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Vector and scalar confining potentials and the Klein paradox
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Confining potentials in equations involving the interaction of fermions lead to no Klein

paradoxes if the strength of the vector potential is appropriately limited compared to the

scalar potential. For linear potentials the Regge trajectories are asymptotically like those of
the harmonic oscillator, namely, E —j.

I. INTRODUCTION

It is not difficult to introduce potentials which
behave as vector exchanges into either the single-
particle Dirac equation or the 16-component equa-
tion for two interacting fermions. Such potentials
also manifest themselves through the particular
form of Breit (relativistic) corrections to the
Schrodinger equation, as in the quarkonium prob-
lem. If a "confining" potential is vectorlike, howev-
er, the possibility of a tunneling solution arises, so
that such a potential is not in fact confining (Klein
paradox). This situation does not occur when the
confining potential is a Dirac scalar and indeed, as
we shall see, for a scalar potential term of sufficient
strength compared to a vector potential term.
Moreover, if both potentials grow like r at large r,
the leading (large E) part of the spectrum is that of
the nonrelativistic harmonic oscillator, with the
spring constant a complicated function of the vector
and scalar strengths.

In the phenomenology of quarkonium, ' an equal
mixture of vector and scalar confining potential
leads to the best fit for the spin-orbit splittings of
the spectrum. Such a mixture also has the appealing
property that the quark-antiquark potential binds
while quark-quark or antiquark-antiquark pairs
have no long-range interaction at all. It is thus en-

couraging that we find such a mixture to be con-
sistent with the absence of Klein paradoxes as well
as characteristic of linear Regge trajectories.

In the next section we discuss the single-particle
Dirac equation, and in Sec. III the two-fermion
equation. We interest ourselves throughout only in

the asymptotic behavior in E, since it is only for
large E that the solutions with linear potential
resemble the nonrelativistic harmonic oscillator.

II. DIRAC EQUATION

We follow the notation of Critchfield in studying

the Dirac equation, which has the form

(p —m)g=(gsr+gva. r)f . (2.1)

We shall ignore the rest mass rn in the following.
When the angular dependence is removed, the radial
piece of Eq. (2.1) is actually a set of coupled equa-
tions for the "large" and "small" components f,
and gb,

[E (gv+gs)rl—tL+0't +

T

t —1
Ã (gv gs)r butts

—4e+- —
r

(2.2)

Here, for l =orbital angular momentum in
lt=l+1=j+—, when the total angular momentum

l l 1j=I+ , , and t= —I = ——(j+—,) when j=l ——,.
The prime represents d/dr

Equations (2.2) can be decoupled (except, of
course, for boundary condition) in standard fashion
to find two Schrodinger-type equations,
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0 +0 + +0 —,+E —2gv«+(gv —gs ir5 2 —5 t —1 t(t —1) 2 2 2

r ' E—5r r r
(2.3)

0 2 o. t+1
lb+lb +—+6 E

t (t+1) +E 2gv—Er+(gv —gs )r =0 .2 2 2

r 2

We have here defined the quantities

0 =gv+gs &=gv —gs . (2.4)

I

The self-consistent solution to this equation is found

by writing

We remark immediately that (i) only for gv2&gs~
does the r term have the appropriate sign to be a
confining harmonic oscillator, i.e., there is no Klein
paradox if ~gv~ & ~gs ~, and (ii) there is a term
linear in both r and E which complicates the general
solution to this problem. Since we are interested in
large E we also drop the terms in Eq. (2.3) of order
1/E; this approximation will turn out to be internal-

ly consistent, although the solutions will be known
only to O(1/E).

Because of the linear term in r the resulting equa-
tions remain difficult to solve. It is useful to consid-
er first the case gv ——0, when this term is not
present. By solving the equations explicitly, one can
show in this case that the large eigenvalues for the
energy are

E=aEr (2.8)

so that

4
l2

ro ——

gvaE+(gs —gv i
(2.9)

aE is then found from

or

aE = , g v+—,I:9gv—'+8(gs' gv')—]'" (2.11)

2

E =aE ro =2gvaEro +(gs —gv )"o +2 2 2 2 2 2 2

ro

(2.10)

E =2gsl . (2.5) and

ro'=l'I —,gv'+ —,g l:v9g v+8(gs' —g v')1'"

+(gs —gv ) I (2.12)

We have thus shown that near the minimum the
potential V (r) can be written

l2
V (r) =—+g,ff r

r 2
(2.13)

(2.6)

I is also large here; such a linear Regge trajectory is
characteristic of the harmonic oscillator.

We can find an approximate form for large E and
l in the more general case, Eq. (2.3), by writing the
coefficient of p, (or fbi in the form

l2
E 2gvEr+(gv gs ir :E Vz—(r), — —

where V(r) is an energy-dependent potential. We
find the value ro of r which minimizes V (r), and
estimate E = V (ro). Thus we require

where the effective harmonic-oscillator coupling is

geff 3gv +(gs gv i

d 2V (r)=2gvE+2(gs —gv iro- 2l

ro
(2.7)

I

+gvt9gv +8(gs gv ))-
The energy eigenvalues are of the form

(2.14)

E'=
2 l I 9gv'+4(gs' gv')+3g v[9—g v'+ 8(gs' gv'll'"I—

3

XNgv +(gs gv i+ gvt9—gv +8(gs gv )l ]—
2gsl

gv=o

v 3gvl .
gv=gs

(2.15)

(2.16)

(2.17)
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E linear in l and in ro is again characteristic of the
harmonic oscillator. Equation (2.16}agrees with the
result of Eq. (2.5). The coefficient of / is a rather
complicated function of X—:gv/gs but is numerical-

ly quite close to linear in the interesting region
0(X(1.

III. TWO INTERACTING FERMIONS

Here we show that for an analogous equation for
two interacting fermions, the structure of the solu-
tion is much the same as in the single-particle equa-
tion. The equation we use was first introduced by
Kemmer, had several treatments for the angular
momentum j=0 case, and was finally separated
into angular and radial pieces for general j by
Koide. We use the notation of the last reference,
and refer the reader there for a more detailed treat-
ment. We note that the connection of this particular
equation with relativistic field theory is not direct,
and in this sense a more recent equation with a
more direct connection may be more relevant for
comparison with data. For our modest purposes the
Kemmer equation is sufficient. This equation takes
the form

i(a —a } V+p mi+p' m2
(1) (2) ~ (() p)

J

+ g 0, V, (r) P(r) =Eg(r), (3.1)

where V operates on the relative coordinate

r = r, —r2, g is a 16-component spinor and the su-
perscripts (1) and (2) refer to the Dirac spaces of
particles 1 and 2. The V, are potentials of tensorial
nature determined by the O, . We are interested only
in the case Vs(r)=gsr, Vv(r)=gvr, for which

0 =P"'P ', 0 =1— (3.2)

We stress that the strengths gs and gq are not neces-
sarily to be identified with the strengths used in Sec.
II. This identification could be made by taking the
large-mass limit for one of the particles in the Kem-
mer equation and then comparing this limit with the
case of the one-particle equation. This exercise does
not interest us here because we can arrive at our re-
sult without the connection. Moreover, we treat
only the limit E »rest masses. The form of the tra-
jectories in this limit need not be the same in detail
as those which might follow from taking first one
mass infinite and then the large-E limit.

Through a series of transformations and decom-
positions in vector spherical harmonics, Eq. (3.1) be-
comes a set of eight (radial) equations for eight
functions. Four of these equations are merely alge-
braic; the remaining four are fully coupled first-
order equations for four unknown functions of r.
Moreover, this set of equations is different for parity
states P =( —1)J as opposed to P=( —1)J+'. We do
not write the full set here because they are rather
complicated. Instead we write the four coupled ra-
dial equations for the case P=( —1}1, and for fer-
mions of equal mass m:

2
[&+(gs—4gv)r]as+2 f2+ f2r

r

4&j (j +I) &j (j + I )
mg) + a3 ——0,

r(Z g,r)— r
(3.3a)

1 4v'j(j+1) &j(j+1)[E+(gs 2gv)r]b—o+2 gi+ mf2+ bo
r [& (gs+2g v—)r] r

(3.3b)

4m &j(j+1)(E—gsr}f,—2a', — mf2+ bo ——0,E—(gs+2gv)r r
(3.3c)

1 4m &j(j+I)
(gs+2gv)r]g—i

—2 bo+ bo mg~+ a3 ——0 .E—gsr r
(3.3d)

J

Here a2 (r), f2(r), gi (r},and bo(r) are four functions occurring in the decomposition of f.
We now consider the large-E limit. We are anticipating that, as in the one-particle equation, E will be pro-

portional to Vj as well as to a potential minimum ro, so that in Eqs. (3.3) we can drop all 1/E terms except
those containing the numerator factor j(j+1). Equations (3.3) then decouple into two independent pairs of
equations: Eqs. (3.3a) and (3.3c) become

T

4j(j+1)[E+(gs 4gv)r]a3+2 f2+ f2 ——
2 a2 ——0—,

r r2(Z gsr)—
« gsr )f2 2a', =0— —

and Eqs. (3.3b) and (3.3d) become

(3.4a)

(3.4b)
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1 4j(j+1)[E+(gs —2gv)rlbo+2 g'i+ bo ——0,
r [E—(gs+2g'v)r]

(3.5a)

1
(gs+2gv)r]gi —2 ho+ bo =0 .

I'
(3.5b)

While we have explicitly written the equal-mass case, the unequal-mass case also gives the two sets of Eqs. (3.4)
and (3.5) for E» fermion masses.

Each pair of equations can now be decoupled to give one second-order Schrodinger-type equation; namely,

for Eqs. (3.4),

f2'+ f2 +f—2 , (E —gsr)[—E+(gs 4gv )—r] — =0,2+j(j+1)
r 4

p
2

J

and, for Eqs. (3.5),

g i'+ —g i+g i —,[E+(gs—2gv)r][E —(gs+2gv)r]
1 1+j(j+1)
1 f2

=0.

(3.6)

(3.7)

Exactly the same procedure for the case P =(—1)I+' yields second-order equations for two more functions,

f3'+ „f3+f3
——,«+gsr )[E—(gs+4gv)r]

2+j(j+1) =0, (3.8)

go+ go+go & [E—(gs+2gv)r][E+(gs —2gv)rl—
1 1+j(j+1)
T f 2

=0. (3.9)

V =(gs 4gvgs—)r +4gv«+2= 2 2 4~
2

p
2

4'2
V'=(g, ' 4g, ')r'+4g, Er+ J—

f2

(3.10a)

(3.10b)

We can now treat these equations as in the one-
particle case by writing the coefficient of the func-
tion in the form , [E V(r, E—j)] f—or large E and j
both. For gv ——0, V is a function of r and j alone;
indeed it is the same function for all four equations,
namely, gs r +4j /r . This is the normal harmon-
ic oscillator as described in Sec. II. For gv&0, V
contains a linear term in E. We have for Eqs.
(3.6)—(3.9), respectively,

4 4~
2

~0 =
2g vaE+ (gs' 4gvgs }—

aE 3gv+[9gv +2(gs 4gvgs)]

(3.12)

tion in the two Schrodinger-type equations for each
parity, since the large-r asymptotic behavior of the
solutions corresponds to this coefficient. Thus Eq.
(3.6) rather than (3.7) determines the P=( —1)j
eigenvalues, and Eq. (3.8) rather than (3.9) deter-
mines the P=( —1) +' eigenvalues. To find these
eigenvalues we follow the procedure of Sec. II,
namely, we find [from Eq. (3.6)] the minimum ro
for V (r) as given in Eq. (3.10a} with the estimate
E =V (ro}. Setting E=aEro, we find

V =(gs +4gvgs)r +4gv«+2 2 2 4J 2

p
2

4'2
V =(gs 4gv )r +4gvEr+-

p
2

(3.10c)

(3.10d)

This corresponds to an effective coupling, as in Eq.
(2.13), of

4i'
V = +terr ~

p
2

Since we want the coefficient of r2 to be positive in
order to avoid Klein paradoxes, we require

Igs I &4lgv I
. (3.11)

The energy eigenvalue determination also follows
from the smallest coefficient of the unknown func-

with

jeff SS 48VRS+ l2SV
2 — 2 2

+4gv[9gv +2(gs 4gvgs)] ~
—(3 14)

Energy eigenvalues take the form
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E =2J I2(gs 4—gvgs+9gv )+6gv[9gv +2(gs 4—gvgs)l

X [6gv +gs 4—gvgs+2gv[9g v'+2(gs 4—gvgs)]'

~ 4gsJ
gV~ 0

12' 3gvJ
1

gV 4gS

(3.15)

(3.16)

(3.17)

One more point remains to be resolved in our ap-
proximate solutions of these Dirac-type equations.
Namely, with any ordinary set of boundary condi-
tions at infinity, numerical integration for the solu-
tion runs into difficulty because of the singularities
at E=gsr in Eq. (3.4a) and at

E=(gs+2g v)r

in Eq. (3.5a). Terms of this type do not appear in
the single-particle equations (2.2). Strict solution of
the equations would require a special way to handle
these singularities. However, our technique for han-

dling the solution allows us to avoid this question,
because as we discuss below our bound state in each
case lies inside these singularities. This is possible
because as E increases, so does ro. This result is
easliy established by calculating the quantities

Di=& —gsr

and

D2 E (gs+2g——v)"—

substituting r =ro, E=a~ro, and checking that D~
and D2 are positive for all possible values of gs and

gv. We forego the explicit exercise here but remark
only that the minimum value of either D, or D2
occurs for both gs and gv positive, when D2 ——0 for

gs ——4gz, and otherwise Di and D2 are positive de-
finite. By the required inequality (3.11) gs&4gv,
and our result is established.

IV. CONCLUSION

tential is limited compared to the strength of the
scalar potential. Second, a linear potential in these
equations gives at large E and angular momentum
linear Regge trajectories, characteristic of harmonic
forces in the Schrodinger equation, with slope a cal-
culable function of the vector and scalar strengths.

It is interesting to ask whether Klein paradoxes
occur in other treatments of QCD which follow
from more fundamental points of view or at least
from a relativistic starting point. One such treat-
ment is that of Mandelstam, who by truncation of
the Dyson-Schwinger equations is able to set up a
Bethe-Salpeter equation for qq bound states. This
equation has a vectorlike kernel whose Fourier
transform is a linear confining potential; it is easy to
see how the equation can be generalized to include
scalarlike kernels. Careful treatment of the Mandel-
stam equation does indeed reveal a Klein paradox
which is resolved in appropriate combinations of
vector and scalar kernels; we shall report on this in
more detail elsewhere.

Still another relativistic equation, an equal-time
equation, proposed by Suura, is known to have
Klein paradoxes much like those we have discussed
in this paper. The general conclusion we draw is
clear; such paradoxes are difficult to avoid, and the
solution to them seems to point towards limits on
the tensorial mixture of allowed interactions. This
fact will have bearing on phenomenology through
the fine structure of the spectrum, and at least in the
equations which have been studied these
phenomenological implications do not seem un-
reasonable.

Quarkonium phenomenology is done using a
Schrodinger equation, with the tensorial nature of
the interaction revealed only through the Breit
corrections due to relativity. Equal mixtures of sca-
lar and vector confining potentials are preferred.

In this brief paper we have shown first that it is
possible to treat mixtures of scalar and vector poten-
tials in equations involving fermions, and that there
is no Klein paradox if the strength of the vector po-
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