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Spin is incorporated into the hadronic topological expansion scheme. Spin analogs of
Chan-Paton factors are introduced in a way that avoids the troubles encountered in earlier

attempts. Those troubles, at the meson level, were, first, the occurrence of twice the wanted

number of pseudoscalar and vector mesons; second, the occurrence of parity-doublet

partners of the pseudoscalar and vector mesons; and third, the occurrence of these parity-
doublet partners as particles of negative metric, called ghosts. These troubles are all avoided

by introducing a new topological level, called zero entropy, that lies below the ordered level.

At the zero-entropy level quarks of opposite chirality are treated as distinct particles. The
theory has been extended to all hadrons, and the basic particles are exactly those of the
constituent-quark model, which for baryons start with the (56+) and (70 ). The theory is

formulated in the M-function framework, where the "quarks" are represented by two-

component spinors, and it entails SU(6) ~ symmetry of the hadronic vertices at a low level of
the topological expansion.

I. INTRODUCTION

A scattering amplitude can be represented as a
sum of contributions from all ways in which the
process can occur. Each contribution has a phase
factor, and the scattering amplitude between ran-
domly chosen states tends to be small due to an
averaging out of these phase factors. The dominant
transitions are between states in which the elements
of order characterizing the initial state are carried
into the final state in some "direct" way.

This tendency of the dominant transitions to
preserve order is particularly important in hadron
physics, due to the inherent complexity of the had-
rons and their interactions. Indeed, this order-
preserving tendency has been made the basis of a
successful approximation procedure for meson phys-
ics. This procedure is based not on the smallness of
any coupling constant but rather on the smallness of
contributions that do not preserve order. Order is
defined so that it is preserved by contributions to the
scattering amplitude that correspond to sequences of
scattering events represented by graphs that can be
drawn in a plane with no lines crossing. Contribu-
tions from nonplanar graphs generally have phase
factors that tend to average to zero in high-energy
regimes.

This topological approach to hadron dynamics,
which originated in some works by Veneziano, ' and
has been pursued by many workers, has been recent-
ly reviewed by Chew and Rosenzweig. They show

how the topological expansion procedure, combined
with the requirements of unitarity, analyticity, dual-

ity, and Lorentz invariance, organizes and predicts
many of the dominant features of meson physics.

The successes achieved in meson physics by this
topological approach have motivated efforts to
develop it into a comprehensive basis for particle
physics. The most obvious deficiency of earlier
work is its restriction to mesons. Accordingly, one
major aim of the present two-part work is to extend
the theory to baryons. Paper II is devoted to that
task.

But beyond this problem of baryons, there lie oth-
er problems of equal importance. To provide a sat-
isfactory basis for particle physics, the theory must,
first of all, provide a practical method of determin-
ing, through the nonlinear bootstrap conditions, the
magnitudes of all coupling constants that occur in
particle physics. Phenomenological analyses indi-
cate that the ratios of the hadronic coupling con-
stants satisfy SU(6)iy symmetry to a degree unlikely
to be purely accidental. It is therefore probably
essential to the practical viability of the topological
approach, considered as a general basis for particle
physics, that it be constructed so as to exhibit
SU(6) ~ symmetry at a low level of topological com-
plexity. Accordingly, a second major aim of this
work is to construct a topological bootstrap frame-
work that treats the spin degrees of freedom in a
way that ensures SU(6)it symmetry at the lowest
level of the topological expansion.
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Historically, this SU(6) ~ property emerged,
within the present work, as an unexpected by-
product of the effort to generalize the Chan-Paton
factors from isospin to ordinary spin. These origi-
nal Chan-Paton factors enjoy the following impor-
tant property: every product of amplitudes that
contributes at the lowest topological level to any
given amplitude has the same Chan-Paton factor.
This product property ensures the existence, at the
lowest topological level, of a solution to the
isotopic-spin part of the dual topological bootstrap
dynamical conditions.

It is not obvious that this solution is unique.
However, it is a simple solution that is quite possi-
bly unique. For, a priori, the infinite number of
dual bootstrap conditions need have no solution at
all.

To ensure the solubility of the spin part of these
dynamical conditions, the following requirement is
here imposed: the spin generalization of the Chan-
Paton factors are required to satisfy the direct gen-
eralization of the product property enjoyed by the
original Chan-Paton factors. This demand deter-
mines the basic character of the spin formalism
described in this paper.

The problem of extending the Chan-Paton factors
to ordinary spin was considered by Mandelstam in
the late sixties. Mandelstam's work, like the
present work, was based on M functions. These
functions have the combined advantage of possess-
ing simple crossing properties and a minimal num-
ber of spin components: crossing is represented by
analytic continuation alone, and the redundant com-
ponents that arise from describing spin- —, particles
by four-component wave functions are avoided. Us-
ing these functions, one finds that the required prod-
uct property (of the spin generalizations of the
Chan-Paton factor) cannot be reconciled with the
demand of invariance under parity. Thus, Mandel-
stam, proceeding in the straightforward way,
summed two parity-reflected contributions, each of
which individually satisfies the product property, in
order to obtain a parity-invariant form. However,
this procedure of simply summing two separate
terms, each of which enjoys also simple factoriza-
tion properties, led first to a parity-doublet partner
for each of the observed mesons m.,p, g, co, and then
to a second doubling of this set of mesons.

The procedure followed here differs from that of
Mandelstam by its strict enforcement of the
product-property requirement described above. The
present procedure, originally introduced to ensure
the solubility of the spin part of the dynamical con-
ditions, generates a number of important further
consequences. First, by keeping the treatment of
spin closely parallel to the successful Chan-Paton,

treatment of isospin, it leads automatically to
SU(6)~ symmetry of the hadronic coupling con-
stants, at the lowest topological level. Second, it au-
tomatically produces a basic set of mesons that ac-
cords exactly to the phenomenologically observed set
(~,p, g, co): there is no parity doubling, or any other
doubling, of the meson spectrum. Third, when com--
bined with the certain assumptions about the num-
ber of flavors, it leads to a supersymmetry connec-
tion between the meson-meson-meson coupling con-
stants and the meson-baryon-baryon coupling con-
stants. This connection is in good agreement with
experiment. Fourth, when supplemented by a plau-
sible universality requirement, it leads to a value of
the ratio of the strong-interaction coupling constants
to the electromagnetic coupling constant. This ratio
is also in satisfactory agreement with experiment.

The technical basis of these achievements is the
fact, recognized and exploited already in the work of
Chew and Rosenzweig, that different levels of the
topological expansion can act in different Hilbert
spaces. In the paper of Chew and Rosenzweig, the
lowest level of the topological expansion was the
"ordered" level, and each ordered amplitude was as-
sociated with a corresponding ordered Hilbert space.
These ordered amplitudes were summed to form
"planar" amplitudes, which were associated with
new "planar" Hilbert spaces. Approximate
correspondence to physical amplitudes was possible
only at the planar and higher levels of the topologi-
cal expansion. Yet, the ordered amplitudes were im-
portant, for the topological expansion concentrated
all nonlinear aspects of the original unitarity equa-
tions in the ordered unitary equations satisfied by
the ordered amplitudes. These ordered unitarity
equations were much simpler than the original uni-
tarity equations because they involved only planar
Landau diagrams. Thus, the critical problem of
determining the overall strength of the couplings
was greatly simplified. Moreover, the representation
of physical amplitudes by low-order terms in the to-
pological expansion allowed many aspects of meson
physics to be understood even without solving the
nonlinear equations.

The product-property requirement on the spin
generalization of the Chan-Paton factors places
severe conditions on the theoretical structure. These
conditions can be satisfied by introducing a new to-
pological level, called zero entropy, that lies below
the ordered level. The individual zero-entropy am-
plitudes are not invariant under parity, and, like the
ordered amplitudes, they cannot be regarded as ap-
proximations to the physical amplitudes. It is the
planar amplitudes, which do conserve parity, that
are again to be considered as the first approximation
to the physical amplitudes.
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In the work of Chew and Rosenzweig, the planar
amplitudes were formed as finite sums of the or-
dered amplitudes. In the present framework, the
planar amplitudes are formed as infinite sums of
zero-entropy amplitudes. The infinite sums create
new technical problems. But they also create the
possibility, and, in fact, the necessity, of calculating,
for example, the m-p mass difference. For at zero
entropy, these two masses are equal.

The present work is part of a long-term collabora-
tive effort with Geoffrey Chew to construct a practi-
cal basis for particle physics based on dual topologi-
cal bootstrap dynamics. Chew's ideas are woven
into it in many ways. However, this paper deals
only with certain spinor, topological, and group-
theoretic aspects of the whole theory; other impor-
tant aspects are left untouched.

One problem not considered in this paper itself is
the extension to all hadrons of the formalism
developed herein for mesons. An extension is
described in paper II. It incorporates also the
group-theoretic properties of the constituent-quark
model. The whole work is formulated completely
within the S-matrix framework, and hence involves
no microscopic description in terms of quark wave
functions. Hence, it provides, in principle, the foun-
dation of a Lorentz-covariant approach to particle
physics that has a basic set of particles that agrees,
as far as spin, parity, and other group-theoretic
properties are concerned, with those of the
constituent-quark model, yet has no confinement
problem. Moreover, it incorporates SU(6)~ symme-
try, at the lowest topological level.

The present paper is associated with a recent pa-
per by Chew and Poenaru; it describes technical re-
sults that have been used in the development of their
ideas. However, the aims of Chew and Poenaru are
broader than those of the present work, which sim-

ply accepts the group-theoretic structure of the
constituent-quark model on the basis of its empirical
success. Chew and Poenaru seek to derive the
group-theoretic structures from topological con-
siderations and consequently need a richer topologi-
cal structure than the one used here. Their topologi-
cal structure contains, in addition to the quark-
particle graphs of the present theory and surface
upon which these graphs are imbedded, also a
second surface, called the quantum surface, in which
the group-theoretic relations associated with flavor
and other symmetries reside.

In the present work, flavor is an unconstrained
variable. The flavor structure may, in fact, be deter-
mined by the nonlinear dynamical equations, but it
is not determined within the present framework by
topological considerations alone.

Proposals for extending the theory to electroweak

interactions have been made recently by Chew,
Finkelstein, McMurray and Poenaru. '

A crucial problem not addressed in any of these
works is the development of reliable methods for
solving the nonlinear conditions. These conditions
should determine the overall strength of the hadron-
ic and electroweak interactions. However, several
calculations have been performed, ' and they all
yield values that differ from the empirically ob-
served overall strength of the hadronic-electroweak
interaction by a factor of roughly 2. This result
seems significant, particularly because the spinor,
topological, and group-theoretic considerations in-
troduce as many as 20 different factors of 2 into this
result. These theoretical factors were calculated pri-
or to the calculation of the approximate solutions to
the nonlinear equations.

A second major problem not addressed in any of
the published works is the development of reliable
methods for constructing the planar amplitude from
zero-entropy amplitudes. This construction must
yield, for example, a first approximation to the m-p

mass difference. Some calculations of this differ-
ence have been made, with encouraging results, but
the work is still in a developmental stage.

Much of the work contained in this paper was
completed several years ago, ' but was not submitted
for publication because of the above-mentioned ele-
ments of incompleteness of the whole theory. How-
ever, a number of recently published papers' '2 are
based directly on the spin formalism developed in
that earlier work. This fact, in conjunction with the
encouraging character of works in progress, makes
publication of this expanded version now appropri-
ate.

The theory developed here is based on the M-
function formalism. Since the original description
of that formalism was very brief, the key points are
described here in Sec. II, with particular emphasis
on the results that are important in the context of
the present work. The main body of the paper is
contained in Sec. III. The results are summarized in
Sec. IV. Appendix A shows that discontinuity equa-
tions, though usually considered in S-matrix theory
as being derived from unitarity, are actually more
basic than unitarity. Appendix 8 explains the
failure of unitarity at the zero-entropy level. The
planar discontinuity equations nevertheless continue
to hold. Appendix C describes the connection of the
two-component formalism used in the body of the
paper to the four-component formalism based on
Dirac matrices.

II. SPIN

A. Lorentz transformations in spin space

Let o represent the Pauli spin-matrix four-vector
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O1& (OO&&1&&2&+3) (2.1) indices according to the rules

where o.o is the two-by-two unit matrix and o.1, o.2,
and o.

3 are the three Pauli matrices

0 1 0 —i
10' 2 i 0

(2.2)

A(1I) )=A P '—(AP)

A(gi3)=gi3.B P=(PB)P,

A(ya) ya'(A —1) a (yA
—1)a

(2.9)

1 0
0 —1

Let A and 8 be any two-by-two matrices with deter-
minant 1. Then the Lorentz transformation matrix
L"„(A,B) is defined by

Thus the transformation to be applied is determined
by the location of the index (upper or lower) and
whether it is dotted or undotted.

The operator A acts like the identity on any sum
of the form p fa or pi3+. For example,

Ao„B=o,L"„(A,B)=(o L—)„. (2.3) A(P P )=A(P )&(g )

o
1&
= ( 1,—CT ) . (2.4)

(Repeated vector and spinor indices are always to be
summed. )

Let o& represent the Pauli spin-matrix four-vector

=(&I) A ' )(A "f -)

(2.10)

Let a„az, . . .,a3„be any set of 2n four-vectors.
Then

Then
—, Tr[a1 oa2 cra3 o a2„o] (2.11)

1

2 Tr&pov=gpv ~ (2.5)

where g&„ is the Lorentz metric tensor with diagonal
elements (1,—1,—1,—1).

Let C= —io2 ———C ' be the (charge) conjugation
matrix, and let M be any two-by-two matrix. Then
the Pauli identity

is a Lorentz-invariant function of the four-vectors
a1,. . .a2„. To see this let the indices on o.„and o.

&
be specified always in the following way:

Pno ~o p, op~0~ (2.12a)

Then (2.3) and (2.8) become

C 'M 'CM=detM (2.6) Aoq (o"L )p, ——Aoq (o'L )q . —— (2.12b)

entails that

C —1 Tr( (2 7)

Application of the operator A leaves invariant the
trace (2.11), due to (2.10). It gives, alternatively, by
virtue of (2.12),

and that 1

—, Tr(o"La1)(o„.Laq) (o2„La2») . (2.13)
B 'o„A ' =o.g "&(A. ,B)

(o"Lq) . — (2.8)

To specify four different ways of applying
transforms to spin indices four different types of
spinor indices are introduced. The spin transforma-
tion A= A(A, B)—acts on the different types of spinor

I

1
—, Tr[a1 oaz o]=a1 a3, (2.14a)

which follows from (2.5), and

Thus the trace is invariant under any Lorentz
transformation of all the vectors a;.

Two important special cases are

—, Tr[a, oa3.oa3.oa4.o]=(a, a3)(a3.a4)+(a, a4)(aq. a3) —(a1 a3)(az.a4)+i[a1,aq, a3 o4], (2.14b)

where

p v cr 5[a1,a2,a3,a4] =a1a 2a 304'Ep (2.15)

Here e is the fully antisymmetric matri~ with
~0123

B. Covariant spin-projection operators

Lorentz frame X. Let s be a spin vector that satis-
fies s p =0. Let X"(u) be the particle rest frame ob-
tained by applying a "boost" to X. This boost is a
Lorentz transformation that leaves unchanged any
space component that is perpendicular to v. The
vectors u and s as measured in X"(u) are

Let p =mv be the momentum-energy of a freely
moving particle, as measured in some general and

u"=(u'") —= (u', v ) =(1,0,0,0) (2.16a)
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$ =($~):—(S, s )=(0,$|,$2,$3)

The rest-frame projection operator is

P'(s}=—,(1+ s cr)

(2.16b) Another useful form is

uo+ 1+V '0'

(2vo+2) i (2.23)

, (u—'+s')"o„=—,(v'+s") o' . (2.17)

This operator projects onto the spin state in which
the spin is directed along s'=(0, s ) as measured in
X'(v), and hence along s as measured in X.

The operator P"(s) refers to the rest frame X"(v).
To eliminate this frame dependence one may apply
the boost A(A, B}that converts P" from its form in
X"(u) to its form in the general coordinate frame X:

P'(s)~ A(u)P'"'(s) =B 'P'"'(s)A

1

, o'(Lu'—+ Ls ")

1= —,cr (u+s}
1= —,(u+s) o.

The operator

P(s, v)=V u o , (1+—s cr)+u o

1

2
=—(v.o.+s o) (2.24)

is called a covariant spin operator. The vectors v

and s occurring in P(s u) have components v& and
s" that refer to the general frame of reference X.

Because the boost operators A ' and B ' are
Hermitian, rather than unitary, the operator P(s, u)
is not a true projection operator:

P(s, u) &P(s,u) for v&0 .

The covariant spin operators are Lorentz-
invariant spinor functions in the sense that:—P(s,v} . (2.18) AP(L 's, L 'u) =P(s, u) . (2.25)

A '(v) =Bt '(u) =B '(v) =V v cr

where

(2.19b)

Real Lorentz transformations are generated by
matrices A and 8 that satisfy A =B~, where a dagger
denotes Hermitian conjugation. For rotations A is
unitary, but for boosts A is Hermitian. The boost
A(A, B) that converts the rest-frame form P" into the
general coordinate-system form P is

A (v) =Bi(u) =A t(u) =1 u.cr, (2.19a)

Here A=A(A, B) and L =L(A,B). This result fol-
lows directly from (2.12).

C. M functions

Consider first a scattering process involving one
spin- —, particle in the initial state and one spin- —,

particle in the final state, and an arbitrary number
of spinless particles. Let

P=(Pa, taiPb~tbiPc~tci ' ~Pd~td} ~

V'u o =exp —(cr.n)
2

0 . 0=cosh —+n. cr sinh—
2 2

and

v o =exp[8(cr n)]

=coshO+ n. o sinho

=uo+n o ivy .

Note that

(2.20)

(2.21)

where p, is the mathematical momentum-energy of
the final spin- —, particle, pb is the mathematical

momentum-energy of the initial spin- —, particle, and

p„, ,pd are the mathematical momentum-energy
vectors of the spinless particles. The mathematical
momentum-energy vectors are equal to plus or
minus the physical momentum-energy vectors for fi-
nal and initial particles, respectively. Thus

p, =m, v, and pb ———mbu~, where v, &0 and ub &0.0 0

The tj are the mathematical-type labels. They are
related to the physical-type labels tz~"~' by the rela-
tion tj ——tj""'/signpi. , where tj and tj label relative-
antiparticles. These type variables are sometimes
suppressed.

According to quantum theory the probability for
a scattering specified by (p,s„sb ) is proportional to

—, TrP'(s, )S(p)P "(sb )St(p), (2.26)
U 0U o=l

and

(2.22a)

(2.22b)

where S(p) is the S matrix. This can be written
equivalently as

—, TrP(s„v, )M (p)P(sb, ub )M (p), (2.27)
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where, as in (2.24),

P(s„v, )=+u, oP'(s, )V u, o,
P(sb&vb)=+ub oP"(sb)Qvb o,

and

(2.28a)

(2.28b)

m "(p) are defined by

M(p) =—m "(p)o.„—=m(p) o.

M (p)
—=m t"(p)o„—:m t(p) o. ,

(2.32a)

(2.32b)

M(p)=Qua oS(p)+ub o,
M (p)=Qvb oS (p)+v, o .

(2.29a)

(2.29b)

The physical probability is assumed to be Lorentz
invariant. This physical invariance ensures that if
the spin indices of M(p) and M (p) are assigned
spin-index type according to the rules

m "(L(p))=L",m "(p)= (Lm (p) ),
mtI'(L (p)) =L"„mt'(p) =(Lm (p))" .

(2.33a)

(2.33b)

Consequently, by virtue of (2.12), the spinor func-
tions

then the quantities m"(p) and m "(p) are vector
functions of the set of vectors p:

M(p)~M &(p)

and

(2.30a)
M(p) =C 'M(p) "C=m "(p)o„=m(p) o

(2.34a)
and

Mt(p)~M &(p), (2.30b)
I

then the spinor functions M(p) and M (p) are
Lorentz invariant: for all proper (detL=l) real
Lorentz transformations

M (p):mt"(—p)o„=m "(p) o.

are also Lorentz-invariant spinor functions:

AM(L (p)) =M(p)

(2.34b)

(2.35a)

AM(L '(p) ) =M(p)

and

(2.3 la) and

AM (L '(p))=M(p) . (2.35b)

with

AM'(I. '(p)) =M(-p), (2.3 lb)

L '(p) =(L 'p„L 'pb, L 'p„. . .,L 'pd ) .

(2.31c)

These invariance properties entail that if mI'(p) and
l

These simple transformation prope~ies do not hold
for the S matrix S(p).

The foregoing discussion can be immediately ex-
tended to processes in which there are n initial spin-
—, particles, n final spin- , parti—cles, and n' spinless

particles. In this case the M function can be written
in the form (with type labels suppressed)

n
p p & ~ & p1 2 &r ) %TOM(Pa I 1&Pb 1&V1&pa2&IZ2&pb2&V2»Pan&'IZn&Pbn&Vn&PI Pn')

i=1
(2.36)

where m
' "(p) is a tensor function of the vectors&n

(Pa I &Pb 1»Pan &Pbn &P I »Pn') &

(2.37)T

n

"(L(p))= gL '; m ' "(p).

where

S+(p) =+S+(p) .

Here

P (Pl &P2»PN ) &

(p ";)=(PL, , —p; ),

(2.39)

(2.40a)

The way in which the n initial spin- —, particles are
associated with the n final spin- —, particles is imma-
terial: (2.37) holds in any case.

and

(p/') =(p, p;) (2.40b)

D. parity

Let an intrinsic parity ej be assigned to each par-
ticle j, and define the parity operator P by

Let S(p) be written as

S(p) =S+(p)+S (p), (2.38)
+(S(p) )= g e~S(p ) . (2.41)
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9'(S(p)) =S(p) (2.42)

If this equation is satisfied, then S, defined in (2.38)
must be zero unless e= g i ej.

The product of e s for allowed processes must be

+ 1 or —1. Invariance under parity is then ex-
pressed by the equation

Consider a process in which n initial spin- —, parti-
cles, i=1,. . , n, are scattered into n final spin- —,

particles. Let p„and pb; denote the final and initial
mathematical momentum-energies of the ith parti-
cle. Let (pi, . . .,p„}denote the momenta of n' spin-
less particles that also participate in the reaction.
Then, as already mentioned, the M matrix can be
written

n&1'''&nr s ~ (i)
M(Pal&ta1&Pbl&tbl» Pan&tan&Pbn&tbn&P1&tl» Pn'&tn')=re (P&t) II oi&. &

i=1
(2.43)

M(p)= g(u. ,
o~")'" S(p) g(u„.o"')' r'

=QVa oS(p)QVb o . (2.44)

where the matrix elements of o&' are o„p. The
l l l t

connection of M(p} to S(p) can be represented by
the equation

I

Then (2.48) and (2.47) ensure that the condition

9'(M(p) )=M (p) (2.49)

is equivalent to the condition that M, be zero unless
e= g. , e~, which is equivalent to the parity-
invariance condition H(S(p)) =S(p).

For n distinguishable spin- —, particles the no-

scattering part of the S matrix has the form

Define now Su(p) = g [(oo')(2~)'8'(p„+pb; )2~;] . (2.50)

M+(p) = g(u„"o")' ' S (p) g(ub,"o")' '
l

The corresponding M function is

M (p) = g [u; cr"(2m ) 5. (p„+pb; )2'; ] .

Then

M~(p)= g( „")'' S+(p)

(2.51)

In order that this no-scattering part be invariant
under parity (for each particle i separately) we must
take b Eb =1 for all .i But then. (2.48) gives

=+ g(u. ,
~")'r S g (

—. (i))1/2 +(p. o)=( pb o}— (2.52)

o'' M (p) pub 'o''' This relationship, which stems from the condition
that the no-scattering part be nonzero, is used later.

(2 46)

This equation can be inverted to give

(p)=+ gu„"o'" M (p) gu; o"

9'(M(p)) —= g ej U . '0

)&M(p) g ub; cr"
2

(2.48)

(2.47)

The parity transformation applied to the M func-

tions is defined to be

E. Crossing

Analysis of the pole singularity' shows that the
analytic continuation of M(p) along an appropriate
path from an original region where p,; ~0 to a re-
gion where p,; &0 gives the function that describes a
process in which the final particle of type t„ is re-
placed by an initial particle of type —t„, i.e., by the
antiparticle of the original particle of type t„-. If the
final particle t„. carries q units of any conserved
quantity out of the reaction then the antiparticle
—t„must carry —q units into the reaction. This
holds both for the total momentum energy p«, for
the components of spin, and for any quantity that is
conserved by virtue of invariance under a p-
independent transformation property. Consequent-
ly, the mathematical momentum-energy vector p„,
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phys ~ 0
Pai Pai isignpai ~

phys ~ 0
t'ai ai i gRpai l

phys ~ 0rai= ai i igQai .

A similar argument gives

hys ~ 0
Pbi =PEi i»gnpbl *

hys ~ 0
bi 4 isg Pbi ~

(2.53a)

(2.53b)

(2.53c)

(2.53d)

(2.53e)

the mathematical spin vector s„, and the
mathematical-type label t„are equal, after the con-
tinuation, to minus their physical values:

tb;
——tg""'isi gnp b . (2.53f)

The minus sign in (2.53e) arises from the fact that
sb; characterizes the physical spin of the initial par-
ticle bi, not minus the physical spin. The p~; and tI,;
were defined originally to be minus the physical
momentum-energy vector and minus the physical
particle type of the incoming particle (bi), and hence
the equations for these are the same as those for p„.
and t„..

The quantities occurring in the transition proba-
bility formula

Tr —,(v, +s, ).oM(p„&, ;pb, tb) , (Ub+—gb) OM (p„r, ;pb, rb) (2.54)

are to be interpreted with the aid of (2.53). Thus, for example, ifp, and pbo are both positive, then the s, and sb

in (2.54) are s, ""' and —sIl""', respectively, and the particle types t, and tb and t~""' are rg""'. In this way we
can use the same expression (2.54) in all the different channels.

The parity transformation H was defined to be

N n n

P(M(p))= II e II u„o M(p) II vb; o. (2.55)
j=1 i =1 L=1

In the original (direct) channel (p«& 0, pb; & 0) the parity invariance equation HM((p)) =M(p) can be written
as

N

M(p) =
j=1

Pal
M( ) II Pblm„,.

1 m~;

Pai'&

mai
M(p) (2.56)

where use has been made of the direct-channel result e«eb; = 1, derived from forward scattering [see (2.51)].
Analytic continuation to the crossed channel avoids all singularities of M(p) and M(p). Thus equation

(2.56) must hold in all channels, with the factor IIJ, e, from the spinless particles defined as in the original
direct channel. This equation gives

M(p}= II signp, ;
i=1

II slgllpb;
i=1

II u„"o M(p} II vb; o. (2.57}

It will be shown presently that the parity transfor-
mation is defined in all channels by (2.55). Thus one
can conclude that the ej for the spinless particles is
channel independent and that

0 ~ 0
~ai &bi —slgnpaislgnp~; . (2.58}

This means, in particular, that the intrinsic parity
of each spin- —, particle must reverse under continua-
tion to a crossed channel and that the intrinsic pari-
ty of a particle-antiparticle pair is —( —1) .

The product of the intrinsic parities of the parti-
cles of a parity conserving process is physically well
defined: it is equal to the sign b in S(p )=eS(p), and

hence to ( —1) '. The argument leading to the
equivalence of H(S(p) =S(p)) to 9'(M(p)) =M(p),
with 9' as defined in (2.55), was made explicitly in
the direct channel. However, it holds equally well in

I

all channels, provided the same factor II.. , ej.

occurs in both 9'(S(p)) and 9'(M(p)). Any extra
sign or phase factor e'~, that one might introduce
into the connection between S(p} and M(p), in any
given physical region, would be the same throughout
that physical region and would drop out of (2.47),
and hence not affect the argument that demonstrates
the equivalence between H (S(p) )=S(p) and
9'(M(p))=M(p}, with H(M(p)) defined as in
(2.48) or (2.55). Thus this definition is applicable in
all channels, and the result (2.58) on the intrinsic
parities of spin- —, particles holds. '

F. Antipartie1e conjugation

Consider a process on which p„and pl„are both
positive, so that the two associated particles are both
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final particles. Suppose that t„=—tb;, so that these
two final particles are relative antiparticles.

Consider now an original value of (p„,p.b; ) and an
analytic continuation that stays in the physical re-
gion of the process, but interchanges p„and pb;
leaving all other p's unchanged. Suppose we inter-

change also s~""' and sg""'. Then the original pro-
cess and the second one are physically the same ex-

cept for the interchange t«~tb;, which is just
tai ~ tai ~

Suppose that the transition probabilities for these
two processes were the same. Then the process
would be invariant under the transformation

tai~ tai Antiparticle conjugation invariance is in-
variance under the analogous change t«~ t« —for
all i.

If we keep only one particle-antiparticle pair, for
notational simplicity, the antiparticle conjugation in-

variance condition described above is

Tr(v, +s,""') crM(p„ps)(vs sg""—') OM (p„pb)= Tr(v,'+s,' "') crM(p,',py ) (vf', $$ —""') OM (p,',pb ),
(2.59}

where (2.53) and (2.54) are used, and

I ip
Pa =A~ Pa

I io
Jb Ja& Pb

i phys phys
a b

(2.60}

I

where u, =p, /m, and us ——pb /ms. Define also

M(+) =
&
(I+4)M . (2.62)

Then M=M(+)+M( (), and the property (4) =1
gives

i phys phys
Sb =Sa

To see the consequences of this condition define

CM(p&» f;p)» —r ) = u&& cTM(p(»r';p&& —r )ub 'cr
&

(2.61)

4M =M(+) —M( ) . (2.63)

Hence if M =M(+) or M( ), then M =+4'M.
Insertion of this condition M=+4M into the

left-hand side of (2.59) gives

Tr(v, +s,""').cTu, crM(pb, p, )ub cT(vs sg "') c—usr. TM((pb,p, )u, 0.

=Tr(v, s,""') c—rM(ps&p, )(vs+sf""') oM (pb&p, )

=Tr(vb+sg""') cTM(ps, p, )(v, s, ""') OM—(pb,p, ), (2.64)

where in the second line the relations &pb cr=pb cr . ' (2.67b}

and

Qa OQa'CT= 1 (2.65a) Thus both p, o and pb 0, and any superposition of
thetp, are invariant under Ã.

s, cru, .cT= —u, .crs, o for s, u, =0

are used, and in the last line the equations

o=C 'o 'C

(2.65b)

(2.66a)

G. CPT invariance

The physical transformation corresponding to
CPT is

and

=C i TrC (2.66b)

phys phys phys phys
~J ~J ' J J

ti'""'~ tf""', In~0—ut .
(2.68a}

@p,-o.=p, o- (2.67a)

are used. Comparison of (2.64) to the right-hand
side of (2.59), with the substitutions (2.60) made,
shows that the condition M=+4M implies an-

tiparticle conjugation invariance.
Notice that

~J ~J' J J' J J ' (2.68b)

Thus CPT invariance is equivalent to invariance of
transition probabilities under the transformation

pj ~ —pj (all j).
Any Lorentz invariant spinor function M(p) is in-

The corresponding mathematical transformation is,
by virtue of (2.53),
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variant, up to a sign, under the transformation

pj ~ —pj (all j). For the Lorentz invariance condi-
tion

n n

fJ A" M (L '(A, B)(p)) g B" =Mt(p)

AM(L '(p) }=M(p) (2.69) (2.73)

applied for the case A =1, B=—1 gives, by virtue
of (2.3) and (2.9),

M( —p) =( —1) M(p), (2.70)

where Nd is the number of dotted spinor indices. [I
mean here dotted two-valued spinor indices: dotted
(undotted) spinor indices for spin-(n/2) particles
can be constructed trivially by combining n+2m
dotted (undotted) two-valued spinor indices by
means of the usual Clebsch-Gordan coefficients.
Thus a dotted spin-(n/2) spinor index contributes a
term n to N~.]

The matrix 8 =—1 can be continuously connect-
ed to 8 =1 by the matrix

eim) 0

0 e
—im/r (2.71)B(g)=

which satisfies B(0)=1 and B(1)=—1. Since all
Lorentz invariants are invariant under all real and
complex Lorentz transformations the transforma-
tion

M p(p) =[M~(p)]' . (2.72a)

Thus if M is transformed by a real Lorentz transfor-
mation to AMB, then M* is transformed to
A'M'B' and Mt' is transformed to
8 M A =AM 8, as indicated by the indices on
M p.

For complex Lorentz transformations the condi-
tion A =B does not hold. However, (2.7a) is then
inappropriate: the appropriate definition is

Mtp(p) =M~(p) =[M~(p')]' . (2.72b)

This quantity is an analytic function of p, whereas
the function on the right-hand side of (2.72a) is an
analytic function of pa. The function Mt defined in
(2.72b) will continue to satisfy the Lorentz-
invariance condition

L (A,B)=L(1,B(Q)),

with 0& /(1, must generate complex values of the

pj, since no real mass-shell vector pz(f} can interpo-
late p —+ —p .J J'

The matrices M(p) and M (p) have been assigned
the transformation properties indicated by the in-
dices M &(p) and M &(p). For real p the matrices

M(p) and M (p) are related by Hermitian conjuga-
tion:

for complex Lorentz transformations. ' Thus in the
formula for probabilities the factor ( —1) from
(2.70) will be cancelled by the same factor ( —1)
from

M ( —p}=(—1) dMt(p) . (2.74)

Hence probabilities will be invariant under CPT.

H. Statistics

S(pfi. p.}=&pfi. I

S
I
p—.& (2.75)

where p;„ is obtained from p;„by reversing the signs
of all energy vectors pj and all type variables t&, and
reversing the order of the variables. Thus if

p %p tin (Pm & tm»pn & tn } &

then

(2.76a)

P&n =( Pn& tn'» —Pm——
& tm—) . (2.76b)

The diagram representing (pfi„ IS Ip;„) is gen-
erally drawn by ordering the lines from top to bot-
tom in the sequence in which the corresponding ar-
guments of pfi„and p;„appear. The lines corre-
sponding to p;„are on the right-hand side; those cor-
responding to pf„are on the left-hand side. The
variables in p in (2.50) are in the order

(Pla&P2a&' 'P2b&Plb} &

so that each particle line goes straight through,
without a change in order.

The functions S(p) and M(p) are assumed to be
antisymmetric under the interchange of any two
spin- —, particle variables (p;, t; ) and (pj, tj ) Analytic.
continuation pa&~pb; in (2.51) changes the sign of
(2.51). This sign change is canceled by the change
of the order of variables required to bring the vari-
ables back into the form (pfi„,p;„). Thus (2.50) and
(2.51) hold in all channels, for p =(pfi„,p;„), with the
corresponding variables of pf;„and p;„occurring in
the same order.

The order of writing the variables is important. If
the variables in the set of arguments

P (Pl&tl &P2&t2»Pn&tn )

is such that all variables referring to initial particles
stand to the right of all variables referring to final
particles, then one may write p =(pfi„,'p;„). By con-
vention
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4

Quark Diagram 0 uark Graph G(D)
2)

FIG. 1. A zero-entropy quark diagram D and the
equivalent quark graph G =G(D). {a) (b)

FIG. 2. Two equivalent ortho-graphs G .

With these conventions the relationship (2.45) be-
tween M(p) and S (p) holds in all channels.

Combinatoric factors 1/n! are discussed in Ap-
pendix A of Ref. 17.

III. MESONS

A. The zero-entropy amplitudes

The basic building blocks of the topological ex-
pansion are the zero-entropy amplitudes. In the
nleson sector two important zero-entropy ampli-
tudes are represented by the simple quark diagrams
D of the kind shown in Fig. 1, or by the equivalent
quark graphs 6 also shown there.

The quark diagram D is converted to the
equivalent quark graph G =G (D) by simply con-
necting to a vertex the ends of the two quark lines at
each opening of D. Thus each vertex of a meson
quark graph G corresponds, at some level of approx-
imation, to an initial or final particle of a scattering
process. The zero-entropy amplitude corresponding
to a process with n particles is represented, there-
fore, by a directed circular graph with n vertices.
The n directed edges that connect these vertices all
run in the same direction, as illustrated in Fig. 1.

The quark graphs are not abstract graphs, but are
graphs placed on an oriented surface. The orienta-

I

tion of the boundary of the oriented circular disk
bounded by the quark line is indicated by a second
arrow, as shown in Figs. 2 and 3. The two graphs of
Fig. 2 are equivalent to each other, and the two

graphs of Fig. 3 are equivalent to each other. But
those of Fig. 2 are not equivalent to those of Fig. 3.

The circular graphs in which the directions of all
the quark lines agree with the direction of the boun-
dary of the enclosed oriented disk, as in Fig. 2, are
called "ortho-graphs. " The circular graphs in which
the directions of all the quark lines are opposite to
the direction of the boundary of the oriented disk, as
in Fig. 3, are called "para-graphs. "

For each ortho- or para-graph 6 there is a corre-
sponding amplitude. If G has n vertices, then this
amplitude has a set ()M}=()((,), . . . , )M„} of n vector
indices. The amplitude corresponding to 6 has the
ofm

~(()(G p) =P'(p)(G p)f (G p} (3.1)

where f (G,p} is a function of the scalar products of
the mathematical momentum-energy vectors pj ap-
pearing in the set of arguments

P (Pl~tlt . ' ~pn~tn } '

For any ortho-graph G =G the function of
F(&)(G,P) is given explicitly by

F(&)(G,P)= —g (2m; )
' Tr[o„,p) o cr„p2 o . a„p„o'] . (3.2)

This factor F(&)(G,P) is minus the trace of a matrix
formed from right to left by following the sense of
the quark arrows in 6 and replacing each vertex i
by o& /V 2 and each edge by the ortho-quark "prop-

agator"

o9'G~= G, then

HA(q)(9'G, p) =A(q)(G,p) . (3.3b)

The action of 9' on any A is given by (2.48).
Thus

pay'o/rnaj'—=uaj' & ~

where p,j. is the mathematical momentum-energy
vector associated with the vertex that lies on the
leading end of that quark edge.

If G~ is the para-graph obtained from G by re-

versing the orientation of the disk, then

&f(G,p) =f(G,p),
and, by virtue of (2.52},

(3.4a)

A(~)(G)',p) =HA(q)(G, P) . (3.3a)

Thus the function A (G,p) is invariant under the par-
ity operation, in the sense that if RG =G~ and FIG. 3. Two equivalent para-graphs G~.
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+(„)(G,p)= —g (2m ) '~'Tr( —p) o)o.„(—p, g)g„. ( —p„g)g„ (3.4b)

T»s spinor part of the para-amplitude is minus the trace of a matrix formed from right to left by following
the sense of the quark arrows in G» and replacing each vertex i of G by o„ /Wp and each edge by the para

quark "propagator"

p—bz crlmbj =— u—bj'o

where pbj is the mathematical momentum-energy vector associated with the vertex that lies on the trailing end
of the quark edge.

Notice that in both the ortho-graph and para-graph cases the orientation of the disk points from each edge
to the vertex whose momentum appears in the propagator corresponding to that edge.

Each vertex i is associated with a spin four-vector s;. For a vector particle s; p;=0 and s; = —1. For a
pseudoscalar particle s; =u;, and s; =1. The vector (is;) is the "wave function" of particle i in spin space. The
ortho-amplitudes and para-amplitudes themselves are therefore

n

A (Go p,s) = — Tr(s
&

cru &.o . s„op„o)f(G,p)
2

(3.5a)

and
n

A (G»,p,s) = — Tr(u ~
crs

~
o . u„os„o )f(G»,p) .

2
(3.5b)

B. Parity

Let G and Gp be ortho-graphs and para-graphs related by disk reversal. Since A (G ) and A (Gp) are related

by A(G»)=HA(G ), the sum A(G»)+A(G ) is invariant under parity. To see this explicitly use
T

for spin 0
u/ crsl g' = s; 'g'u; '0' f (3.6)

to obtain
n

A (G p s) ( 1 )lllllllbcf 0 sp - p ft Tr. . . . , fp(
2

n

l
( 1

)Blllllbcf 0 s ill Psftlc cs frs g u cr s g u crfP(p )
2

(3.7)

where f»(p) =f(G»,p) and f (p) =f(G,p).
Any trace Tra& oa2 oa3 o . a2„cr is a sum of a scalar part that is unchanged by a; —+cT; and a pseudosca-

lar part that changes sign. Since fp(p) =f (p ) =f (p) the equations (3.5a) and (3.7) imply [with
A=oA(G )o, A=pA(G )p] that

A +A»=2)& scalar part of A if number of spin-0 particles is even,

AD+A»=2X pseudoscalar part of A if number of spin-0 particles is odd .

(3.8a)

(3.8b)

This means that A +A~ conserves parity, provided
the spin-0 particles are identified as pseudoscalar
particles and the spin-1 particles are identified as
vector particles.

C. Antiparticle conjugation

The ortho-propagators and para-propagators are
(p„"o)lm,j and ( pbj o)lmbj, —respectively. Ac-

l

cording to (2.67) these forms are invariant under the
antiparticle conjugation operation K. This result
suggests that the ortho-amplitudes and para-
amplitudes should be separately invariant under an-
tiparticle conjugation. This invariance would, in
fact, be strictly implied if the quarks could be con-
sidered separate entities, each with its own initial
and final momenta pbj and p,j. It was the analytic
continuation p j~pb~ of these momenta into each
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A, =— l

W2

)&(Trsi crui o s„ou„o)f (p) (3.9a)

other that was the basis of the discussion of antipar-
ticle conjugation in Sec. IIF. In that context an-
tiparticle conjugation was equivalent (up to a sign)
to reversing the directions of all the quark arrows.
This reversal was accomplished by an equivalent an-
alytic continuation. In that continuation the vector

p in the propagator p cr/m continues to be the
momentum associated with a fixed end of the quark
line. Thus an ortho-propagator is transformed into
an ortho-propagator, and a para-propagator goes
into a para-propagator.

We therefore define antiparticle conjugation to be
the operation of reversing the direction of each
quark edge, with the ortho-propagator —para-
propagator type left unchanged. Thus antiparticle
conjugation interchanges the two graphs (a) and (b)
of Fig. 4. The scalar functions f(p) are assumed to
be unchanged by antiparticle conjugation. Thus the
amplitudes associated with graphs (a) and (b) are

'n

is final p+ or rc+, and f;= —1

is final p or P, and f; =+ 1

is final neutral meson, and f;= I /~2

is final neutral meson, and

—1/~2 for n or p
+ 1/V 2 for i)0 or c00

FIG. 5. The isotopic-spin factors. The full zero-

entropy amplitude for any process involving a set of n of
these mesons is the sum of the amplitudes corresponding
to all the ways in which the particles of the reaction can
be identified with the vertices of ortho-graphs and para-
graphs with n vertices.

and

0
Ab ———

n

)&(Trs„cr„ur csi oui o)f (p) . (39b)

Then use of (2.65) and. (2.66) gives

A =( —1) ' 'A (3.10)

D. Isospin

2
f

(a) (b) (c)
FIG. 4. Graphs (a) and (b) are related by antiparticle

conjugation. Graph (c) is graph (b) turned over.

Quark flavors have not yet been discussed. Intro-
duction of the up ancl down quarks yields the m, p,
g, and co mesons. To get the amplitude correspond-
ing to a graph with these mesons as the external par-
ticles one includes for each vertex the isotopic-spin
factor f; defined in Fig. 5.

G parity is conserved for the sum of the ortho-
amplitudes and the sum of the para-amplitudes

separately. To see this note that for each ortho-
graph (para-graph) contributing to a process there is
another one in which the u and d quarks are inter-
changed and the cyclic order of the particles is re-
versed. The two associated ortho-graphs are related
as the two graphs (a) and (c) of Fig. 4 are, apart
from flavor labels. Since (c) is equivalent to (b) one
obtains the factor (3.10) together with the isospin
factors f; shown in Fig. 5. These factors f; combine
to give factors for the graphs (a) and (c) that differ
by the factor

g (
1)(isosPin);

Thus the sum of the two contributions is

A, +A, =A, [1+(—1)s],

where

g = g (spin);+(isospin); .

(3.11a)

(3.11b)

The factor ( —1)s is G parity. Hence G parity is
conserved for the ortho-graph and para-graph parts
separately.

E. Products

The discontinuity formulas involve products of
amplitudes represented by graphs of the kind shown
in Fig. 6. For each wiggly line there is a sum over
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J L

r
]

(b) (c)
FIG. 8. Spinor identities.

FIG. 6. Diagrams representing products of amplitudes.
The wiggly lines represent the intermediate mesons. (Each s, is a four-vector. ) Thus

3 3

g S,S,' = —, g (TrMs, o)(Tr's'harv'oM'v 'cr) .

Se 'o
S,=Tr S

2

r -aP~ se 'O' Sp.~2 (3.12)

where the irrelevant indices on S have been
suppressed. The arguments of Sec. IIC then show
that

the single pseudoscalar meson and the three vector
mesons. When this sum is performed the spinor
parts of these products are just the spinor parts of
the functions associated with the diagrams of Fig. 7.
In other words, the spinor parts satisfy the diagram-
matic equations of Fig. 8.

To obtain this result, and also a more general one,
let the four orthogonal vectors s; associated with
particle i be labeled by ee(0, 1,2,3), with s;", =u;" for
e=O. To get the correct normalization we return to
the level of the S matrix. Then the four amplitudes

S, are defined by

e=0 e=0

=TrMv oM'v o. .

Use of
3

g (s, )"(s')"=g"'
e=0

gives

3

g S,S,' =
2 (TrMoz)g "(Tro~.oM'v. o) .

e=0

Use of

—o. ~g~ o. .=5 6~
2 P vs 5

gives

3 3 se 'o Se 'CT

g S,S,'= g TrM ~ Tr ~ M'
e=O e=0 . 2 . . 2

(3.16)

(3.17)

(3.18)

(3.19)

Se 'o
S,=Tr M .v'2

Consider therefore a product of the form

(3.13)

3 3 se o Se '4T

gS,S,'= g Tr M Tr M'
e=o e=o .

(3.14)

To evaluate it introduce into the second trace the
identity

se'o'=o'HS 'ov'o', (3.15)

where u is the velocity +p lm of the relevant particle
and s =so, s =—s&, s = —s2, and s = —s3.0 1 2 3=

(b) (c)
FIG. 7. Alternative representation of the spinor parts

of the products represented in Fig. 6, A circle with no
vertices represents —Tr 1 = —2.

This result says that summing over all four ex-
changed particles is equivalent to cutting the two
quark lines at the vertices and reconnecting them in
the way shown in Fig. 9, with a metric factor u o.

placed at each reconnection point.
Consider one of the two reconnection points in

Fig. 9 and its associated factor u o. This point con-
nects two line segments that were originally parts of
the two loops connected by the meson line shown on
the left-hand side of Fig. 9, and also in Fig. 6. Each
of these two line segments is associated with a prop-
agator, in accordance with the formulas of (3.5).
One of these two propagators is of the form +v cr,

and will cancel the factor v o associated with the
reconnection point, up to a possible sign. Now the
meson line connects two vertices. One is associated
with an initial particle, the other with a final parti-
cle. Thus the signs of the corresponding vectors u;
will be opposite. Consequently, the signs of the two
factors +u.o. that cancel against the two factors, v o.

of Fig. 9 will be opposite, and the cancellation of the
two factors v o. will leave a residual minus sign.
This minus sign cancels one associated with closed
quark loops. [This closed-loop sign appears explicit-
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e=O

'( (s„v) (
V '0

V cr

FIG. 9. Diagrammatic representation of (3.19). 2

ly in front of the trace symbol in (3.5).] For the
transformation between the two sides of Fig. 9
changes the number of quark loops by one.

The two factors of i associated with the quark
wave functions (is;}of the two particles that are con-
tracted out compensate in the case of the spin-1 par-
ticle for the fact that the physical spin-vector s,
occurring in the derivation of (3.19}is related to the
mathematical one occurring in (3.5} by
s~""'=s ""signu, and in the case of the spin-0 par-
ticle by the fact that the physical vector s, =U occur-
ring in the derivation of (3.19} is related to the
mathematical vector s; =u; occurring in (3.5) by this
same relationship. Thus the relationship illustrated
by Fig. 9 reduces to the simpler one illustrated by
Fig. 8, from which follows the equality of the spin
factors associated with the corresponding diagrams
of Figs. 6 and 7.

An explanation of the signs and factors of i in
(3.5) is in order. The minus sign in front of the
trace comes from considering the quark wave func-
tion to be antisymmetric under the interchange of
variables: an odd number of permutations is re-
quired to take the quark variables from their normal
order (see Ref. 7) in which the propagators are
u, 0= ub o for—forward scattering to the cyclic
order associated with the closed loop. The ima-
ginary unit is included in the wave function in order
to allow the wave function to be folded into the
basic unitarity equation for M functions, Eq. (7.1) of
Ref. 7, without disrupting either the relative signs of
the two terms on the left-hand side or the relation-
ship

S hys SmathsignQ

F. Topological classification

Each circular quark graph G corresponding to a
zero-entropy ortho-amplitude or para-amplitude can
be transformed by the rule illustrated in Fig. 10 into
a particle graph g =g (G) with one internal vertex.

If G is a circular graph with n vertices then g (G)
is a tree graph with n edges, n external vertices, and
one internal vertex. This internal vertex of g(G) is
classified as an ortho-vertex or a para-vertex accord-
ing to whether 6 is an ortho-graph or a para-graph.
These two kinds of internal vertices can be dis-
tinguished in the way illustrated in Fig. 10. The ar-

FIG. 10. Transformation of circular ortho-quark and
para-quark graphs G into the corresponding basic particle
graphs g(G).

row near each internal vertex shows the direction of
rotation of the quark line around that vertex. These
graphs g are called basic particle graphs.

A product of basic particle graphs g&,g2, . . . is
formed by identifying certain pairs of external ver-
tices, as illustrated in Fig. 11. Each product graph g
has a well-defined genus and boundary structure.
These can be calculated by Edmond's rule. One first
draws all the orbits of g. An orbit of g is a path in g
formed as follows: one picks any point p on any
edge of g and a direction d(p) at that point. Then
one traces a path in g by a moving point p' that
starts from p in the direction d(p). At each non-
trivial vertex the moving point p' shifts to the
"next" line, with the order of the lines specified by
the arrow that indicates the quark-line direction.
The orbit is completed when the moving point p' re-
turns, to the original point p moving in the original
direction d (p).

Some of the orbits Inay pass through vertices that
lie at the ends of single (external) edges. These ver-
tices correspond to the "external particles" associat-
ed with the graph. An orbit that passes through at
least one external-particle vertex is called a boun-
dary. The boundary structure consists of the collec-
tion of boundaries, each identified by the sequence
of external-particle vertices through which it passes.
Each external-particle vertex appears on exactly one
boundary. Graphs with only one boundary are
called one-boundary graphs.

The number of different orbits of g—sometimes
called faces of g—is denoted by f(g). The numbers
of edges and vertices of g are denoted by e(g) and

U(g), respectively. Then the genus of g—sometimes
called the handle number —is given by the Euler for-
mula

FIG. 11. A product g of five basic particle graphs g;.
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h(g)= e (g) —v (g) —f(g)+ 2c (g)
2

(3.20)

where c(g) is the number of connected components
of g. The graph of Fig. 11 has one orbit, which is
the boundary (8,6,5,9,7,4,3,2,1), and its genus is two.

The zero-genus one-boundary graphs are the pla-
nar graphs. They are the graphs that can be drawn
on a plane with no lines crossing and all external
vertices identified with a single point at infinity.

An important characteristic of a graph g is its
Betti number P(g), which is the number of indepen-
dent closed loops that can be drawn in the graph.
Its value is given by

P(g)=e(g) —v(g)+c(g) . (3.21)

Let the number of boundaries of g be b(g). The
orbits that are not boundaries are called windows,
and their number is w(g)=f(g) —b(g). The most
important topological characteristic of g is the topo-
logical index

y(g) =2h (g)+ b (g) c(g)—
=P(g) —w(g) . (3.22)

This is the number of independent closed loops in g
minus the number of windows. For connected
graphs with at least one boundary the topological in-
dex Y(g) is zero if and only if the graph g has zero
genus and exactly one boundary, i.e., if and only if g
is planar.

This topological index Y(g} enjoys the following
"entropy" property: if glg2 is some connected prod-
uct of two connected graphs gl and g2, then

Y(glg2 }& Y(gl }+Y(g2) (3.23)

To prove this let n be the number of vertices at
which gl and g2 are joined. Then (3.21) gives

P(glg2} P(gl )+P(g2} 1+n

On the other hand,

W(glg2) W(gl)+W(g2}+W (gl g2)

(3.24)

(3.25)

w (gl g2) +n (3.26)

which combines with (3.24} and (3.22) to give (3.23).
The entropy property (3.23) shows that the topo-

logical index Y(glg2) of a product graph glg2 is

where w'(gl, g2) is the number of windows of glg2
that lie partly in g~ and partly in gq.

Each of these windows that lies partly in each
subgraph must pass at least twice through the n

junction points. And each junction point lies exactly
twice on the set of orbits. Thus one has the inequal-
ity

greater than either component, provided one of them
has Y(g;) & 1. This means that the topological com-
plexity, as measured by Y(g), increases in general.
The special case Y(g;) =1 allows the complexity to
remain unchanged.

If one of the graphs has Y(g;)=0, then (3.23)
would allow for a decrease in complexity. However,
if Y(gl ) =0 and the product glg2 is such that at least
one external vertex of g, is an external vertex also of
the product graph glg2, then the right-hand side of
(3.26) can be replaced by n —1, since then at least
one boundary of g&gz must pass twice through the
set of junction points, and

Y(g 1g2 }& Y(g 1 )+Y(g2 ) .

The graphs corresponding to physical-region
singularities can always be constructed by taking
successive products g~, gag~, g3gqg~, . . . so that the
final external particles of each newly added graph
are also final external particles of the new product
graph. ' If the product graphs are built in this way,
then the topological index Y(g) can never decrease.

The zero-entropy amplitudes discussed in the ear-
lier subsections are not the most general zero-
entropy amplitudes. They are those amplitudes
represented by circular graphs G(D) like those of
Fig. 1 in which all n quark lines represent ortho-
propagators, or all n quark lines represent para-
propagators.

In the meson sector each zero-entropy amplitude
is represented by a circular graph G(D). The corn-
plete set of (flavorless) zero-entropy amplitudes as-
sociated with any given graph G(D) is obtained by
allowing each of the n quark lines of G(D) to
represent, independently, either an ortho-propagator
or a para-propagator. When flavors are considered
each quark line is also assigned a flavor label.

The topological representation of the distinction
between ortho-propagators and para-propagators is
made by introducing particle-quark graphs g(G) of
the kind shown in Fig. 12. The particle lines of
such a graph divide the disk bounded by the quark
lines into sections, each of which can be indepen-
dently oriented. A quark line represents an ortho-
propagator or a para-propagator according to
whether the direction of the quark line agrees or
disagrees with the direction induced on that line by
the orientation of the section of the disk that is adja-
cent to it.

Consider any particle-quark graph g =g„gag&
formed by joining together, in the fashion indicated
in Fig. 11, a sequence of graphs g;=—g(G;) of the
kind shown in Fig. 12. In Fig. 11, each internal line
is divided into two parts (edges) by a trivial vertex,
which is a vertex that joins less than three edges.
Cuts at the trivial internal vertices separate the
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I5

FIG. 12. A graph G and the quark-particle graph g(G)
formed from G. The particle lines of g(G) are drawn as

dashed lines in g(G).

graph g of Fig. 11 into its zero-entropy components
g;. To pass from g =g„g2gi to the correspond-

ing g =g„g2g~, one replaces each particle graph
g;=g(G;}, of the kind shown in Fig. 10, by its
"thickened" version g; =g(G), of the kind shown in

Fig. 12.
A vertex of g at which two subgraphs g; meet is

called a junction vertex. It is also an internal trivial
vertex of the subgraph g =g(g) formed from the
vertices and particle lines of g.

Each of the subgraphs g; =g(G; ) of g is placed on

the paper so that each quark line runs clockwise
around the surface bounded by G;. Then the surface
associated with g is, in the immediate neighborhood
of any junction vertex V, separated into two sections

by the two particle edges incident upon V. The two

quark edges lying in each one of these two sections
both run in the same direction.

Suppose, for each of these two sections, that both
of the two quark lines lying in this section have the
same flavor, and both represent ortho-propagators
or both represent para-propagators. Then this junc-
tion vertex V is said to be a remouable vertex. The
spinor identities represented by. Fig. 8, and the two
other identities identical to them except that the
directions of the two inner arrows agree, rather than

disagree, allow the two quark edges lying in each
section to be joined together into one: the spinor
function will still be correctly represented. The in-

formation about the scalar parts of the function
represented by the graph is retained in the subgraph

g consisting of all the vertices and particle edges of

The topological classification of a graph

g=g g gi is obtained by first disjoining the

graphs g; at all junction vertices that are not remov-

able, and then giving for each connected part gj of
this new graph g

' both its topological index y(g&' }

and boundary structure, and giving also a list of
pairs of vertices of g

' that must be equated to form

g. The boundary structure is a list of orbits. Each
orbit is specified by the cyclic order of the vertices

that appear on it, together with the specification of
the ortho-amplitude or para-amplitude, and flavor,

of the quark edge that joins each pair of adjacent

vertices on the orbit. The orbits of gj' are identical

to the closed quark loops of g .

G. Topological expansion

Each physical-region singularity of the S matrix

is associated with a Landau graph gL, . A formula

for the discontinuity around the singularity associat-

ed with graph gL is obtained by replacing each ver-

tex of gL by the corresponding scattering func-

tion. ' ' This scattering function is specified by the

set of edges incident upon the vertex to which it cor-

responds. These edges can be identified with the

external edges of the particle graphs g constructed

above.
The topological expansion is the assumption that

each scattering function can be expressed as a sum

of terms, one corresponding to each of the different

topological classes specified in the preceding subsec-

tion. This expansion is required to be compatible

with the discontinuity formulas, in the sense that if
the full expansion is introduced into each of the

scattering functions that occur in any discontinuity

equation, and the full equation is then decomposed

into terms of different topological class, then the

terms of each class separately satisfy the equation:

there is no cancellation among the terms in the

equation that have different topological character.
This assumption that the contributions to any

discontinuity equation corresponding to graphs of
the same topological character should cancel among
themselves has been discussed extensively before, in

connection with the derivation of the discontinuity

formulas. '

H. The zero-entropy functions

Validity of the topological expansion is assumed.
Then one can examine the zero-entropy parts of the
various discontinuity formulas. Due to the entropy
property these equations involve only zero-entropy
functions. By virtue of the identity represented in

Fig. 8 the spinor factors F~„~(G,p) of (3.1) drop
completely out, leaving equations that involve only
the scalar functions f(G,p). These coupled equa-
tions are essentially the same as the set of discon-
tinuity equations for a theory of scalar particles, ex-

cept that all singularities associated with nonplanar
Landau graphs vanish. The functions f(G,p) thus
have much simpler analytic properties than the full

S matrix, and can be expected to have moving Regge
poles but no Regge cuts. They should be similar to
the Veneziano dual-resonance model functions,
with the addition of a spin-flavor structure, finite
widths, and a planar singularity structure of particle
poles, normal threshold cuts, and the other singular-

ities associated with planar Landau diagrams. The
overall normalization should, however, be fixed by
the nonlinear equations. Because of the expected
correspondence with dual-resonance model func-
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2

FIG. 13. Pole factorization property.

when the inner product is formed with any one of
the indices p~". Consequently, the earlier equation

)

f»(p)=9'(f'(p))=f'(p)=f'(p) (3.27a)

becomes replaced by

tions, there is some hope that these equations can be
approximately solved, and the full solution then for-
mally reconstructed by an essentially perturbative
expansion in which zero-entropy functions replace
the usual point coupling functions.

n

f (p)=+(f (p))=( —1) '=''f'(p) . (3.27b)

When nonzero values of the I; are allowed there is
also an extra factor of

I. Regge recurrences

The property represented in (3.19) and Fig. 9 en-

tails that the spinor factor in the zero-entropy func-
tions Ao or A» has the pole-factorization property
indicated in Fig. 13. Thus iff (p) has a factorizable
pole corresponding to a certain value 1)1 of angu-
lar momentum transferred between (1, . . . , m) and
(m +. 1, . . . , n), then the full function A has factor-
izable poles corresponding to a set of four intermedi-

ate states, having total angular momentum values
J=1and I+ 1, I, l —1.

Iff (p) has Regge behavior of the kind exhibited

by the Veneziano dual-resonance function, then for
each factorizable pole of f (p) corresponding to or-
bital angular momentum I) 1 there will be a quartet
of factorizable poles of A (p) corresponding to total
angular momentum I and (l + 1, l, l —1).

The function f (p) is assumed to have a Regge
pole with the lowest l=0 pole identifiable with our
external set of sixteen mesons (n.,p, co,ri), which are
assumed to be degenerate in the zero-entropy level.
The higher values of I will then generate recurrences
of the set (n,p, co,ri).

If the functions f (p) and f»(p) are now general-
ized to represent the cases where the external parti-
cles are recurrences of the l=O mesons then one
must include 2s for each external particle i of angu-
lar momentum I; a set of l; vector indices,
p~" .

p~.
' that are such that

in the charge conjugation equation (3.10). This
comes from a consideration of, for example, the two
definitions of p+ and p implicit in Figs. 14(a) and
14(b).

In the discussion of Sec. IIID of isospin invari-

ance there was no change in the definitions of p+
and p of the kind shown in Fig. 14. However, the
function f (p) was changed due to a reversal of the
order of the arguments [see Fig. 4(c)]. In the dual-

resonance amplitude this change induces a change

and we assume that this property holds also for our
function f (p):

f'V. . pi)=( —1) 'f'(pi 'u. ) . (3.»)
The fact that one gets the same factor

( —1)~'

by either reversing the direction of the quark arrow,
as in Figs. 4(a)—4(b) [or Figs. 14(a)—14(b)], or by
reversing the cyclic order of the vertices, as in Figs.
4(a)—4(c), means that the amplitude corresponding
to a graph does not depend on how this graph is
placed on the paper: the operator of turning over or
reflecting a graph, as in Figs. 4(b) and 4(c), does not
alter the amplitude corresponding to it. Thus the
equivalence of the two graphs of Fig. 2, or of Fig. 3,
is maintained also for I; )0.

IV. SUMMARY AND CONCLUSIONS

P~ '(

FIG. 14. The normal quark structures of p+ and p
are shown in (a), whereas (b) shows the definition induced

by reversing the quark lines. If the quark wave function
has angular momentum I;, then the difference is

I,,
represented by a factor ( —1) '.

Spin can be incorporated into the meson topologi-
cal expansion if we do the following four things:

(1) Adopt the M function formalism and associate
the leading (trailing) end of each quark line with a
lower undotted (dotted) index.

(2) Introduce into the topological expansion a
"zero-entropy" level that lies below the "ordered"
level of Chew and Rosenzweig.

(3) For each cyclically ordered set of n mesons (of
fixed flavor content) form the various possible zero-
entropy M functions. Each of these is a product of
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a scalar function f„(p„pz, . . . ,p„) of the scalar
products of the momentum-energy vectors pj of the
n mesons, times a spin factor. This spin factor is
minus the product of n spin factors, one for each of
n quark lines. The spin factor associated with any
given quark line is either the ortho-quark factor
u, cr

&
or the para-quark factor —ubo. &, where o. is

the spinor index associated with the leading end of
the quark line, P is the spinor index associated with
the trailing end of the quark line, u, is the
mathematical covariant velocity p, /m, of the physi-
cal particle associated with the vertex lying on the
leading ' end of the quark line, and ui, is the
mathematical covariant velocity p&/mi, of the physi-
cal particle associated with the vertex lying on the
trailing end of the quark line. [The minus sign asso-
ciated with the spin factor comes from the odd
number of permutations of the quark variables re-

quired to take them from their normal order associ-
ated with the no-scattering part, for which each spin
factor is v, 0

&
——vi, o & to the order in which the

two indices aj and Pz associated with physical
particle j stand together and in the order (pj,aj ).]

(4) Institute invariance under the parity operation

by adding together the 2" zero-entropy functions
that arise from the association of each of the n

quark lines with, alternatively, either the ortho-
function or the para-function.

A quartet of amplitudes corresponding to one
pseudoscalar meson and one three-component vector
meson is obtained by folding the four wave func-

tions i2 '~ o ' 'u& and i 2 '~ cr ' '.sj, (e= 1, 2, 3)
into the M function. Here sj i, sj.z, and sj3 are three
vectors that satisfy (sj, ) =—1 and sj, vj. =0.

The theory obtained in this way from the two-
component formalism can be directly transcribed
into a four-component notation by the methods of
Ref. 7. This transcription is carried out in Appen-
dix C, and the results are described here. The use of
the four-component notation facilitates comparison
to earlier works.

For each cyclic ordering of n mesons (of fixed fla-
vors} there are 2" different zero-entropy amplitudes,
one for each combination of choices of the ortho-
function —para-function character of the n quark
lines that cyclically join the n vertices corresponding
to the n mesons. The basic property of the zero-
entropy amplitudes is that the spin factors can be
completely factored out of the associated discon-
tinuity equations. Thus the nonlinear integral equa-
tions for the scalar factors f„(p) are the same for all
2" zero-entropy functions. These equations are rela-
tively simple, and should determine the coupling
constants at the zero-entropy level. They also ensure
that the same scalar factor f„(p) occurs in all 2"
zero-entropy functions. Hence the sum g„of the

r, ,(u, ) =iy, (1+y i;)/v 2, (4.2a)

and the three components of the vector particle are
associated with the four factors

I „(u )=(y„—lo„uf)/v 2. (4.2b)

Here p and p range over the set (0,1,2,3), there is a
sum over the repeated vector index p, and

uyr, ,(u, ) =0.
The individual zero-entropy functions are ob-

tained by choosing an ortho-function or a para-
function character for each quark line, and then in-

serting after each factor I J&,(uj ) of (4.1} a factor of
1

J
—,(1+y5) or —,(1—y5) according to whether the

quark line that leads into vertex j has an ortho-
function or a para-function character. These two
operators project onto the states of opposite chirali-

ty.
Each quintet of factors I J&(ui) in (4.2) defines

a representation of the nonchiral group
(U(2) xU(2))„.. That is, in a rest frame of particle

J
j, where uj is pure timelike and I Jo(uj )=0, one has

A,-r,„(u, )B,'= g r,,(u, )A„"(A,—,B,') . (4 3)

Here the indices p and v range over the set

(0,1,2,3,5), and AJ and BJ+ are

Ai =exp[i(1 Puj )o"a —] (4.4a)

and

BJ+=exp[i (1+Puj )0"b+], (4.4b)

where a and b+ are two real four-vectors, and the
0.

&
are the 4X4 matrices with two 2)(2 0.&'s in the

diagonal corners. The two other operators

AJ+ =exp[i (1+Puj )a a+ ]

and

BJ =exp[i(1 Puj )o"b ]—
(4.5a)

(4.5b)

acting on the Ii&(uj)'s from the left and right,
respectively, act as unit operators [see (C72) and
(C48)]. Hence (4.3) holds also if AJ and BJ+ are re-

placed by

2" zero-entropy functions is simply the sum of the
spin factors, times the common factor f„(p).

This sum g„of the 2" zero-entropy functions is
expressed in the four-component formalism as

g =—(TrI iq, (ui)rg„, (pg) I „„(u„))
X f.(pi p. » (4')

where the pseudoscalar particle is associated with
the factor
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A(a, a')=exp(io a"+iPcr a') (4.6a) I Iao=ao =bp=bo (4.7e)

and
B(b, b') =exp(i cr b +iPa b '), (4.6b)

respectively.
The invariance of the 1 J&(uj ) under the transfor-

mations (4.5) is a consequence of the use of the two-
component M-function formalism, or, equivalently,
of the Dirac equation for the corresponding four-
component quantities. It eliminates the possible sca-
lar and axial vector particles, and fixes the couplings
of the pseudoscalar and vector particles to be pre-
cisely those shown in (4.2).

The transformation properties shown in (4.3) and
(4.4) do not in general entail corresponding invari-
ance properties of the S matrix. This is because the
velocities uj of the various particles are generally
different, and hence the transformations shown in
(4.3) act, for different particles, in different frames
of reference, which are related by Lorentz transfor-
m ations.

One subgroup of the group generated by the
transformations (4.6) is of particular interest. This
is the subgroup SU(2) ii formed by imposing the fol-
lowing restrictions on the coefficients in (4.6):

( Wi p(Ti W2 pop W3 03) (4.8)

These three generators enjoy the same commutation
relations as the generators (o i, o 3,o 3) of SU(2).

In the rest frame of particle j the quintet of fac-
tors I J&(uj ) occurring in (4.2) reduces to a quartet.
If these four factors are identified with four factors
Xz in the following way,

y3(1+ puj ) =Xp,

iy3(1+puj )=X3,
—yi(1+pu3 ) =X2,

yz(1+ puj ) =Xi,
then, for all i, j, and k in the set (1,2,3),

[ W~,Xp] =0

and

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.10a)

[W;,XJ]=2ie,p,Xk . (4.10b)

These conditions entail that B =A ', and that the
transformations corresponding to (5a'i, 5u2, 5a3) are
generated by the triad of generators

and

a3 ———b3,
I Ia) ———b),
I I

ap ———b2,

a~ ——a2 ——b~ ——b2 ——a3 —b3 —0,

(4.7a)

(4.7b)

(4.7c)

(4.7d)

Thus Xo transforms as a 8'-spin singlet, and the set
(Xi Xz X3 ) transforms as a W-spin triplet.

If all particles are at rest, then the function g„
defined in (4.1) is invariant under SU(2)ii. The
Lorentz transformation that boosts 1 J&(uj ) from its
rest frame form I J~„(u3) to its form I J&(uj ) in the
standard coordinate system is given by

I J„(uj)=
QVJ'CT +VJ iT'

QV3 'O'
(4.11)

If v lies in the 0—3 plane then the boost transforma-
tions appearing in (4.11) commute with the genera-
tors of SU(2) TT, since both y3 and yp

——p are invari-
ant under SU(2) TT. Thus if the three-velocities vj of
all n particles are directed along the third coordinate
axis, then the Lorentz transformations in (4.11) do
not disrupt the invariance of (4.1) under SU(2)ii.
the function g„remains invariant.

If quarks of three flavors are allowed and the
4X4 matrices I'J& (uj) are expanded to the corre-

J
sponding 12 X 12 matrices 1 J& (uj ), then these new

J J
12X12 matrices will define a representation of
SU(6)ii, and the new function g'„, formed as in
(4.1) but with I

~
in place of I 1, will be invariant

under SU(6)~ .
A comparison with several earlier works may be

I

helpful. Bardakci and Halpern also introduce spin
factors analogous to Chan-Paton factors, but arrive
at a 16-particle multiplet in place of our 4-particle
multiplet. They find in addition to P and V, the as-
sociated parity-doublet partners S and A, which
occur, moreover, as ghost (negative-metric) particles.
They find also a second set of eight particles
(S',P', V',A') that couple differently to the quarks.
These 16 particles correspond to the 16 independent
matrices needed to span the space of 4X4 (Dirac)
matrices.

The present work is based on the two-component
formalism and consequently gives in place of the 16
particles of Bardakci and Halpern only 4 particles.
Considered from the four-component viewpoint the
two Dirac equations (C48) reduce the multiplicity of
particles by a factor of 4: they reduce the 16 parti-
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cles of Bardakci-Halpern to the 4 independent ones
coupled in accordance with (4.2}.

Bardakci and Halpern introduce the spinor solu-
tions U(pj. ) and U(pj) of the Dirac equation, but
their way of using these spinor solutions does not
give them the crucial Dirac equations (C48).

The present approach enforces the usual discon-
tinuity equations, including pole factorization, at the
zero-entropy level. But parity invariance is not
maintained at that level. Parity invariance, and also
SU(6}~ invariance for spatially linear processes, is
maintained for the sum g„of the 2" zero-entropy
functions, but pole factorization does not hold for
these sums.

The terms needed to restore pole factorization at
the physical level come from higher-order terms in
the topological expansion. To obtain an approxi-
mate representation of a physical amplitude near a
singularity one can insert into dispersion relations
the discontinuity functions obtained from the planar
amplitudes of Chew and Rosenzweig. These ampli-
tudes are built out of the zero-entropy functions.
The aim of the construction of these zero-entropy
amplitudes is not to obtain immediately a good ap-
proximation to the physical amplitudes. It is rather
to define and determine the basic building blocks of
the theory.

The results obtained here are formally similar to
those obtained by Delbourgo et al. from con-
siderations of the group U(12). They use a four-
component spin formalism, but impose the Dirac
(i.e., Bargmann-Wigner) equations in a way that
yields results similar to (C48}. The principal differ-
ence is that they interpret their analogs of our func-
tions g„as interaction terms of a local field theory,
rather than as low-order amplitudes of a topological
expansion. Thus the function f& (p &,p2, . . . ,p„)
would, in their approach, presumably be an undeter-
mined constant whereas in the present approach it
would be constrained (and, it is hoped, determined)

by the nonlinear zero-entropy equations. It should
also enjoy, for example, Regge asymptotic behavior.
The full amplitude would be constructed in their
theory by essentially a power-series expansion, but in
the present theory by including the remaining terms
in the topological expansion. The crucial question is
whether the self-consistent structure of the functions

f„(p~, . . . ,p„) determined by the zero-entropy equa-
tions, in conjunction with the topological expansion
procedure, will eliminate the divergences of field

I

theory associated with both renorrnalization and the
divergence of the perturbation series expansion.

Before these questions can be addressed it is
necessary to include baryons into the theory: Chew
has found that the topological expansion scheme
with mesons alone is not soluble, due to the minus
sign associated with the closed loop. Inclusion of
baryons (and baryonium) leads to a soluble system
that gives a predicted ratio of the meson and had-
ronic coupling constants that is in good agreement
with experiment. Preliminary results indicate that
the overall magnitudes of the strong-interaction cou-
pling constants, as determined by the nonlinear in-

tegral equations for the zero-entropy functions,
agrees with experiment at least in order of magni-
tude.
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APPENDIX A: ORIGIN
OF DISCONTINUITY FORMULAS

Discontinuity formulas are derived in S-matrix
theory nominally from macrocausality and unitari-
ty. However, it was recognized long ago that uni-
tarity is not essential. What is directly used in the
derivations is not unitarity, but rather the property
that the inuerse of the S matrix possess the antinor-
mal analytic structure. This antinormal analytic
structure is the same as the normal analytic struc-
ture derived for the S matrix from macrocausality,
except that the plus i e rule is replaced by the minus
ie rule. It is the property that the singularities in
the real region of definition be confined to the
positive-a Landau surfaces, and that the function
near these singularities be defined by the minus ie
limiting procedure. That the inverse of S should
possess this antinormal analytic structure can be de-
rived from unitarity and the fact that S possesses the
normal analytic structure. But the property should
hold regardless of whether S is unitary or not.

To see the essential point in the simplest way con-
sider first the formal perturbative solution. Then
the S matrix can be written in the form 9

(p' ~S ~p) =(p'
~
p) 2m'$6(Ep —Ep )lim(—p'

~

T(E+lE)
~
p), '

e&0

where

T(E)=V+V V+V V V+.1 1 1

H0 E 80 E HO

(Al)

(A2}
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If one defines R —+ by

2—ni5(E& —Ez )lim(p'
~

T(Ez+iE)
~ p )

ego

(A3)

then it is easy to verify, formally, that

R+ —R =R+R =R R+ (A4)

Thus the definitions

allow one to write

(A5)

S+S =S S+=I . (A6)

Hence the operator S defined by (A5) is the inverse
of S—:S+. Consequently, the operators R+ and R
defined by the plus ie and minus iE limiting pro-
cedures on the same function T(E) define formally
the operators (S J) and (S—' I—), respe—ctively.

These relationships are usually derived from uni-

tarity. But the above derivation does not depend on
the Hermitian character of V: it goes through, for-
mally at least, even if S is not unitary.

In S-matrix theory the antinormal analytic struc-
ture of S ' is usually derived from unitarity and the
normal analytic structure of S. However, it can be
derived, alternatively, directly from the antimacro-
causality property of S '. This latter property is
the same as the macrocausality property except that
the sign of time is reversed, so that physical parti-
cles carry positive energy from later times to earlier
times, rather than vice versa.

If S satisfies macrocausality, then S, if it exists,
should satisfy antimacrocausality. This will not be
proved here, but the following argument makes it
very plausible.

Consider a normalized initial state P that
represents a system of incoming particles each of
which is represented by an incident wave packet
with fairly well defined momenta and trajectory re-
gion. The action of S takes P to SP=g, and the ac-
tion of S ' on f takes it back to P=S 'g. The two
reciprocal processes P~P and g +P are thus close—ly
related. If S is unitary, then g is normalized. If S is
not unita'ry, then P need not be normalized. But in
any case the action of S ' on g is closely connected
to the action of S on P: S constructs P from P, and

S ' reconstructs P from g.
One can imagine f to be decomposed into com-

ponents g; corresponding to various combinations of
outgoing particles with fairly well defined momenta
and trajectory locations. Then the wave functions P
and P; can be wave functions of the kind used in the
macrocausality arguments of Ref. 30. If S satisfies
macrocausality, then in various dilated situations of
the kind discussed in that reference the dominant
contributions to the process P~g will correspond to
physical scattering processes. If S ' should fail to
satisfy antimacrocausality, then for some process
P~g there would be contributions to g~P that do
not correspond to temporally reversed physical pro-
cesses, yet do not fall off in the way demanded by
macrocausality for the corresponding direct process
that contributes to P~P. But then the dominant
contributions to P~P and P~P would not be tem-

poral inverses of each other, and the close reciprocal
connection of these two processes would have to be
maintained via an intricate interplay of contribu-
tions that are not naturally related via temporal in-
version.

Although such a situation is perhaps conceivable,
it will almost surely not be achievable in situations
having the complexity of relativistic particle phys-
ics. Thus I think it safe to assume, in the general
S-matrix context, that S ', if it exists, should be an-

timacrocausal regardless of whether the S matrix is
unitary or not: the antimacrocausality property of
S is a more primitive and basic property than uni-

tarity. From this antimacrocausality property one
can deduce immediately from the arguments of Ref.
30 the antinormal analytic structure of S ' needed
in the derivation of the discontinuity formulas.

Further insight into the connection between
discontinuity equations and the inverse of S can be
obtained by considering the S matrix from the point
of view of the "in" and "out" parts of the wave
functions in radial coordinates. Separating out the
center-of-mass motion of an n-particle system,
one is left with a function of various relative coordi-
nates (x~, . . . , x„~). An alternative set of coordi-
nates consists of R =(r &, . . . , r„~) and
Q=(Qi, . . . , Q„~), where (r; Q; ) are the radial and
angular coordinates associated with the relative
motion of some pair of subsystems. If g(R, Q) is a
steady-state solution and E = (k &, . . . , k„&) is a set
of n —1 scalars defining momentum magnitudes,
then one may define the asymptotic amplitude

(A7)
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.—2 0where p; =e;, and R =(r; —p;, . . . , „,—p„,).
This definition is such that if f is a plane wave

n —1

g exp(ix; k;),

where

8(K)S(K Q.Ko Qo) S(K Q.KO Qo}

Here

(A14)

and the directions and magnitudes of the n —1
+ 0three-vectors k; are specified by the sets of coordi-

nates

and

K =(ki, . . . , k„ i),
where k; p 0 for all i, then the corresponding
A(K, Q) is

A, (K,Q;K', Q')

=5(K,K')5(Q, Q')+5(K, K')5(Q, P), (A8)

where
n —1

5(K,K)= g5(k, k,'), —
i=1
n —1

5(Q,Q')= g 5(cose; —cose,')5(P; —P,'),

n —1

8(K)= g e(k, ),
i —1

(A15}

8(K)S(K,Q;K,Q )=S(k,n;K, Q ), (A17)

and 8(k;) is 0 or 1 according to whether k; is nega-
tive or non-negative. Equation (A14) expresses the
condition that the incoming part of the asymptotic
wave [i.e., the part having the behavior
exp( —igk;r;)] is the same as that of the incident
plane wave. Equation (A13) defines the S matrix in
these variables.

The k; in K all satisfy k; &0. Substitution of
the argument (K,Q ) for (K,Q ) in (A13) gives

A(K, Q;K, Q )=S(K,Q;K,Q )

+5(K,K')5(Q, Q'} . (A16)

The condition, analogous to (A14), that the two
terms in (A16) represent separately the asymptotic
incoming and outgoing parts of P is

and

K=( —k„.. . , —k„,),
(Alo)

(Al 1)

that was used in (A8), then the amplitude A(Q, K)
can be written as

A(K, Q;K,Q )=S(K,Q;K,Q )

+5(K,K')5(Q;Q'), (A13)
I

Q=(n ei, /i+a—, ,n 8„ i,g„,+—m) .

(A12)

If, on the other hand, f represents the solution to
the scattering problem with the incident or incoming
state given by the same plane wave

n —1 ~
exp g iki. r;

k; in K always satisfy k;
The wave functions g corresponding to the

asymptotic amplitudes defined in (A13) and (A16)
represent solutions that have incoming and outgoing
parts equal, respectively, to the incoming and outgo-
ing parts of the plane wave whose asymptotic ampli-
tude is given in (A8).

We now invoke two general principles. The first
is the superposition principle, which asserts that a
linear superposition of solutions i' is a solution g'.
The second is the causality principle that the incom-
ing parts of a solution should determine uniquely
the outgoing parts. Using the superposition princi-
ple one can form a solution P' by taking a linear su-

perposition over various values of (Ko,no) in the
solutions g that correspond to the amplitudes
A(K, Q+,Q ) of (A13). The weight factor will be
chosen to be S(K,Q +i,n i), for some fixed
(K i,ni). Thus the asymptotic amplitude corre-
sponding to g' will be

A'(K, n) =fdK' fd Q'A(K, Q;K', Q')S(K', Q', K'„Q', )

=fdK fdn S(K,Q;K,Q )+5(K,K )5(Q,Q )S(K,Q;K, ,P)
=fdK fdn S(K,Q;K,n )S(K,Q;K/, Qi)+S(K, Q;K„ni) . (A18)

The conditions (A14) and (A17) entail that the incoming part of A (K,Q) is the same as the incoming part of
the solution whose asymptotic amplitude is given in (A16), with (K,Q ) set equal to (Ki,Qi}. Thus, by virtue
of the causality principle, the asymptotic outgoing parts of these two solutions must also be the same:
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fdK, fdQ, S(K,Q;K„Q', )S(K(,Q(,K,Q }=5(K,K, )5(Q, Q', ) . (A19}

But then the introduction of the notation

S(K' Q'K' Q') —=S(K' Q'K' Q')

allows one to write (A19) in (A20) in the form

SS=I .

(A20)

(A21)

exp(+ikzr)

2' l'
(A22)

I

factored out, just a one-particle propagator. This
propagator, as it occurs in the functions
(p'

~

R +-~ p ) defined in (A3), is"

Consequently the transformation of shifting to the
barred coordinates takes S to its inverse. The
transformation that takes (K,Q) to (K,Q) reverses
both the signs of all momentum magnitudes and the
directions of all the vectors. Hence the associated
sets of vectors k; are transformed into themselves.
Thus when the functions S and S ' are expressed in
terms of these vector arguments one needs two
separate coverings of the physical region, one for S
and one for S '. On the other hand, the points
(K,Q) and (K,Q) lie in two separate regions of
(k, Q) space. These regions are joined at the point
where all k; =0.

The formal manipulations given above suggest
that there might be some sort of analytic connection
between the functions S(K,Q+', Q) defined above
in the two disjoint regions k;,k &0 and k;,k; &0.
One may examine this question in specific models,
and in particular in nonrelativistic models with real
or complex (and local or nonlocal) potentials. If the
potentials are short ranged, so that the singularities
near the transition point where all k;=0 arise ex-
clusively from the singularities in the propagators,
then the singularity structure near the transition
point should be correctly represented by perturba-
tion theory.

Near the two-particle threshold in a theory with
one kind of particle the propagator (E—Hp) ' be-
comes, when the overall center-of-mass motion is

I

where

kp
——

(
(2m')'~

(
. (A23)

APPENDIX 8: FAILURE OF UNITARITY
FOR ORTHO-AMPLITUDES
AND PARA-AMPLITUDES

Let the M function be decomposed into its "unit"
part plus the remainder:

M(P', P ")=M„(P',P ")+M„(P',P ") . (Bl)

Then the basic discontinuity equation has the form

Consequently the functions (p
~

R+
~

p'} and

(p ~

R
~

p'), when expressed in terms of the vari-
ables (K,Q;K',Q), will be analytically connected, re-
gardless of whether the potential is real or not. This
analytic connection entails a corresponding connec-
tion between S(K,Q;K', Q') and

S '(K, Q;K', Q') =S(K,Q 'K ', Q ') .

These questions can be discussed in greater depth
within the context of various special models. How-
ever, the point of the above discussion is to note that
very general considerations, which lie deeper than
particular models, strongly indicate that the familiar
analytic connection between S and S ' should be
maintained independently of unitarity.

M,+(P';P ") M„(P',P ")= —fM,+(P';P) V M„(P;P")dP, (B2)

where V o stands for the product of factors v; o.
Continuation around the leading threshold is sup-
posed to take the connected part of

M+(P'P") =M (P' P")

into the connected part of M„(P',P ").
The basic topological assumption is that the

separation of M„+(P', P ") and M„(P'; P ") into parts
having different topological characters separates the
discontinuity equation into parts having different to-
pological characters. This entails that the ortho-
function and para-function parts satisfy an equation
of the form (B2), but with only planar singularities.

The ortho-function and para-function parts of

I

M„+P';P ") and M„(P',P ") have polynomial factors
that are specified by the rules given in the text.
These polynomial factors have no singularity at the
threshold. Thus they are the same for the ortho-
function (para-function, respectively) parts of
M„+(P',P") and M„(P',P"). Moreover, they are the
same also for the ortho-function (para-function,
respectively) part of the right-hand side of (B2).
This consequence of our rules leads to an important
simplification of the discontinuity equations: the
polynomial spin factor is the same for each term,
and hence can be factored out. Thus the discon-
tinuity formula at the ortho-function or para-
function level becomes, essentially, a discontinuity
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equation for the residual scalar function.
The polynomial spin factor in the ortho-function

part of M,+(P',P") is built of factors u o, one for
each quark line. For example, a quark line whose
leading end lies at a vertex associated with a variable

p; contributes a factor u; o, where u;=p;/m;,
J

and a; and aj. are spinor indices associated with the
leading and trailing ends of the quark line, respec-
tively.

The polynomial spin factor associated with
M„(p'g") gets from this same quark line an identi-
cal factor u; o . . However, the function

l J

M, (P',P ")=M,*(P";P')

o'p

a& ——
0

0

0 I
~= I 0

0
rl =I +„= (Cl)

Xs=
—I 0
0 I

by using the Weyl representation for the four-by-
four Dirac matrices. In this representation

gets a factor —uj o, for real uj. This is not
t J

equal to u;.o. , nor even proportional to it, since
t J

u; and uz are uj are generally nonparallel.
On the other hand, the contribution u; o. . from

t J
any given quark line to the ortho-amplitude
M„(P',P") is the same as the contribution u; o

J
from this same quark line to the Hermitian conju-
gate of the para amplitude -contribution to
M„(P';P"). Thus the sum of the ortho-amplitudes
and para-amplitudes satisfies

o.; 0

0 o (i=1,2, 3) .

and gives

CopC '=o~',

The two-by-two charge conjugation matrix is

0 —1
C= —lc72=

1 0 (C2)

(C3)

M„p+M„p ———(M,+() +M,+p) . (B3)
where cr = (crz, —o ). Thus

Hence when the ortho-amplitude and para-
amplitude parts are combined one recovers the fami-
liar Hermitian analyticity relation, generally derived
from (extended) unitarity.

Since Hermitian analyticity fails for ortho-
amplitudes and para-amplitudes one cannot expect
unitarity to hold for them.

0 C
—C 0 (C4)

0 C'= C-'0 =.
satisfies E=E '=E '=E =E*,where Tr, dagger,

—1 Tr t e

and star represent transpose, Hermitian conjugation,
and complex conjugation, respectively. The impor-
tant properties of E are

APPENDIX C:
FOUR-COMPONENT FORMALISM

E 13E=—P ',
EtapE =ap

(C5)

(C6)

This appendix transcribes the results obtained
above in the two-component formalism into the
more familiar four-component formalism.

The connection between the two-component and
four-component formalisms is most easily expressed

I

and

E o;E=—o;TR (C7)

The free-field operator for Dirac particles of type
t 1s

4

f (x)=f 2n5(p m)8(p —) g [U (p, i)e 'p"a(p, A, t)+V (p, k.)e'p"b (p, A, , —t)],
(2n. ) A, =1,2,

(Cg)

where
I

that

V(p, A, )=EU (p, A, ) (C9) 4 P(x)S=Egt(x)= f'(x) . — (Cl 1)

and

U(p, A, )=EV'(p, A, ) . (Clo)

The charge conjugation operator 4' is defined so

The interchange f(x)~f'(x) is equivalent to the in-

terchange a+-4.
Parity is represented by the operator H, which

satisfies
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Htg;(x)H=e;pg;(x)=p; (x), (C12)

where e; is the intrinsic parity associated with g;.
The time reversal matrix 0 is

(X
i Kf) = (Kx

i
P)"=f'(x),

whereas in second-quantized theory if

(C26)

C-' O0=

and it satisfies

n'pn= p",

(C13)

(C14)

(C15)

(C16)

(0
i P(x)

i
4)=f(x),

then

(0
i
Q(x)

i
KV ) = (0

i
P(x}KV)

= (KO
i
Kg(x)KV)'

= (0
i
P(x)~)'

=f'(x) .
The time reversal operator is then

(C27)

(C28)

The Wigner complex conjugation operator K sat-
isfies, for all states 4 and 4, and all complex num-

bers a and P,

(K%'
i
K@)= (4

i

4)*= (4
i
4), (C17)

K(a i@)+pi@))=a iK+)+p iK@),
(C18)

W= UKT,

where

T P(x}T=Q(x'),
with x'=( t,x), a—nd

U f~(x)U=[QQ(x)]

For any operator A one may define A '
by

(C29)

(C30)

(C31)

(C32)

K =1.
Defining the operator A by

(C19)

i% ) = «K'P iA i
K%') (all 0') (C20a) (C33)

for all %. Then arguments similar to those leading
to (C21) give

A'= T~KU~A ~UKT .

(C20b)

one obtains from application of (C17)—(C19) to

(a++pe
i

A~
i
as+ pC ),

The current and spin operators

Jq(x, t ) = , [g~(t,x ),ape—(t,x )] (C34)

with a= 1 and p= 1 and i, the result

(@
i
A

i
+)= (K+

i
A

i
K@) (C21) o;(x, t) = —,[g~(t,x),o;g(t,x)] (C35)

and

iKx)= fx) (C22a)

(C22b)

for all 4 and 4. The definition of K is completed

by taking

then satisfy

Jq(t, x)=Jp( t,x)—
=(Jo( t,x), —J( —t,x))—

and

o;(t,x)=o;( t,x)= —cr;( —t,—x) .

(C36)

(C37)

in first-quantized theory, and by taking

Kf,p(x )K= tP,p(x)

and

K iO)= /0)

(C23)

(C24)

in second-quantized theory. That is, the ket ix ),
the field operator f(x}, and the vacuum are con-
sidered real. Thus in first-quantized theory if

S, =fgt(x')G(x';x)P(x)d x'd x . (C38)

Thus the time-reversal operation on the states gen-
erates the change in expectation values demanded by
the physical meaning of the operation of time rever-
sal.

Suppressing the dependence on all other particles
one may write the S operator for the scattering of a
Dirac particle as

(x
i y) =f(x), (C25)

The operators a(p, k,, t) and b(p, A, , t) are normalized
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(a(p, i,, t}at(p', )i,', t})p

= (b(P, l, , t)b t(P', A, ', t') )p

(C39}

and

V
. )1/2yc

( —)(u o)'/'P' v2 '

where to =(p +m }'/, and A, and t are the spin- and
particle-type labels. Then the S matrix for the
scattering of a Dirac particle of type t is

S(p', A, ', t p, /i, , t )

= (a(p', A, ', t)S,~at(p, l, , t) )p

= U (p', k')G(p', —p) U(p, k), (C40)

where u =p/m, pp & 0, P'= CP, $2,=52, and

[(u.o)' $2]tt=g(u o@;)'

where the type label on G is suppressed.
The spinors in (C40) are

etc.
The M function for the scattering of the Dirac

particle is defined by

M(p', t; —p, t) =(u'.cr)'/—2S(p', t:p, t)(u o)'/

y (u. )1/2

U (P,A, ) = (C41)
The insertion of (C40) and (C41) gives

(C42)

M(p', t; —p, t)=(—u' o)Gvv(p', p)(u o)+—(u' o)Gvt. (p', P)+Glv(P—', P)u o+—GLz. (P', P), —(C43)

where the four-by-four matrix G is written as

GUU GUL, 2GUU 2GUI.

GI.U GI.L 2GL, U 2GI.L,

(C44)

In terms of the mathematical momentum-energy vectors k' and k, and the associated vectors u'=k'/m and
u =k/m, Eq. (C43) can be written

M(k', t;k, t) =(u'cr)G—vv(k', k)( —u o )+(u' o)GvL (k', k}+Gr' v(k', k)( uo )+GLI (k', k—) . (C45)

The four-by-four M function is defined by

Mvv(k', k) MvL (k', k) 1 tt'. g

MLv(k', k) MIL(k', k) '
1

( —u.o)
(C46)

where the type variables t are now suppressed. The original two-by-two M function is ML,L, (k', k }. The other
three two-by-two parts are trivially related to MLL (k', k). In particular, one has

(u' o)M(k', k)( —u cr) u'oM(k', k)
M(k', k)( —u o') M(k', k)

(C47}

where the two-by-two and four-by-four M functions are represented by the same symbol. These relationships,
or (C46), entail the Dirac equations
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(u' y)(PM)=(PM)=(PM)( —u y) . (C48)

The two-by-two M function given in (C42) refers explicitly to the physical process involving an outgoing
Dirac particle of type t and an incoming Dirac particle of type t. The function G(x,x) in (C38) describes also
the three related processes in which the incoming particle is changed to an outgoing antiparticle or the outgo-
ing particle is changed to an incoming antiparticle, or both. If, for example, the outgoing particle is changed to
an incoming antiparticle, then (C40) is replaced by

S(.p', iL', t;p,—A, , t }=(S,~bt(p', A, ', —t)at(p, k,, t) )0

= —[V (p', A, ')]G( —p', —p)U(p, A, )

=Pi, [(v' ~r)' ( —1)Gvr, ( p', —p)(v —cr)'~

+ (v'o )' ( —1)G&r ( —p, —p)(u o )'

+(u' rr)' 'Gr', v( —p', —p)(u o)'~'

+(u'.o)' Gr'r, ( —p', p)—(v cr)' ]Pi, . (C40')

The charge conjugation operator in p' arises from the convention whereby A,
' is to be contracted onto the

right-hand index of the spin operator if the particle is an initial particle but onto the left-hand index of the spin

operator if the particle is a final particle. The convention for M functions is that the contraction rule is in-

dependent of whether the particle involved is initial or final, but that the sign of the mathematical rest-frame

spin vector s, occurring in the spin operator s„o is tied to the sign of the associated energy component in the
manner specified in (2.53). Then (C3) allows the c on P' in (C40 ) to be absorbed into the definition of the spin

operators. The S matrix corresponding to the M function is thus the quantity in the brackets in the last line of
(C40'). It is converted to the M function of the process, namely, to M( p', t; p, t),—by mu—ltip—lying it by the

factors (v' cr)'~ and (u cr)', just as in (C.42). This gives

M( —p', t; —p, —t)= u'oG—UU( p', —p)v o —u'oGUr—( —p', —p)+GURU( —p', —p)u &+Gr'i( —p', —p) .

(C43')

For initial particles v =—u. Thus this equation is a special case of (C45). Thus the two different processes are
described by the one function M(k', t;k, t) defined in (C—45), evaluated in different regions in (k', k) space.
The function G(k, k ) in these different regions is obtained from the Fourier transformation of the single func-
tion G(x',x).

The third case is that in which the original incoming particle is changed to an outgoing particle. Then (C40)
is replaced by

S(p', A, ', t;p, A, t:}=(a(p,', A, ', t)b(p—, i, , t)S,v )0= —U (p',—A, ')G(p', p) V(p, j)
=Px [(u' o)' 'GoU(p', p)(u. o)' '( 1)+(v'.o)'~'G—or (p',p)(v. o)'~'

+(v' rr)' Gr'U(p', p)(u. rr)'i ( —1)

+(v' cr)' Gr'.r, (p',p)(u o)' (C40")

The S matrix corresponding to this M function is the quantity in the square brackets in (C40"). It is converted
to the M function by multiplying it by (v "o )'~ and (v o )', just as in (C42). This gives

M(p', t;p, t)=u'crGU&(p', p—)( u o)+v' —oG.&z (p',p.)+Gr'rJ(p', p)( uo)+Gr'z, . — (C43")

Since both particles are final, one has u =v and tt'=u'. Thus this is also a special case of the function defined
in (C45).

The fourth and final case is similar. The order in which the arguments of the M function are placed is the
same as the order of the operators that create or annihilate the corresponding particles from the vacuum. [See
(C40), (C40'), and C(40") and the corresponding equations (C43), (C43'), and (C43").] Then the fourth case
g1ves
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—M(p, —t; p—', t}=M( —p', t;p, t—)

=( v—o)GUU( —p,p)( —v'&)+( —v 'o}GUL( p p }

(C43"')+GLU( P ~p}( v o)+GLL( P P)

where the antisymmetry of M under the interchange of spin- —, variables is used. The second part of (C43") is
equivalent to (C45), and hence the one function M(k', t;k, t ) describes all four processes.

The formulas given above refer to a single spin- —, particle. But they immediately generalize to the case of n

spin- —, particles:. one treats each such particle in the manner shown above.
The parity transformation P defined in (C12) induces in G(k', k) the change

G(k', k) e(~eP;)G(k ', k) geP; (C49)

where e is the product of intrinsic parities at the fields, and i runs over the particle-antiparticle pairs. A little
algebra shows that this transformation on G induces the same transformation on the M function defined in
(C46):

Consideration of the no-scattering part entails that the product of the intrinsic parities of f;(x) and P;(x) is
unity. Thus the intrinsic parities of the spin- —, fields drop out of e, as in (2.56). Then (2.58) allows (2.55) to be
written as

9'M(k', t;k, t) =e(u' o—)M(k ', t;k, —t)( —u o), (C51)

where e is the product of the intrinsic parities of the scalar particles. The parity transformation (C49) on the
function G occurring in the expression (C45) for the two-by-two M function induces the transformation
M~9'M, with 9'M defined by (CS1).

The antiparticle conjugation operation g(x)~g (x) defined in (Cl 1) replaces S,~ by

S',
p
——J [(Q'(x')] G(x'x)Q'(x)d x'd x= J [Egt(x')]tG(x', x)Egt(x)d4x'd~x

= Jl(t(x)[ EtG(x', x)E—] 'g(x)d x'd x . (C52)

Comparison to (C38) shows that the antiparticle conjugation operation is equivalent to the operation

G(x', x)~G'(x', x ) =[ EtG(x,x')E—] '= EG '(x,x—')E, (C53)

where Tr means transpose in spin space.
The momentum-energy space version of (C53) is obtained by replacing x and x' by k and k', respectively.

This transformation on G(k', k ) induces on the four-by-four M function defined in (C46) the transformation

M(k', t;k', t)~M'(k', t'k—, t)—
1 u'0.

EG '(k k')E—

EMT'(k, t;k', —t )E . — (C54)

It induces on the two-by-two M function defined in (C45) the transformation

M(k', t;k, t)~KM(k', —t'k, t), —

where CM is defined by (2.61).
The parity (or antiparticle conjugation) operation acting on M converts it to the M function that describes

processes in a conceivable world in which the amplitude for any process I' is equal to the amplitude that the
parity inverse (or antiparticle conjugate) of P has in the actual physical world. The analogous time-reversal
operation on the four-by-four M function is obtained by making the substitution S,~~S,„, defined by (C38)
and (C33}:
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(C55)

g., g.', =7 tKUtgt, UK7 = ZKUt fqt(x)Gt(x', x)p(x')d'x'd'x UKT

=fK[Utpt(x')U]gt(x', x)Utg(x")UKd x'd'x= fKq'(x')Q 'G (x',x)QQ(x")Kd x'" x

=fKy'(x')Q"Gt(x', x")Qp(x)K d4x'd4x =f g'(x')Q'G "(x',x")Qp(x)d'x'd x

=QtG '(x' x")Q (C56)

or, equivalently,

G(k', k)~G'(k', k)

=QtG '( —k, —k)Q . (C57)

Thus the time-reversal operation on the states or
fields is equivalent to the operation on G,

G(x', x)~G'( x', x)

I

M, 4, and H again leaves M invariant.
In carrying out the calculations whose results are

summarized above it is helpful to recall that the
two-by-two function M can be expressed as
C 'M 'C. If M is a product of Pauli matrices, then
M is obtained from M by transposing the order of
these matrices and replacing each o; (i=i,2,3) by

The Lorentz transformation properties of the
two-by-two M function is indicated by assigning spi-
nor index types according to the rule

This transformation induces in the four-by-four M
function defined by (C46) the analogous transforma-
tion

M(k', k)~M'(k', k) =QtM '( —k, —k ')Q .

M(K', &;k, t) =M«—(k', r;k, r )

~M p(k', r;k, —r }

=M(k', a, r;k, P, (C61a)
(C58)

The transformation (C57) induces in the two-by-two
M function defined by (C45) the transformation

M(k', r;k, r)~a M(—k', r;k, t)—
=M( k, t; k', —r} . — —(C59).

In a model where all particles are constructed
from spin- —, particles the intrinsic parity factor e is
unity. Then the product of parity inversion, an-
tiparticle conjugation, and time reversal on the
four-by-four M function gives, by virtue of (C50),
(C54), (C58), and (C13),

M(k', r;k, r)~WK HM—(k', r; k, r)—
M( k', t; —k, r—) . — —(C60)

The same result holds for the two-by-two submatrix
Mgl ——M.

The two-by-two M function has one dotted and
one undotted index. Thus, by virtue of (2.70), the
change of the sign of all of its vector arguments
changes its sign. Thus the two-by-two M function is
transformed into precisely itself by the product of
the a, 4', and H transforrnations.

The formula (C60) refers to a situation involving
only one spin- —, particle. For the case of n such
particles the variables k', k, and t are 4n-vectors, or
n-vectors, and the minus sign in front of M should
be (-1)". Thus the product of the transformations

I

The transformation properties of several other two-
by-two functions are indicated by the following as-
signrnents:

M(k, t;k' t)~M ~(—k, t;k', t), —

M(k ', t;k, r)~M (k—', r;k, r), —

MUU(k', t;k, t)~MU~p(—k', t;k, t), —

MUI (k r k r)~MUI j(k r k r)

MI.U(k', t', k, t)~ML p —~(k', t;k, t) . —

(C61b)

In these equations one may interpret the variables k'
and k as 4n-vectors, the variables t as n-vectors, and
the variables a and P as n-spinors, e.g. ,
a =(ui, . . .,a„). Our convention is that the spinor a
goes with k' and the spinor P goes with k. The
quantities on the right-hand sides of (C61) are in-
variant under the simultaneous action of the spinor
transformation (2.9) and

(k', k) [L '(A)k', L '(A)kj .

Comparison of (C61) to (C47) shows that one may
interpret (u' o) and ( —u.o) acting on the left and
right, respectively, as operators that simultaneously
raise and dot (or undot) the indices a, and P, respec-
tively. Then the subscripts U and L on the two-by-
two functions M(k', t;k, t) can be dropped —and the
four-by-four M function written as

M(k', r;k, r)=—M ~(k' r'k r) M (k', t;k, t—)—
13

M I'(k', t;k, t) M &(k', t;k, r)— — (C62)
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and

p ga.
P

G =
0 0 (C63a)

In formulas (3.5a) and (3.5b) for the ortho-
amplitudes and para-amplitudes corresponding to
quark closed loops the (quark) M functions are just
the products Q,.(u cr) and g,.( —u; 0'), respective-

ly. In both cases the individual two-by-two M func-
tions are ML,L and their spinor index types are as in
M ~. However, it is possible to use different choices
of index type, provided one makes compensating
changes in the spin operators that occur in (3.5}.

a.
One convenient choice is to use M s for the ortho-
propagators and M~~ for the para-propagators.
Comparison of (C62} to (C47) shows that the ortho-
propagator is then 5

&
and the para-propagator is

5 P

The propagators can be considered the analogs of
the functions G of field theory. Thus we write

P

Then one may write, in place of (3.5),

A(Go, k,s) =—Trg(F; Go) f(k) (C65a)

and

A(G, k,s) = —Trg(Ft'G ) f(k) . (C65b)

The sum of the two amplitudes is then

Ao+Ai'= —

Tref�(F/

G) f(k), (C66)

where

G =G +G& and Fg' ——F; +E~ .

Equation (C40) shows that the four-by-four ma-
trix G occurs in the form U GU. The matrix PG
occurs in UPGU, where U=UtP. Correspondingly,
(C66) may be written in the alternative form

0 0
GP— (C63b)

(C67)

The associated spin factors are
T

0 0
F;= v2 (s Ou;o)& 0

(C64a)
where

and

0 ( —u; Os; o)~~
FP 0 0 (C64b) and

p ga.
13

(C68}

( —u;.o)(s; o)p
F.' P——

(s; 0)(u; 0)~
(C69)

Then the contributions A and A~ come froin the lower right-hand and upper left-hand two-by-two sectors,
respectively.

If the meson corresponding to vertex i is a spin-0 meson, then s; =u;, and (C67) becomes

~ ( —&"0)(u"0)
F/P—

(u; 0)(u; a)
(C70a)

On the other hand, if the meson associated with vertex i is a spin-1 meson then u s =0 and

(s; 0)(ui.o)
F P=~ =s"cr ui'! 2 (C70b)

where
I

ortho-quarks and para-quarks are via the matrices

(C71)
and

iys(1+ yg) /~2

Thus the coupling of the spin-0 particle to the i1'5(1—1'5)!~&
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respectively. The couplings of the spin-1 particle to
the ortho-quarks and para-quarks are via the ma-
trices

s&oq„u "(1+y5)/v 2

s&cr„W "(1 y—s)/~&,

respectively.
This separation of the ortho-quark and para-

quark contributions into the two orthogonal parts of
spin space means that at the zero-entropy level the
ortho-quarks and para-quarks are, in effect, distinct
entities: they are represented by orthogonal states.
The rules shown in Fig. 8 mean that there are also,
in effect, two different kinds of mesons, one com-

I

posed of a quark and antiquark of ortho-quark type,
the other composed of a quark and antiquark of
para-quark type.

The close analogy at the zero-entropy level be-
tween the ortho-quark —para-quark types and the
flavor types suggests that one should allow, at the
zero-entropy level, also the mesons built from an
ortho-quark and a para-antiquark, or from a para-
quark and an ortho-antiquark. The coupling of
these two new types of mesons will be obtained by
filling the two empty spaces in the coupling matrix
F;P of (C69). Indeed, if one goes back to the two-
component formalism, and follows the normal and
natural practice of imposing parity invariance on
each quark propagator individually, rather than on
the process as whole, then the function F;P becomes

I'; =F;P=s

[(—u; o)(s; cr)]g [(—u; o)s; o(u; 0)]@,

s.o~ [(s; o)(u; o)]~.
(C72)

For the case of a spin-0 meson, where s; =u;, the
two new terms reduce to

whereas the complete coupling of the spin-1 meson
is via the factor

T

0 —u "0.
l

v 2 u'cr

I J
——(fp i 0ppuf —)/V '2,

where

(C75b)

=iy5(y„ui')/~2 . (C73a)

For the case of a spin-1 meson, where u;s; =0, the
two new terms reduce to

0 s; 0.
F;"13= =iy„si'/v 2 .s;8 0

(C73b)

3

(is m~'iv')(is

e=l
(C74)

Thus the vectors is, "+ in (C70b) and (C73b} can be
omitted and the index p of 0&& or y& contracted
directly onto the metric tensor ( —g"'+u"u").

The result can now be compared to the results of
Bardakci and Halpern, who use the standard four-
component formalism. The complete coupling of
the spin-0 meson is via the factor

I'J ——iys(1+y pj. )/v 2, (C75a)

The explicitly appearing spin vector s" in (C70b)
and (C73b) can be eliminated, since the index p
against which it is contracted can play an equivalent
role. Recall that the summation over the three
physical spin-1 states is represented, as in (3.19), by

3

g s ~""~su""'"=( —g""+ u "u")
e=1

0
uj =ki /m =uJ sign u&,

and uj is the four-velocity of the meson j.
The sum of all of the zero-entropy amplitudes

corresponding to a fixed cyclic order of the meson
variables is the common scalar factor f(k) times the
trace of the cyclically ordered product of factors 1;:
A(ki, . . . , k„)

= —Tr(I'iI'2, . . . , I'„)f„(ki, . . . , k„), (C76)

These couplings are the couplings associated with
positive-metric pseudoscalar and vector mesons.
These mesons are the mesons that are the basic par-
ticles of the ordered Hilbert space, and thus of the
physical Hilbert space.

The factorization property does not hold for the
sum of zero-entropy amplitudes discussed above. It
holds rather for the individual zero-entropy ampli-
tudes. An individual zero-entropy amplitude is ob-
tained by assigning to each quark line segment of
the closed loop of, say, Fig. 1 an ortho-quark or
para-quark label, and inserting an associated factor
of (1+ys)/2 or (1 —y5)/2, respectively, between the
corresponding factors I; and I;+i of the trace in
(C76}. Notice that when a meson is coupled to a
zero-entropy function only one or the other of the
two terms of (C75a) or (C75b) will contribute, and
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this term will be the same at the vertices lying on
the two ends of the meson connmtion line, by virtue
of the identity represented in Fig. 8, and the two
similar identities associated with the two other
ortho-para type mesons. Thus the only coupling
matrices that enter are those associated with positive
metric pseudoscalar and vector mesons.

The present theory thus resolves simultaneously
four serious difficulties that have long plagued this
kind of approach. These problems are ' first, the
apparent necessity for a doubling of the pseudosca-

lar and vector particles, second, the apparent neces-
sity for a parity-doublet partner of each of the
above-mentioned particles, third, the apparent
demand that each of these parity-doublet partners
have the wrong metric (i.e., be a ghost), and fourth,
the lackmf any rationale for the empirically ob-
served SU(6}@ symmetry of vertices. This latter
symmetry emerges automatically in the present
theory for the amplitudes formed as the sum of
zero-entropy amplitudes, provided all momentum
vectors pj are parallel to the third coordinate axis.
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