n that
leave 8 unchanged. Thus, apart from this minor

and

t J tj~ ——(all j) . (10c)

The discontinuity formulas specify that there is
only one contribution from each set of topologically
equivalent bubble diagrams: two topologically
equivalent bubble diagrams B' and 8" do not give
additive contributions M and M to the discon-
tinuity.

The sign rr was fixed by drawing 8 with the
edges j incident upon each bubble b ordered in some
definite way. A change in these orders gives a topo-
logically equivalent diagram B that gives no addi-
tional contribution to the discontinuity.

A fully labeled bubble diagram 8 compatible with
a bubble diagram 8 is a diagram that can be con-
structed by assigning to the end i'(j) of each internal
edge j of 8 a set of variables A; (1), assigning to the
end i "(g of each internal edge j of 8 a set of vari-
ables A;-~J~, where A;~J~ and A; ~J~ must be such thatB B B

6)J &0, and assigning a set of variables A, to both
ends of each external edge e of B. Two fully labeled
bubble diagrams 8 ' and 8 " are topologically
equivalent if and only if there is a permutation ~ of
the bubbles b and internal edges jof 8 ' such that
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complication on sets of zero measure, the contribu-
tion to the discontinuity associated with B is simply
a sum over any complete set of topologically ine-
quivalent fully labeled bubble diagrams 8 compati-
ble with B:

M~=cr ~PM '~'P h. / .
b

BCB

(6')

where the bubble diagram B is considered here to be
a symbolic representation for the set of 8 compatible
with B, and a sum-integral over B is a sum over the
discrete variables associated with the internal edges j
of the labeled diagram 8 and an integral over the
momentum-energy variables

(12a)

This factor stands on one side of the metric matrix

hj in (8). On the other side stands a similar factor

Ij Pi'(j ) Ji "(j)

associated with the internal edges j of B. The factor
ro is the factor represented by ros' ' in (6) and (7).

The above discussion specifies the sign and sym-
metry factors connected with the usual bubble dia-
gram functions M . Let Z denote the part of M
that arises from the zero-entropy parts of the func-
tions M associated with the bubbles b of B. The
function Z is obtained by replacing each factor
Mk=M(Ab) in M by its zero-entropy part M (A )

defined in (4).
The sum in (4) over the permutations P includes a

sum over the nj permutations P; =P; ~j~=Pj in (5).
This latter sum converts the P; in P in (4) to a factor

3! ways of joining the three quark lines that come
into vertex i'(j) [or i "(j)] to the three quark lines
that leave vertex i "(j) [or i'(j)]. Of course, some or
all of these 3! terms may give a null contribution,
due, for example, to a mismatching of the flavors of
the two quarks on the two ends of one or more of
the connecting quark segments in Fig. 6: the
Kronecker delta functions 5k in hj cause the van-
ishing of a contribution in which any two such fla-
vors differ.

It should be noted that our normalization of
M(A ) corresponds to a normalization of the corre-
sponding S matrix S(A ) that leaves out the tradi-
tional factor (nj} '~ associated with nj identical
quarks (or antiquark) in particle j. This factor is ab-
sorbed instead into the normalization factor nj ap-
pearing in H . Then the identical-quark case can be
treated together with the nonidentical-quark case,
without special consideration.

Consider now a contribution to Z corresponding
to some 8 in which all the labels pj are different.
The set of edges incident upon any bubble b of 8 can
be arranged in some definite order and there will be
[in the 8 form (6') of M ] a nonzero contribution
from only this one way of connecting the particle
edges j to the bubbles b of B. However, the sum in
(4) over the (nt, —1)! permutations Po associated
with bubble b gives a term Z(PA ) for each of the
(nk —1)! different cyclic orders of the set of vari-
ables A;. Some of these orders may give a null con-b

tribution, because only certain orderings of variables
correspond to allowed zero-entropy graphs (see Fig.
4). Thus the sum generated by the permutations Po
associated with the fixed bubble b can be restricted
to a sum over those different cyclic orderings of the
variables A; that correspond to a zero-entropy graph
G(PA ). For each bubble b of 8 there is a sum of
this kind. Thus the contribution to M from terms

Pi"(j)k ~

k=1
(12b}

which can be commuted through hJ and combined
with the factor (12a) to give just nj times this factor
(12a). The extra numerical factor nj cancels against
the factor nj

' that occurs in (6') to give for the net
result precisely the factor (12a}, which stands to-
gether with hj between the two zero-entropy func-
tions. Thus, for example, the baryon connection
represented by the top-left diagram in Fig. 6 can be
replaced by the sum of the quark connections
represented by the rest of Fig. 6, provided each line
segment on the right-hand side of the second equa-
tion in Fig. 6 is considered to represent now the
product of a flavor 5 function and a spin metric fac-
tor u B.

The baryon connection j thus gives a sum over the

2 +
I

(X!2 ) (X 2P) (X !& )

( P+)

FIG. 6. Diagrammatic representation of the sum of
quark-edge connections entailed by a baryon connection j.
The factor ~&k stands together with h~ between the two

zero-entropy functions.
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corresponding to the fixed 8 is just a sum over terms
corresponding to any complete set of topologically
inequivalent quark graphs g compatible with 8.
And the full function Z is a sum-integral over any
complete set of topologically inequivalent fully la-
beled particle-quark graphs g compatible with 8.
The concepts just introduced are not defined.

A particle-quark graph g compatible with 8 is a
graph g that can be formed by replacing each bubble
b of 8 by a quark graph 6 (g), with each edge of 8
that is incident upon b connected in g to a different
vertex i of 6 (g } (see Fig. 7). The number of quark
lines originating and terminating on this vertex i of
Gs(g) must accord with the type t& or t, of edge j
or e of 8. This is illustrated in the top-left diagram
of Fig. 6, for the case of a baryon edge j.

A fully labeled graph g compatible with 8 is a
particle-quark graph compatible with 8 that has a
label A& attached to each quark vertex i, with the la-
bels A~&(J) and A&(j) restricted by the condition that

8& &0. Two such fully labeled graphs g
' and g

"are
topologically equivalent if and only if there is a per-
mutation

n-.(ij, ,k)~(ni, mj, irk}

of the internal vertices i of g ', the internal particle
edges j of g ', and the quark lines k of g' such that

FIG. 7. A particle-quark graph g representing a typical
contribution to Z . The three outer circles represent the
bubbles b of B. Each encloses a graph that represents a
contribution Z(PA ) to M (A ).

can be replaced by the inverse of ns, which is the
number of permutations

nr(i j,k}~(ni,nj, mk)

that satisfy (13) with g
' and g" replaced by g. This

latter form correctly weights the sets where two PJ' s
coincide.

The factor Hs in (14) is

e; J
——eIIJ (alii and j),

e; q @f1, (a——lli and k),
(13a)

(13b)

(13c)

where j and e run over the internal and external par-
ticle edges of g, respectively. The factors Pz~ and
P,I, in (15) are operators whose action is now
described.

The set of variables AJ includes the set

As; Af (alii) . (13d)
of spin-flavor indices, the set

Here of is the sign of the bubble in which vertex i
lies.

The result stated above combined with that ex-
pressed by Fig. 6 entails that

Z =H)f HsgZG's'e~s, (14)
gca

where the sum-integral is over all fully labeled
graphs g compatible with 8: it is a sum over the dif-
ferent (unlabeled) graphs g compatible with 8, a sum
over the discrete indices of A; ~J~ and A;-~J~ associated
with the internal particle edges j of g, and an in-
tegral over the momentum-energy vectors

associated with the internal particle edges j of g.
The function 8 is zero or one (except on a set of
zero measure) in such a way as to allow precisely
one contribution from any set of fully labeled graphs

g that are topologically equivalent. The factor Y

of cr indices, and the set

of orbital indices. The permutation Pjk ——P is speci-
fied by a permutation

P:(1, . . . , NI)~(P1, . . . , PNJ)

of the set of NJ integers. For example, if PJI, =P is
the permutation P represented by the last diagram
of Fig. 6, then

(Pl,P2,P3)=(3,1,2) .

If j is a baryon edge, then each index ojk is two
valued and these two values together with a-'se-
quence (P1, . . . , P3) designate two orthonormal
vectors
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(o =1),v'2

2
I
p2) —

I pl) —
I
p3)

(o =2),v'6

where (n
I
m ) =5„~ for any integers n and m. Ifj is a baryonium edge, then each index ujk is three valued,

and for each permutation (P 1,P2,P3,P4} of the four integers (1,2,3,4) an orthonormal set of three vectors is
defined:

I
P 1)—

I
P2)

2

I
o, (P1,P2P3P4) }= (

I
P 1 )+ I

P2) —
I
P3) —

I
P4) )I2 (o =2),

IP3) —IP4)
2

(17)

The permutation operator Pjk Pacts i——n the space associated with the variables (aj,oj ), and has matrix ele-

ments

where (a
I

a') =5 . The operator Pzk in (14) acts on M 'j'(Aj) as follows:

(19)

where a sum over the repeated indices ai and 0j is
implied.

The operators P,k are defined analogously.
This concludes the description of the sign, sym-

metry, and statistical factors in the bubble-diagram
functions M, and in the parts Z of these functions
that arise from the zero-entropy contributions to the
scattering functions Mb corresponding to their bub-

bles b.

n&

Pjk =njpi,
k=1

(20)

Pj Q Ia, )(a; I——,
a

(21}

where Pz is a projection operator onto a sym-
metrized subspace of the space spanned by
the vectors

I aj,crj). The projection operator PJ can
be written in the form

V. PARTICLE VARIABLES

The sum of permutation operators PJJ, occurring
in (15) can be written

where aj is a set of indices that labels the vectors of
an orthonormal basis of the symmetrized subspace.

The part of the integrand of (14) that is associated
with edge j of 8 is

Z 's'(A 'J'(g))hj+Pjkz "g'(A '1"g')= (Zj'
I
aj', crj

)—(aj', oj I hj I aj, cri )(aj,crj I gpjk I
Zl' )

=(z,"Ih, n, P, Iz;)
=~n, (Zj'

I h; Pj I Zj )~n,
=~n (Z"

I
P h PI Z. )~nj.

=~g&zj" I aj &&aj Ihj I aj &&aj I zj &~nj (22)
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The result of applying this transformation of vari-
ables to each edge j and e takes (14) to the form

Z'=~'~fg Z "s' II~es~s, (23)
gCB

where the carets on Z, H, and 0. indicate that the
variables (aj,crt) are replaced by the variables rrj.
Moreover, a factor ~nz for each edge j of 8 in-

A Gb-
cident upon b has been introduced into Z

The orbital quantum numbers in AJ =(pj,)Mi, rrj)
are separate from the spin quantum numbers that
occur in a . Rest-frame Clebsch-Gordan combina-J'
tions gives states of definite J, which are precisely
the particle states of the constituent-quark model. '

Boosts from the rest frame give covariant forms of
the hf for states of fixed L Use of these variables
gives an alternative form of (23):

Za s)&pZG rrrrHrrgrr„rr (24)
-ca b

where the tilde over Z, H, and os signifies the
use of the variables AJ of the constituent-quark
model.

The functions Z"' 's' depend on the quark dia-

gram G (g), and hence on the order of the variables,

A; in A . But, in contrast to the case of the zero-

entropy functions Z 's', the individual variables A;
occurring in the argument of Z G 'rr' do not specify,
for example, which of the three flavors is to be as-
signed to the solitary quark edge incident upon a
baryon vertex i of g.

In principle the intermediate particles occurring
in (24} include only the stable parameters, but im-

portant cut contributions can often be simulated by
contributions from poles lying close to the physical
region.

VI. TOPOLOGICAL EXPANSION A

By virtue of the cyclic ordering of the variables
b

associated with any zero-entropy function Z
b b

Z 'I', or Z ' ', a topological expansion essential-

ly identical to that of paper I can be introduced.
This expansion is defined by specifying that the
zero-entropy quark graphs G (g) be placed on an
oriented surface X with the directions of all solitary
quark lines agreeing with the direction induced by
the orientation of X, and with the directions of all
paired quark lines opposing the direction induced by
the orientation of X. The orientation of X as
represented on paper is taken to be clockwise (see
Fig. 7).

All quark-particle graphs g formed by connecting
zero-entropy graphs 6 by particle lines in the
manner discussed in the preceding section are then

classified by their boundary structure and topologi-
cal index A,(g).

The boundary structure is specified by a de"om-
position of the external particle edges into a set of
cyclic sets corresponding to the set of boundaries of
g. The topological index is given by

k(g) =e(g) —u(g) —~(g)+1, (25a)

where g(g) is the Landau graph obtained by con-

tracting to point vertices the quark graphs G (g ) but

retaining the cyclic order in which the edges are in-

cident upon these vertices. The boundary structure
and topological index together is denoted by r(g )

The topological expansion asserts that M can be
decomposed into a sum of terms M' corresponding
to different topological types r, and that when any

equation X=O derived solely from unitarity and

cluster decomposition is separated into parts of dif-
ferent topological character, then each such part of
the equation is separately satisfied:

X=gX'=0 implies X'=0 (all r) . (26)

No cancellations among the parts X' of different to-
pological type ~ are required.

The "ordered amplitudes" are the parts M' corre-
sponding to A, =O and a single boundary. The
constituent-quark-model particle variables A; can be
used. The ordered amplitudes satisfy the closed,
planar discontinuity formulas: their discontinuity
formulas are the same as those of the physical
scattering functions except that the contribution M
associated with bubble diagram 8 is reduced to a
sum of terms corresponding to the different ways
the Landau graph b (B) can be drawn as a planar
graph gz(8), and for each such term the scattering
function M associated with bubble b of 8 is re-
placed by the ordered amplitude specified by the cy-
clic order in which the lines of g~(8) enter vertex b

Summation of the ordered amplitudes associated
with any process gives the planar amplitude, which
is the first approximation to the physical scattering
function. The situation is essentially identical to
that described by Chew and Rosenzweig. "

Pure baryonium states do not couple to pure
meson states at the planar level, and hence the pla-
nar baryonium Regge trajectories are distinct from
the planar meson trajectories. The sdection rule
forbidding baryonium-meson transitions arises from
the fact that in the particle graphs g(g) the meson

where e, v, and co stand for numbers of edges, ver-

tices, and windows of the graph, or equivalently by

k(g(g) }=e(g(g)) —U(g(g)) —ar(g(g) }+1,
(25b)
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edges connect only to each other and to the left-
hand sides of the (directed} baryon lines, whereas
baryonium edges connect only to each other and to
the right-hand sides of baryon lines.

As in the meson sector the ordered amplitudes M'
b

are not equal to the zero-entropy functions Z ~ . In
the meson sector the ortho-quark —para-quark tran-
sitions were considered elements of complexity; and
the zero-entropy amplitudes corresponded to the
planar graphs g having no such transitions. In the
general hadron case there is an added element of
complexity associated with the crossings of quark
lines illustrated by the last five terms in Fig. 6.
Thus in the general case the zero-entropy amplitudes
correspond to the graphs [f or g(g}] having one
boundary, topological index zero, no ortho-
quark —para-quark transitions, and no quark-line
crossings.

The zero-entropy level is also a closed, planar lev-
el: the discontinuity formulas for the zero-entropy
functions are identical to those for the physical
scattering functions except that the discontinuities
associated with nonplanar Landau graphs are zero
and the discontinuity formulas associated with pla-
nar Landau graphs have, throughout, zero-entropy
amplitudes in place of physical scattering ampli-
tudes. The spin factors factor out.

In specifying the ordered level of the topological
expansion, and all higher-order levels, the topologi-
cal character of a contribution is completely charac-
terized by the boundary structure and topological in-
dex A, of the associated graph g, or g (g ). For speci-
fying the zero-entropy level one must assign an
ortho-quark or para-quark character e~ to each
quark line of g, and a permutation P~k to each inter-
nal particle edge j of g, or g(g). This latter permu-
tation is presented diagrammatically by "thicken-
ing" the particle edge into a ribbon lying on X, and
drawing on this ribbon the appropriate permutation,
as illustrated in Fig. 6.

The zero-entropy amplitudes are distinguished
from the ordered amplitudes in several ways. Each
"particle" j at the zero-entropy level is identified by
a set of variables AJ. in which the linear order of the
spin-flavor variables is fixed. At the ordered level
each basic particle is specified by a set of variables
that specifies a particle of the constituent quark
model, and these latter particles are invariant under
permutations of the quarks (and likewise the anti-
quarks) in the particle. On the other hand, the por-
tion of any boundary or orbit lying between two ver-
tices has a single well-defined flavor for any graph g
corresponding to a zero-entropy amplitude, whereas
for graphs g corresponding to ordered amplitudes
flavor is not necessarily conserved on the boundary
in this way.

VII. TOPOLOGICAL EXPANSION 8

To construct a topological expansion that isolates
the zero-entropy functions one proceeds as follows.
Start with a set of zero-entropy quark graphs G; of
the kind shown in Fig. 4(a). Each quark edge is as-
signed an ortho-character or para-character, a fla-
vor, and also a color 1, 2, or 3. Each solitary quark
line has color 1, and each paired quark line has color
2 or 3 according to whether it is an internal or peri-
pheral line in the graph 6;.

These graphs 6; are joined together by particle
edges. Each of these connecting particle edges is
decomposed into a sum of contributions of the kind
illustrated in Fig. 6. These connecting particle edges
are now contracted to points. Each of these points
is a junction vertex, where two graphs 6; meet. The
quark graph formed in this way is
6 =G„.62G).

Each junction vertex V is associated with a per-
mutation Pv. This permutation defines a separation
of the quark edges incident upon V into a set of as
sociated pairs: each quark edge incident upon V and
lying in one of the two quark graphs 6; that meet at
V is associated with a quark edge incident upon V
and lying in the other 6;.

The permutation I (see Fig. 1) is the identity per-
mutation. A junction vertex V is a removable vertex
if and only if (1) Py I and (2) i——n each associated
pair of quark edges incident upon V either both
edges have ortho-character or both have para-
character (i.e., none of the 2, 3, or 4 quark lines
passing through V has an ortho-para transition),
and, moreover, both of these edges have the same
flavor.

A removable vertex V of 6 can be removed. In
this process each associated pair of quark edges in-
cident upon V is replaced by a single quark edge.
The color, flavor, and ortho-para character of each
new single quark edge is the same as these charac-
teristics of either one of the two quark edges that it
replaces.

Let 6"be the quark graph obtained from 6 by re-
moving all removable vertices. Then F(6",p)
=+F(G,p): The spinor function associated with
6" is the same as the spinor function associated
with 6, up to a sign. (This change of sign is the
same as the change of the sign associated with the
order of the fermion variables. ) Let 6"' be G"
minus lines incident on no vertex, with a P~ for
each junction V, and a flavor, color, and ortho-para
label for each edge.

Let 6' be the graph obtained from 6 by cutting
each nonremovable vertex V in two, in the way that
separates the two graphs 6; that meet there. Let
GJ', jE(J},be the connected parts of 6'. Let gj' be
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the particle graph associated with GJ. It can be
constructed by replacing each subgraph G; of GJ by
the particle-quark graph g(G;)=g;, thereby replac-
ing GJ by g(GJ )=g J, and then taking its particle
subgraph g(gj)=gj'. Alternatively, one may re-

place each removable vertex of GJ' by a particle line
and then contract each graph G; to a point.

The topological class of G is defined by the quark
graph G"' and the set of topological indices y(gJ ),

jE(J).
This topological classification uses only the pla-

nar graphs G;. One can, of course, give an
equivalent formulation in terms of the feathered sur-

face associated with the graph g(G) (see Fig. 4).
Then the two colors 2 and 3 can be considered to
identify quark lines that lie, respectively, above and

below the plane containing both the junction lines

and the quark lines with color 1. The symmetry be-

tween 2 and 3 is then displayed more graphically.

VIII. CONNECTION TO RECENT O'ORKS

The foregoing parts of this paper were written ear-

lier, ' but were not then submitted for publication
because of uncertainty as to whether the formalism
could be successfully applied to physics: in spite of
the automatic occurrence of the SU(6)~ and quark-
model symmetries at low levels of the topological
expansion it was not clear whether the theory as a
whole could agree with experiment.

One concern was that the value of the universal
strong-interaction coupling constant was fixed in

principle by nonlinear conditions, but it was not
known whether a calculation would yield a value

anywhere close to the empirical one. Recently, how-

ever, Espinosa, ' working under the guidance of
Chew, has completed several different calculations,
based on several different approximations, and the
agreement between the calculated and experimental
values of g is within a factor of 2.

A second concern arose from the fact that the
part of the propagators that contributes to the zero-
entropy amplitudes is small, particularly for baryons
and baryonium, and this smallness creates the possi-
bility that the zero-entropy amplitudes might be use-

less, either as a basis for practical calculations, or
even as a basis for understanding the approximate
symmetries of physical amplitudes. In previous
works" based on the topological approach it could
be argued that the planar amplitudes were a large
part of the whole. This property is not shared by
the zero-entropy amplitudes, and it appeared that it
would be necessary to treat these amplitudes not as
reasonably good first approximations but more like
the fundamental point interactions of local field
theory. However, it was not known exactly how to

combine the nonperturbative conditions on zero-

entropy amplitudes with a perturbative expansion
for higher-order corrections. Nor was it clear
whether such a procedure would allow any signifi-
cant remnant of the low-order symmetries to pro-
pagate to the physical level.

These questions have now been examined in some
detail by Chew and Levinson, with encouraging re-

sults. The central idea of the Chew-Levinson pa-
per' is to construct a Feynman-type expansion of
the scattering function that associates the vertices of
the graphs not with the point-coupling polynomials
of local field theory but rather with the zero-entropy
amplitudes. To obtain a one-to-one correspondence
between the particle-quark graphs of the topological
expansion and corresponding Feynman-type func-
tions a particle contraction rule is introduced. This
rule specifies that any zero-entropy subgraph should
be contracted to a point vertex.

In a particle-quark graph each particle line l; of
the Feynman graph is replaced by a set s; consisting
of this particle line l; and its associated set of 2, 3,
or 4 quark lines. When all zero-entropy parts are
contracted to points no particle line l;, or its associ-
ated set s;, remains unless this set s; is such that ei-

ther ( 1) some quark line of s; has an ortho-

quark —para-quark transition (of the kind discussed
in paper I), (2) some pair of quark lines of s; under-

goes a color switch (of the kind illustrated by the
crossed-line contributions of Fig. 6), or (3) neither of
the above two conditions holds, but the particle line

l; of s; begins and ends at the same vertex V, and it
enters and leaves V along nonadjacent line segments
of the set of cyclically ordered end segments of lines

l; incident upon V.
Chew' has argued that any graph containing a

set s; satisfying the condition (3) stated above should
be classified as a weak-interaction graph. Then each
of the remaining "strong-interaction" graphs has a
different topological character, and its topological
type is uniquely specified by the (partially contract-
ed) particle-quark graph with ortho-quark —para-
quark transitions and color switches displayed.
Consequently the topological expansion at the
strong-interaction levels becomes identical to the ex-
pansion in terms of these partially contracted
particle-quark graphs.

The Chew-Levinson rules for this graphical ex-
pansion differ from the Feynman rules in the fol-
lowing ways: (l) the vertices correspond to zero-
entropy amplitudes, rather than polynomials; (2)
each line l; of the Feynman graph is replaced by the
set s; consisting of l; and its set of 2, 3, or 4 associat-
ed quark lines; (3) each such set s; has some element
of complexity (either an ortho-quark —para-quark
transition or a color switch); (4) each vertex is an or-
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dered vertex —the cyclic order of the particle and
quark lines incident upon a vertex determines the as-
sociated zero-entropy function; and (5) certain nor-
malization factors are different from Feynman's.

The unusual normalization factors mentioned in
point (5} are demanded by the required compatibility
of the S-matrix discontinuity formulas with the to-
pological expansion. They consist of unorthodox
factors of 2 in the normalizations of spin states and
propagators. These factors arise from the topologi-
cal independence of the ortho-quarks, and para-
quarks.

To understand the origin of these factors of 2 one
may recall that the purpose of paper I was to ensure
the solubility of the spin-dependent aspects of the
duality conditions in a trivial way by the introduc-
tion of spin factors analogous to the Chan-Paton
factors for isospin. The conditions allowed two dif-
ferent solutions —the ortho-amplitudes and the
para-amplitudes. The normalizations of these
ortho-amplitudes and para-amplitudes were fixed by
the requirement that they be additive contributions
to the full amplitude: the full amplitude was
separated into a sum of terms associated with dif-
ferent top ologies, and the ortho-amplitude and
para-amplitude contributions were defined to be to-
pologically different. With the normalizations fixed
in this way the zero-entropy amplitudes each satisfy
planar-type discontinuity equations: their discon-
tinuity equations are identical to those of physical
scattering functions except that their singularities
are associated only with planar diagrams, and in
each planar-diagram discontinuity formula each of
the usual physical scattering amplitudes is replaced
throughout by appropriate zero-entropy amplitudes.

By virtue of these normalization conventions one
must, in the construction of the full amplitude, sim-

ply add together the ortho-quark and para-quark
contributions: one cannot introduce any extra nor-
malization factor without disrupting the condition
that the whole amplitude be the sum of the topologi-
cally different parts.

The normalizations of the contributions of the
zero-entropy functions to the discontinuities of
physical amplitudes are fixed by Eq. (4), which de-

fines the zero-entropy part of any M function occur-
ring in a discontinuity equation to be a sum of all
zero-entropy functions compatible with the set of
physical particles associated with M, and by (6),
which defines the bubble diagram functions from
which the discontinuity equations are constructed.
Each function Z(PA) occurring to (4) is a sum of
the 2 zero-entropy functions corresponding to the
independent selection of the ortho-propagator or
para-propagator for each of the X quark lines of
G'(A).

S(p„pb }=+u, ™(p„pb)+ub cr, (27)

then the value of S(p„pb) corresponding to the
ortho-quark (para-quark) part of the quark propaga-
tor in M(p„pb) is the lower-right-hand (upper-left-
hand) submatrix of the four-by-four matrix desig-
nated here:

Each intermediate particle line 1; of a bubble dia-

gram can be replaced by the corresponding set of s;
of particle and quark lines. Then each intermediate
quark line qj runs between two bubbles. The zero-
entropy part of the M function represented by any
bubble is represented by a point vertex in the partial-
ly contracted particle-quark graphs. This point ver-
tex can be "decontracted" into the sum of particle-
quark graphs g(G;} of Fig. 4 that represents this
zero-entropy part. In this sum each quark line of
the graphs g(G;) occurs as a sum of an ortho-quark
and a para-quark line. Thus the intermediate line qj
can plug independently on either end into either an
ortho-quark or para-quark line of some g(G;). This
gives a sum of four terms.

In the original two-component formalism all four
terms run through the same two-by-two spin factor
u o of Eq. (8). But in the four-component formal-
ism the ortho-quark and para-quark parts are joined
together to form the lower and upper halves of one
four-component vector. Thus in the four-
component formalism the four terms run through
four separate two-by-two submatrices of the four-
by-four Dirac matrix associated with the intermedi-
ate quark line.

In the intermediate-particle rest frame, where the
matrices u o in (8) are unit matrices, the intermedi-
ate four-by-four Dirac matrix is just 1+P: it is the
four-by-four matrix that has a two-by-two unit ma-
trix in each of the four corners.

The transformation from the two-component to
four-component formalism was described in detail
for mesons in Appendix C of paper I. That conver-
sion exploited the fact that the coefficients for com-
bining a quark and an antiquark into a vector or
scalar meson were given by the Pauli matrices
oz~/V 2. In the more general situation encountered
here one must use general Clebsch-Gordan coeffi-
cients.

To convert to the four-component formalism in
the general case one may treat each quark line
separately. If one uses the expressions p, o/m, and
—pb o/mb for the ortho-quark and para-quark
propagators, and converts a zero-entropy M func-
tion to the associated S matrix by means of the
universal connection (for each quark line)
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U(v, )U(ub ) for final~initial,

—U(u, ) V(vb) for final+ —final,

—V(u, ) U(ub ) for initial~initial,

(28a)

(28b)

(28c)

or

V(u, ) V(ub ) for initial~final . (28d)

Here U(u) and V(u) are the four-by-four matrices
obtained from the spinors U(v, i, ) and V(v, A, ) de-
fined in (C41) of paper I by omitting the spinor
wave functions Pq/v 2 and Pq/W2. ' In the condi-
tions final~initial, etc., the right-hand designation

I

(here initial) refers to the character of the particle
attached to the trailing end of the quark line, and
the left-hand designation (here final) refers to the
character of the particle attached to leading end of
the quark line. As usual, U=U P, etc. , and UU,
etc., represents a sum over the four-component spi-
nor index.

In (28) no account is taken of statistics —the order
of variables is not altered.

If P~ and P~ are normalized two-component wave
functions [as in (C41) of paper Ij, then in the matrix
elements of S(p„pb) the sum of the ortho-graph
and para-graph contributions associated with the
quark line in question is

(px
~
S(p„pb)

~ p&) = U (u„A)U (ub, ,p) F for final~initial,

(Pq
~
S(p„pb)

~ P~) = U'(v„A, ) V'(ub, p) F for final~final,

(p~ ~
S(p„pb)

~ pz) = V'(v„k, )U'(ub, p) F . or initial+ —initial,

(g
~
S(p„pb )

~ pz) = V '(u„A ) V'(ub, p) F for initial~final,

where

U'(v)=v 2U(u),

V'(u)= —v 2V(u),

(29a)

(29b)

(29c)

(29d)

(30a)

(30b)

and F represents the product of factors associated with the other quark lines, and also the remaining scalar fac-
tor f.

When one takes the product of two M functions, with the intermediate metric factor v o from (8), the corre-
sponding 5 matrix is

Qua 'rrM(p~ ~ pb )ub 'NM(pb &p~ )+v~ 'o' =S (p~ ~ pb )S(pb ~p~ ) ~

Substitution of (29) into (31) yields the intermediate-state factor
2

U'(ub, k) U '(ub, A)= 1+ub '}'=(P~+ mb )/mb for pb & 0
A, =1

(31)

(32a)

2

g V'( b, Av)V'(ub, A)= —1+ub y= (pb+mb)/—mb for pb &0.
i=1

(32b)

U'(u, ){,) U'(v, A, ) =2= —V'(u, A, ) V'(u, A, ) . (33)

These unusual normalization factors have arisen
from the fact that the intermediate quark line is car-
rying four topologically distinct contributions.

Here use is made of the fact that pb
——vbmb

(pb ———vbmb) if the particle connected to the lead-
ing end of the quark line in M(pb, p, ) is final (ini-
tial). Thus, apart from a sign, the familiar Feynman
projection operator appears, multiplied, however, by
2. And, correspondingly, the states U'(u, )... , etc.,
that are associated with the external lines of the
graph are normalized to 2, rather than 1:

I

Since the extra factor of 2 appears in the normaliza-
tions of both the spinor wave functions and the
propagator one could remove it by a renormalization
of the magnitude of the zero-entropy function.
However, any such renormalization would upset the
fact that the same scalar factor f appears in the
zero-entropy function for all three types of particles:
mesons, baryons, and baryonium. This important
"super-symmetry" property arises from the fact that
the algebraic factor F (A) drops completely out of
all zero-entropy discontinuity equations, and leaves
the equations that define f independent of particle
type.
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The question of signs is now discussed. Each
zero-entropy function Z (A) is a product of an alge-

braic factor F (A), a scalar factor f (A), and a
statistics sign factor o (A). The algebraic factor is
the product of the ortho-propagators or para-
propagators p, o/m, or —pb o/mb associated with
the quark lines of G. The scalar factor f (A) is a
function of the scalar invariants. The sign o (A)
was specified at the end of Sec. II.

The sign o (A) can also be expressed as ( —1),
where X is the number of permutations needed to
take the end points of the directed quark lines of
G(A) into an order in which the two end points of
each quark line are adjacent, with the leading end
point of each such line standing immediately to the
left of its trailing end point. The original order of
these end points in the graph

G(A)=G(A), . . . , A„)

is specified by the order of the corresponding sets of
variables A;, as specified in Sec. II. These rules, to-
gether with the rule that the link between A& and A„
placed along the top of the graph, give a natural way
of ordering the end points of the quark lines of any
zero-entropy graph. The statistical factor ( —1) is
then plus one or minus one according to whether the
connection along the top (i.e., between A t and A„) is
a diquark line (i.e., a pair of quark lines) or a soli-
tary quark line. This sign agrees with the one given
at the end of Sec. II.

Note that this sign as determined by the rule
given in Sec. II is fixed by the character of the parti
c1es associated with vertices 1 and n: the expression
( —1) in terms of quark lines is merely auxiliary.

Let G~ and G2 be two particle-quark graphs. Let
G& stand to the left of G2, and consider the product
graph G~ )& G2 obtained by joining via sets s;, certain
final-particle vertices of Gz to corresponding
initial-particle vertices of G ~. Each connecting

quark line runs either forward (right to left) or
backward (left to right).

G, G2Let F 'XF ' be the algebraic function obtained
G) G2

by taking the inner product of F ' and F ' with
respect to the variables associated with the inter-
mediate quark lines of G~ X 62, including, as in (6),
the appropriate metric factor u o for each such in-
termediate quark line.

In the simple planar products that occur at the
zero-entropy level the function corresponding to
product graph G~ )&62 ~s

FG& x G2 G& G2FG& FG (34)

' =~r 'a' '(-1) (-1) (-1) (36)

where ( —1) is the number of windows. Thus (35)
can be written in the alternative form

FG)xG2 a[6)xGP)FG( XFG~( 1)b+ (35')

Combining the factor ( —1) from (35') with (29)
one obtains for each intermediate quark line a factor

In the general case the ordering of the intermediate
variables must be considered, and the function is, ac-
cording to (6),

F ~ ~
( 1)f& ~&2F ~XF 2 (35)

where f is the number of permutations of fermion
variables needed to bring the two ends of each inter-
mediate fermion line into coincidence.

Let b be the number of backward-directed inter-
mediate quark lines connecting G2 to G~. Let
[G~ X G2] (note the brackets) be the graph obtained
by eliminating the vertices on the two ends of each
intermediate line of G~ X G2, continuing the particle
and quark lines of G2 into those of G, via the inter-
mediate lines of G~ XG2 (with no color switching),
and then discarding any closed quark loops (i.e.,
windows). Then

2 2

g U'(U, A, ) U'(v, A, )0(p ) —g V'(U, i, ) V'(u, A, )0( p) =(p+—m)/m . (37)

This is twice the Feynman expression. The remain-
ing algebraic factors are supplied by associating with
each external line a factor U'(p, A, ), U '(p, A, ), V'(p, A, ),
or V (p, A, ) according to the initial vs final and parti-
cle vs antiparticle character of the particle associat-
ed with that line. The remaining factor ( —1) is the
analog of the familiar closed-loop factor occurring
in the Feynman rules.

The formulas derived above combine in an ap-
parently self-consistent way the zero-entropy func-

I

tions that arise at the lowest level of the topological
expansion with Feynman-type expressions for all
higher-order terms in the topological expansion.
Convergence of the individual terms, and perhaps
even of the expansion itself, should be helped by the
(assumed) dual-Regge asymptotic behavior of the
zero-entropy amplitudes that here replace the poly-
nomial interaction terms that arise from the notion
of a point interaction.
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tsThe normalization factor 1/W2 was inadvertently omit-
ted in a preprint version of (C41). Here I take U{U,X)
and V(u, A, ) to have the usual normalizations

U(v, A, )U(u, A, )=1=—V(U, A, )V(u, k) .


