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The problem of a Dirac particle in a fixed Abelian monopole field is reexamined. We
find that the boundary conditions adopted by Kazama, Yang, and Goldhaber can be gen-

eralized. When the generalization is made, we are led to the existence of 8 vacua. For
massless fermions, chiral symmetry is spontaneously broken. A change iri 8 is equivalent to
a chiral rotation, and the physics is independent of 8. For massive fermions, CP invariance
is broken except for 8=0,m. The vacuum charge for a unit pole obeys the Witten formula

Q = e8—/2' and the monopole becomes a dyon. The results for the two cases are related

by an analog of Levinson's theorem. We also note the connection of our results with frac-
tional quantum numbers on solitons, and with the g invariant of Atiyah, Patodi, and Singer.

I. INTRODUCTION

The problem of a Dirac particle'z in a fixed
Abelian monopole field has attracted the attention
of many authors. ' In particular, Kazama,
Yang, and Goldhaber treated the system in detail
using the fiber-bundle formalism, " In the course of
their investigation, they discovered that a boundary
condition had to be imposed at the origin (the loca-
tion of the monopole} for the lowest partial wave
and suggested a choice in terms of an additional
magnetic moment to the Dirac particle.

We have found, however, that their choice is not
the most general that is possible, and the appropriate
boundary conditions form a one-parameter family,
corresponding to the existence of 8 vacua. '2's Ac-
tually, our work will have considerable overlap with
the papers by Goldhaber, Callias, and, in particu-
lar, Besson'; we believe, however, that we have new
results to offer, as well as a simple and explicit treat-
ment. (See added note. }

The organization of the paper is as follows. We
introduce the necessary equations in Sec. II. Fol-
lowing Refs. 7—10, we adopt the fiber-bundle
description" of the monopole to avoid a spurious
"string" singularity in the vector potential.

In Sec. III, we treat the case of a massless fer-
mion. We find that the self-adjointness of the Ham-
iltonian requires chiral symmetry to be broken, '

thereby allowing charge and angular momentum to
be conserved. In this case, the boundary condition
serves only to fix the chiral angle, and hence does
not affect the physics.

In Sec. IV, we turn to the case of a massive Dirac
particle. In this case, the physics is 8 dependent. In

particular, CP invariance is violated apart from two

special cases corresponding to 8=0, m. Further-

more, the vacuum acquires an electric charge ac-
cording to the Witten formula, ' '5 and the mono-

pole actually becomes a dyon. '6' We also investi-

gate the Galilean limit. The relation between the
two cases is explored in Sec. V. We find that the

symmetry breaking in the massless case and the
Witten effect in the massive case are related through

an analog of Levinson's theorem. ' We also note the
connection of our results with fractional quantum

numbers on kinks in one-dimensional systems'

and with the ri invariant of Atiyah, Patodi, and

Singer. '

Finally, in Sec. VI, we briefly discuss various

problems associated with the existence of g. The
Appendix deals with some subtleties associated with

the Jacobi identity, ' ' the infinite-volume limit,
and the zero-mass limit.

II. THE DIRAC EQUATION
IN A MONOPOLE FIELD

The Dirac equation for a charged particle in a
monopole field is given by'

i(B/Bt)l(|(x, t) =Hf(x, t),
H =a.F7+13M,

(2.l)

(2.2)

where we have adopted the minimal prescription

m= —i grad —eA . (2.3}

As emphasized by %u and Yang, " and by Greub
and Petry, " the vector potential A for a monopole
should be regarded as a connection on a nontrivial
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R: r &0, 0&8&—+5, 0(/&2m, (2.4)

Rb. r&0, ——5&8&~, 0&/&2m, (2.5)

U(1) bundle; similarly, P should be regarded as a
section rather than an ordinary function. In our
case, it suffices to consider the space outside of the
monopole as the union of two overlapping regions
R, andRb,

A'(x ')
I

=A(x)
I b,

g'(x ') I,=(—1) i+'ia g ( x )
I

(2.13)

(2.14)

(2.15)

is to transform a solution f(x,t) of (2.1) with energy
E into a solution g'(x, t} with energy E. —

In the following, we shall concentrate on the
lowest partial wave j= Iq I

——,, since this is the
case where the subtlety arises. We write the wave
section as

where 5 is an angle such that 0 & 5 & m/2. The vec-
tor potential is then chosen on each region to be

A, Ib=AsIb ——0, ApIb —— . (I+cos8),
—g'

r sin0

(r, 8,$)ERb, (2.7)

where g is the magnetic charge. The two potentials
are related in the overlap region R, ARb by a gauge
transformation

l —1
Ap I a ~p I b Saba}y~ab

e
(2.8)

A„I,=As I, =O, 3& I, = . (1—cos8),
r sin8

(r, 8,$)ER, , (2.6)

F(r) g,~ (8,$)
r G(r) rt; (8,P)

' 1/2j —m+1
2j +2

' 1/2
j+m+1

2
~ +2 q, iq i, +1/2j+

~q, j q i,m —1/2

X(r)
(8 ~) iE,

r

E(r)X(r)= G(

(2.16}

(2.17)

where

g.,=e"m0 (2.9)

is the transition function. Similarly, we may intro-
duce two wave functions p, and gb, so that the
Dirac equation (2.1)—(2.3) is satisfied in each region
with the respective vector potentials (2.6) and (2.7).
As is well known, it follows from (2.8) that the two
functions are related in the overlap region by

4a ~ab 4b (2.10)

The existence of S,b throughout the whole overlap
region R, ARb leads to the celebrated quantization
condition '

q =eg = —, X integer . (2.11)

The total angular momentum for the system is
well known to have the form

J =x XPr q + , cr, r =—
I

x—I, ——
r

(2.12)

where the second term is responsible for much of
the unusual properties of the system. Since J is
conserved, we may simultaneously diagonalize H,J, and J„just as in a central potential. We shall
denote their eigenvalues as E, j(j+1),and m. It is
also easily checked that the effect of a CP inversion

(Xi,X~)= dr Xi(r)X2(r) .

Using the formulas

(cr m)rt'l~(8, $)
X(r)

r

(2.19)

rij~ (8,$), (2.20)
r IqI dr

we may reduce Eqs. (2.1)—(2.3) to

Ho(r) =EX(r), (2.21)

Ho i —
y5 +—p——M . (2.22)

d

IqI dr

We may also check that the effect of a CP inversion
is given by

X(r)~yy'a(r}

using the formula

(2.23)

&qim I a(~ 80+~)=~g—im I b(8 0') . (2.24)

where Fs i are the monopole harmonics defined in
Ref. 7. In Eq. (2.16), the nontrivial nature of the
U(1} bundle is contained completely in ql (8,$), so
X(r) is an ordinary two-component wave function
defined on the half-line r &0 and with the inner
product
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Furthermore, we may restrict ourselves to q&0,
since the solutions for q &0 may be obtained by a
parity transformation

F(0)/G(0) =i tan —+—
2 4

(2.30)

X(r)~PX(r) . (2.25)

X' '(r)=

cos kr

cos kr

ik
sin krE+M

(2.26)

in the representation with

Equations (2.22) and (2.23) are then easily solved
to give

E=+(kz+M ) ~ (k &0)

ik
sin kr

E —M

8 m.
i sin —+—

2 4
=g(8),

8 m
cos —+—

2 4

(2.31)

III. THE MASSLESS CASE

where we have chosen to parametrize in terms of
angle 8.

As we shall see in the next sections the formal
Hamiltonian (2.22) together with the boundary con-
dition (2.31) leads to acceptable (and interesting)
physics.

0 1 1 0
10 '~ 0 —1

(2.27) For M=O, the solutions of (2.22) which satisfy
(2.3 1) are

It is found however, that there also exist normaliz-
able solutions for complex E. The reason is not
hard to see; the differential operator (2.22) is not
necessarily Hermitian on a half-line.

Fortunately, the problem may be easily resolved.
An elementary application of the Weyl-von Neu-
mann theory shows the operator (2.22) is of limit
circle type at r=0 and of limit point type at r = &n,

hence the formal Hamiltonian Hp has a one-
parameter family of self-adjoint extensions.

To use more familiar language, boundary condi-
tions must be imposed so that the Harniltonian
possesses a complete set of eigenfunctions, i.e., ac-
ceptable as a physical observable. The appropriate
boundary conditions at r=0 form a one-parameter
family, whereas no boundary conditions are neces-

sary at r = 00.
The desired condition is readily obtained by

demanding that

E=k&0: uke(r)=e
i Hys/2

i sin kr+—
4

cos kr+—
4

~ ~—isbn kr ——
4

cos kr ——
4

Using the formula

E= —k &0: Uks(r)=e
i8y~/2

(3.1)

(3.2)

0=(X~,HpXz) —(~pX] Xp)

= iX)(0)y5Xz(0)

=i[F) (0)Gg(0)+Fg(0)G ) (0)] (2.28)

or

F) (0)/G ) (0)=—Fp(0)/Gp(0), (2.29)

where we have assumed that X~ and Xz vanish suffi-
ciently rapidly at infinity (as may be expected for a
normalizable wave function). Therefore we find the
boundary condition must be of the form

dr coskr =m5(k),
0

(3.3)

it is trivial to show that the solutions (3.1) and (3.2)
form a complete orthonormal set.

%e also see that the solutions break chiral sym-
metry in spite of the fact that Hp formally com-
mutes with y. However, since a shift in 8 is
equivalent to a chiral rotation, the physics must be
independent of 8.

To see this point more clearly, we may consider
the scattering amplitude for j=q ——,. Splitting
uke(r) into incoming and outgoing waves
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and comparing with

0
e

ikr-
rijo(fi it )

(3.4)

an observable, even if it is not conserved. ) Since
there are no bound states, we may conclude that 9 is

not a physical observable.

It is also instructive to second quantize the Dirac
equation. We start as usual from the canonical an-

ticommutation relations

Ig(x, t),gt(y, t) j =5(x —y), (3.7)

Ig(x, t),g(y, t) j = tg (x, t),g (y, t) j =0,
+(higher j)

for incoming waves and

g ikr

etio(~ 4)

+(higher j)

(3.5)

(3.6)

together with the Hamiltonian

4 (t)= —, f dxf (x, t)HQ(x, t)

+ —, f dx(Hit)t(x, t)g(x, t) . (3.9}

The Heisenberg equation of motion is then just the
Dirac equation

for outgoing waves, we find that there is a change of
chirality and a corresponding shift of phase ie'
However, chirality is conserved for higher partial
waves s so this phase does not give rise to interfer-
ence effects. (Note that chirality, unlike helicity, is

I

= —iHQ(x, t) .

Therefore g( x, t) may be decomposed as

(3.10)

00

g(x, t}=— dk g [bkme
' 'uk(r)rtjm(8, $)+dkme' 'uk(r)rijm(6, $)]+(higher j ),

m

where uk(r) and vk(r) are arbitrary solutions of (2.21) with E=+k.
If we also require b and d to satisfy the anticommutation relations

t bkm, bk m j =
I dkm, dk m j =m 5(k k'), 5mm—

others=0,

(3.1 1)

(3.12)

(3.13)

then uk(r} and vk(r) are fixed to be uke(r) and uke(r) (up to phase factors which may be absorbed into b and d).
%'ith this choice both the vector current and the axial-vector current are conserved,

8
a&i„=O, j„= l@ lit—]—

2

(Note that the anomalous divergence vanishes for a pure magnetic field. )

However, the associated charges behave differently. The electric charge is time independent,

Q—:f dx jo(x,t)= —f dkg(bke bkg dkg dkg )+(hi—gher j),
m

(3.14)

(3.15}

(3.16)

whereas the axial charge is time dependent,

Qs(t)= f dxjos(x t)
00 00

dk dk', e' " " g bkgmbk'gm + f dk f dk', g'i" +"~ig bkg dk g
m k+k m

f "k f "k, g gdkembkem
m

+ z f dk f dk', e ' " "gdk emdkem +(h'igher j},
m

(3.17)
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where we have made use of

0
dr sinkr =~

~

k
(3.18)

In fact, strictly speaking, Q5(t) should be regarded as nonexistent. A chiral rotation induces the Bogoliubov
transformation '

8—8' 1 . 8—8'
&kg=cos bkg + sm +k, ~k'g, ~k'g

2 ~ 2 o k' —k - k'+k

8—8' 1 . 8—8' ", 1
dkg cos—— dkg+ —sin dk', bk g —,— dk g0 k'+

(3.19)

However, since

&8'
1

bkg bkg I
8'& = 1 . g8 —8'

mk 2
(3.20)

the total number of particles is infinite, and the transformation is not unitarily implementable, i.e., the vacua
for different 8 belong to different Hilbert spaces. These properties are all characteristic of spontaneously bro-
ken symmetries. The only novel feature is that the relevant long-range field is fermionic, owing to the "ab-
normal" statistics.

We may also discuss scattering in the language of second quantization. Here we simply remark that we can-
not use the solutions of the free Dirac equation for a smearout in the asymptotic conditions, etc.; the inner
product between sections with different q does not make sense. " However, as far as our case is concerned, the
usual formalism is still valid if we use the (normalizable) solutions of the full one-particle equation (2.1).

IV. THE MASSIVE CASE

The solutions are now given by

E=+(kz+Mi)'~~: ukg(r) =
[E(E—M sin8)]'~~

X cos —+—XE (r)+i sin —+—Xz (r)
0 m' (i) . . 0 7r (p)

2 4 2 4
(4.1)

E= (k +M )'~:—Ukg(r)=
[/E /(/E /+Msin8)]'~

cos —+—Xz (r)+i sin —+—XE (r)
2 4 2 4

(4.2)

where XE and XE are defined in (2.26). If cos8&0,
there is also a bound state

(XE~XE')=
I
XE(0)( E 13M)XE'(0)

I
5( E—E )

k

E=M sin8, a =M
~

cos8 (,

8 m
i sin —+—

2 4

8
cos +

2 4

~2Ke zr—
In general, the solutions of (2.22) satisfy

(4.3)

&Xk (0)y—gk (0)

In particular, the solutions (4.1)—(4.3) may be
checked to be orthonormal,

(ukg uk'g) (Ukg ~k'g) ~@k

(Bg,Bg)=1,
others=0 .

(4 5)

(4.6)

(4.7)

Checking completeness is more involved. We shall
not reproduce the details here, since it is similar to



2388 HIDENAGA YAMAGISHI 27

later calculations.
It is easy to see from (2.24) and (2.31) that the ef-

fect of a CP inversion is to change 8 into —8. In
our case of M+0, we cannot undo this by a chiral
rotation, so CP invariance is broken apart from
8=0,~. It may be also checked that the boundary
conditions of Ref. 8 correspond precisely to the
latter values, as would be expected for a CP-
conserving perturbation (an additional magnetic mo-
ment). Furthermore, it is trivial to check that if the
mass term in the Hamiltonian (2.2) had been

1&$5
MPe ', the physically significant quantity would
be 8—=8+co. It is important to note that t0 (and

I

—f dk vt, e(r)vt, e(r)

hence 8) is not determined by existing experiments
on electromagnetism; co may always be traded for a
term F„,F"", which is not expected to have any
physical effect in the monopole-free sector of Abeli-
an gauge theories.

Having determined the stationary states, we may
apply the rules of hole theory and fill all the
negative-energy levels. Since these levels depend on
8, it is natural to ask whether the properties of the
vacuum also depend on 8.

To end this, let us calculate the charge density of
the Dirac sea. The contribution of the continuum is
given by

e
dk

e "dk M IE I
sing+M

2k
e

dk
M kcosgcos2kr+ — dk sin2kr .

o o
"

IEI IE I+M»ng
"

o
"

IEI IEI+M ng

The first term is 8 independent and may be discarded; the remaining terms may be grouped together as

eM dk
I
E

I
sing+ik cosg+M-- IE I IE I+Msing

We now deform the contour of integration as in Fig. 1. The cut contributes

eM sing ~ dit K 2~@

ir st (K —M ) ~ K+M cosg

whereas the pole contributes

2eM cosg e ""'8( —cosg),

which exactly cancels the contribution from the bound state

eBe(r)Bs(r)B( —cosg) .

We note that we could also have started from the charge-symmetric form

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

8 —[g (x,t),f(x, t)] 8 = — f dk[u~e(r)ui, e(r) —vt, e(r)vt, e(r)](
e g e 2j+1
2 2m 4m.r

sgn(sing)e( —cosg)Be(r)Be(r)
e . g 2j+1
2' 4m.r

(4.13)

(Higher partial waves with j& q+ —, do not contribute owing to CP invariance. ) Since completeness gives

oof dk[ut, e(r)u~e(r)+vi, e(r)vi, e(r)]+ , 8( —cosg)Be—(r)Be(r)=5(0),1

(4.14)

we are led to the same result for the (three-dimensional) vacuum charge density

qeM sing " da a
pe( x

2~ r st (~ M)' z+M—cosg
e (4.15)

qeM sing
1

2K r
(4.16)

The integral reduces to a modified Bessel function
when 8=+m/2 and behaves similarly for other
values of 8 (except +n) For r ~0, . .

I

whereas for r~oo
' 1/2

qeM tan(8/2)
pe x e

2~ r 4Mr

(4.17)
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qM sin8, q cos8 " (It —M )'r
r dK Kf

4m r 2n. r ~ a.+Mcos8

(4.22)

Unlike the charge however, even the energy differ-
ence between different 8 vacua remains divergent
after renormalization. ' This is gratifying; other-
wise, one may have worried about charged collective
excitations. We may also note that according to
(4.16) and (4.17}, the electrostatic energy of the
charge distribution is finite.

Since the Witten effect is due to the Dirac sea, it
is also interesting to consider the Galilean limit.
As in Sec. I, the Pauli equation

FIG. 1. Contour in the complex k plane.

i—P(x, t)=—(o"n. ) P(x, t)
Bt

' 2M

may be reduced to

HOX(r) =EX(r),
d

2

(4.23)

(4.24)

(4.25)

Changing the integration variable K=M cosh2x and
using the formula

(
/
8i (n. )

cosh x —sin (8/2)

(4.19)

we fllld

eeQ= — 2q .
277

(4.20)

For unit pole strength (q = —,), this is precisely the
Witten formula, '"' and we conclude that the mono-

pole actually becomes a dyon for M&0. (The zero-
mass limit is discussed in the Appendix. )

Similarly, we may calculate the vacuum expecta-
tion values of other fermion bilinears; of particular
interest is the axial charge density

(8
~ jo,(x,t)

~
8) =0 . (4.21}

Another quantity of interest is the vacuum energy

density; it is given by

We may also take the limit 8~+m. after an in-

tegration by parts; as expected on general
grounds, ' the result is one-half the contribution
of the zero-energy bound state.

The total charge is given by

—2qeM sin8 " de. 1

M 2(tt M )'r a.+Mcos8

(4.18)

where X(r) now has only one component.
Again, an application of the Weyl-von Neumann

theory indicates the existence of a one-parameter
family of self-adjoint extensions for Ho', the required
boundary condition is

X'(0) /X(0) = —s, (4.26)

KE=—:B„(r)=axe
2M

(4.27)

[As shown in the Appendix, 5(x) may be set equal
to zero for a wave section. ] To determine the value
of a., we consider (4.20) as the limiting case of (2.1).
The standard procedure ' is to perform a unitary
transformation on (2.1) so that only the upper or
lower components of the Dirac wave function are
nonvanishing.

This prescription appears feasible in our case also;
a formal calculation gives

e'He ' =cp[(o"m) +M c ]'~ (4.28)ip-S= arctan
2 Mc

(4.29)

(We have reinserted the velocity of light. ) However,
1

in the j=q ——, sector, S reduces to

where K is an arbitrary real quantity with the dimen-
sion of momentum. In particular, if a. is positive,
there exists a bound state
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1
—iP2 d 0 —i—arctan, p2

—— . , (4.30)2 Mc dr

and we again need a boundary condition to ensure
that e' is unitary. As in Sec. III, there exists a

iS
one-parameter family e " with the corresponding
eigenfunctions

coskr—sinkr (4.31)

where k now ranges over both positive and negative
values.

After some calculation, we find that for E & Mc2,

1/4
i (e'"+1) 1 1 " « —(E/c)+Mc «+Mc

K
22~ W2 —

~ M~ «2+k~ «Mc. —
—KPe

r

e "X~'(r)= . —— — . d«
i 'sinkr

'
i (1+e '") 1 '1 " «'+( E/c) Mc —« Mc-

sin50 . 0 . 2n. W2 . ' ~~ «2+k2 «+Mc
e

—Kl'

(4.32)

where the first term is the naive result with

kc
tan50 ——

~
~ ~50 (—.

E+Mc 2

Similarly,
1/4

(4.33)

e""XE"'(r)= coskr 1 —e '"
1 1 " « E/c+M—c «.—Mc+ ~ dK

c os 5O . 0 . 2~ ~Q / Mc
e

—KP

K+E(c—Mc K+Mc+ — . dK
«2+ k2 « Mc—

—Kfe (4.34)

) and (4 2), w«in«hat the extra terms can be made to va„ish only when Q —~/2 ()
In other words, the Positive-energy solutions cannot be decoupled from the negative-

energy solutions This is not su%rising in view of the Witten effect (4.20); what is unexpected is that the ex
ception occurs at the CE-violating values 8=++/2 rather than at the CP-conserving values 0=0, m.

In view of such circumstances, we conclude that a reduction to the Pauli equation is not very useful. If one
insists, however, the best thing to do is presumably to use the naive result

e u„a(r)=2is
E—M sin0

1/2
0 ~ . . 8
2

cos —+—cos60sinkr +sin —+—sin6ocoskr
2 4

(4.35)

but with the boundary condition (4.26) imposed at
some value ro greater than 1/Mc. It follows from
(4.33) and (4.35) that the appropriate choice of « for
kr, (~1 is

V. THE CONNECTION
BETWEEN THE MASSLESS CASE

AND THE MASSIVE CASE,

8K= —2Mc cot —+—
2 4

(4.36)

which reduces to the conventional choice ' X(0)=0
(« = + oo ) in the limit Mc ~ ao.

It is also apparent, however, that the limit should
not be taken, since it is nonuniform in 0. In other
words, real electrons may have a large de Broglie
wavelength, but not a zero Compton wavelength.

In this section, we investigate the properties of
Eq. (2.21) in the complex E plane. It is convenient
at first to enclose the system in a sphere of radius R.
(Some subtleties associated with this point are dis-
cussed in the Appendix. ) It is then necessary to im-
pose boundary conditions at r=R as well as at r=0.
A suitable choice is
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X(R ) ~ g(8') =
i sin —+—

2 4

8' m
cos —+—

2 4

(5.1)

ri=8/m . (5.5)

ticular that ri(s} is regular at s=O; its value there de-
fines the ri invariant ri—:ri(0}. Since ri is formally
equal to the quantity in the large parentheses of
(5.3},we may expect

ps(x)= —
2 g u„(r)u„(r)

4mr E )0

E„&0
Vn r Vn (5.2)

where 8' is arbitrary, so that Hp has a discrete set of
real eigenvalues IE„I.

The vacuum charge density may be now written
as

To show that (5.5) is actually true we follow stand-
ard techniques ' and consider the solutions of
(2.21) for general (complex) values of E.

We have already introduced two solutions gE" and
Xz' in (2.27}. For our purposes, it is more con-
venient to take the linear combinations
XE-' '=—XE'+iXE' corresponding to the boundary
conditions for 8=0, m,

X"-""(0)= —"
, . (5.6)

A formal integration over space then gives

Q= —qe g 1 —pl
E„&0 E„&0

(5.3)

w|(r;E, 8)=XE' (r) —tan —XE (r) . (5.7)

We note that both solutions are analytic in E as
expected for E-independent boundary conditions.
We shall also introduce two other solutions. One
satisfies the boundary condition at r=0,

Evidently, the quantity in the large parentheses of
(5.3) measures the spectral asymmetry of the opera-
tor Hp(H); this is essentially the definition of the g
invariant of Atiyah, Patodi, and Singer. 2' To be
more precise, one first introduces a g-function regu-
larization"

The other satisfies the boundary condition at r =R,

w2(r;E;8')=XE+' (r)+lrt(E, 8')Xz ' (r) .

(5.8)

g(s }= g sgn( E„)
~
E„~ (5.4) Generically denoting these solutions as XE and liz,

we may record the conjugation formula

The right-hand side defines an analytic function for
Re s sufficiently large; q(s) is then defined for other
values by analytic continuation. It turns out in par-

PXE(r) = Xx,(r), —

the Wronskian formula

(5.9)

I

d
dr

PE.(r)y5XE(r) =if' (r)HpXE(r) i(HpX g ) (r)X—E(r) =0,

and the Green's formula

2i ImE J dr z/iE(r)XE(r) = i J dr—PE(r)ysX'E(r) = ixPE(R)y5—XE(R)+iz/!E(0)y5X@(0) .
R

g
R

(5.10)

(5.11)

It follows from the definition that

O=g (8')ysw2(R;E, 8')=g (8')y5Xz+' '(R)+lz(E, 8')g (8')y5X@ ' '(R) (5.12}

or

—ig(E, 8')=g (8')y5X"+' '(R)lg (8')y5X" ' '(R) (5.13)

Hence the function

f~(E,8,8') =l~( E,8')+tan—
2

is meromorphic in E Also by virtue o. f (5.9) we have

fz( E,8,8') =f„(E,8,8'} .

(5.14)

(5.15)
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Obviously, for fixed R,8,8', fR(E,8,8') can vanish if and only if E is equal to an eigenvalue E„under the
boundary conditions (2.31) and (5.1). On the other hand, fR(E,8,8') will have a pole if and only if

gt(8')y5X'R ' '(R) =0, (5.16)

1 dE 1 dE 1

2&l c+ E 2rrl c
( E) f (E 88)

Since E is complex, the limit R~oo may be safely taken to give

f( E,8)= lim fR ( E,8,8') = l( E)+tan —,0
R~ co 2

'

M —ik
(Imk )0),

l(E)=
(Imk &0) .

i.e., when E is also an eigenvalue E„', but for the boundary-value problem with 8=m..
Therefore, with the choice of contours C~ as in Fig. 2, 71(s) may be represented as

dfR(E 8 8 )
ri(s) —ri(s)

~ s (5.17)

(5.18)

We note that 8' dropped out. Hence ri(s)
~ () may be taken to be zero by CP invariance, and we obtain

21(s)=
—1 dE 1 dE 1 df(E, 8)

mi c+ Es 2n., c
( E) f(E 8) dE

+

Having disposed of R and 8', we now take the limit s ~0. Noting that

l(+ oo+iO}=l( —oo +i 0)= +i,
we find

—1 f(m+i08) 1 f( —~ i 08—) 8
ln ' + ln =—+integer .

Z~i f ( oo i0, 8) —2~i f ( —oo +i 0 8)

(5.19)

(5.20}

(5.21)

Continuity and symmetry for n. & 8 & n. fix—es the integer to be zero, and we recover (5.5) as expected.
To cast (5.21) into a more familiar form, we first eliminate the reference to negative-energy states by rewrit-

ing in terms of particles (f ) and antiparticles g ),

1ri= —[arg f( oo —i0, 8)—arg f( oo —i 0,8)] . (5.22)

To expose the physical meaning offwe note that by virtue of (5.11),

() (X(1+i2) l( E)X(1—i2) X(1+i2) l( E)X(1—i2)) (5.23)

for complex E. This implies that the solutions for
real E,

X'-'( )
—=X"+'"( )+l(E+lO)X" '"( ),

the phase shift is given by

2;s( @) f ( E i 0,8)—
f(E+i0,8) ' (5.27)

(5.24}
must be of the form e+—' ' for E &M. Explicitly,

E+M +;(k„g )
(5.25)

and we find that f ( E,8) is essentially the Jost func-
tion.

The fruit of our excursion into the complex plane
is therefore the following simple formula:

where 5o is defined as in (4.33). Since

uks(r) cc [f( E i 0,8)X'+'(—r)

f( E+i0,8)X' '(r)], — (5.26)

1
ri =—[5(~ ) —N oo )], (5.28)
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i 8(r)y5
Ho = —i y5 +MPe

r

0+, r&0
8(r}:'8

()

(5.31)

(5.32)

C

V V V Vn n V V V Vh h h h

If we also smooth out the discontinuity of 8(r) at
r=O, we obtain a Hamiltonian which can be con-
sidered as a field-theoretic analog of polyacetylene.

Going through the same calculations as before, it
is not hard to show that

il ( —ao, ao ) =—il( ao, O) —rl (0, ao ), (5.33)

FIG. 2. Contour in the complex E plane.

k L9 m
tan5( E)= tan8+M 2 4

k 8
tan5( E)= tan ——+-

E+M 2 4

(5.29)

The similarity with Levinson's theorem' is obvious;
condensed matter physicists may prefer a form
closer to the Friedel sum rule'

Q = —— [5( m )—5( ao )] .e 2j+1
2 7T

(5.30)

In any case, the intriguing aspect of the equality is
that it establishes a connection between the %itten
effect for M&0 and the chiral symmetry breaking
for M =0. Masses are negligible at high energies,
and the phase shift approaches its value in the mass-
less theory, which in turn is governed by the chiral
symmetry breaking as we have seen in Sec. III. (The
argunient may also be regarded as a "physics proof"
for the invariance of rl..)

It is also worth noting that our results are closely
connected with the occurrence of fractional charges
on a kink in one dimension. ' ' The reason is not
hard to see. I.et us ignore the fact that Eqs. (2.22)
and (2.23) were derived from the three-dimensional
theory (2.1) and (2.2). Then we may consider two
systems back to back which have different values of
8 for r & 0 and r & 0. (The latter is parity reflected. )

By putting 0 into the mass term rather than the
boundary condition, the wave function may be
joined continuously, whereas the Hamiltonian be-
comes

where g( —ao, ao) is the rl invariant for the Hamil-
tonian (5.31) defined on the whole line, whereas
rl( —ao,O) and i?(O, ao) are the rl invariants for the
same Hamiltonian but defined on the two half-lines
with a common boundary condition of the form
(2.31). We may remark that (5.33) does not depend
on the angle used in the boundary condition; owing
to (5.10), that also means that we could have im-
posed the boundary condition at some point other
than r=0.

It is also easy to show that the charge on a kink is
minus one-half the i) invariant. Hence

Q= —,i)( —ao, O)+ —,rl(0, oo) . (5.34)

Here we notice a slight difference between mono-
poles and kinks. For the latter, the charge is not re-
lated to the true phase shifts (which go to zero as
E~ ao), but to the apparent phase shifts at r=+ ao

for a standing wave with infinite energy and zero
chirality.

Finally, we note that instantons' in four-
dimensional Euclidean gauge theories may also be
reduced to a one-dimensional kink problem. It is
evidently of interest to find what precisely all these
systems have in common and to see whether it may
be formulated as a general principle.

VI. DISCUSSION

In the previous sections, we have seen that the
monopole-fermion system leads to 8 vacua, and the
monopole becomes a dyon for M&0. Evidently,
many questions remain to be answered, some of
which are the following.

(1}What are the conditions for the appearance of
8? For example, what would happen if there were
two or more monopoles, or if we considered a
monopole-boson system instead of a monopole-
fermion system?

(2) What would happen if we included the electric
interaction between the dyon-type monopole and the
fermion? %hat would happen if the monopole were
also quantized? Is there any systematic way of
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treating such effects?
(3) What is the relation between Abelian mono-

poles and non-Abelian monopoles (dyons )? In
particular, what is the relevance of our results for
monopole-induced proton decay?' '

We hope to answer some of these questions in the
near future. In the meanwhile, we may also ask the
following question: Do monopoles actually exist?

Rote added in proof. While the revised version of
the paper was being typed, Dr. B. Grossman in-

formed us that he has independently obtained many
of our results.
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APPENDIX

In this appendix, we would like to deal with three
subtleties which have led to some confusion in the
literature (as well as the author).

The first one is associated with the quantity' '

relevant to interferences in the measurement of m,
but cannot affect the problem of the correct choice
of the Hamiltonian. The latter is determined by the
requirement of self-adjointness, which is sufficient
to give a consistent quantum mechanics.

The conclusion is also expected on general
grounds. Since whatever physical effects the mono-
pole may have besides its magnetic charge are com-
pletely specified by the boundary condition, we
could have imposed it at a small distance away from
the origin; then there would obviously be no difficul-
ties.

The second subtlety is concerned with the infinite
volume limit. In Sec. V, we had to take the limit
R~oo before the limit s~0; the other order gave
the divergent expression (5.3). As a consequence,
the derivation of the equahty

Q = —qer) (A3)

(Ho E)G(r, r', E)=—o(r r')—(A4)

under the boundary conditions (2.31) and (5.1). As
is well known, the Green's function has the repre-
sentations

was heuristic; we had to compute both sides explicit-
ly and compare.

However, in view of the significance of (A3), we
shall give a more direct derivation. To this end, we
introduce the Green's function (resolvent)

[n„,AY ]=+ie.B„etc. ,

g [n;,B;]= i. divB— (A2)

[[m„,n. ],m, ] +cyclic permutations .

The Jacobi identity requires it to be zero; however,
explicit computation using G(r, r', E)= '

wz(r;E, H')w i(r', E~,H)

fs(E B B')

w i (r;E,8)w 2(r';E~, 8')

fz(E () B')

(A5)

gives —4mq5(x). Some authors have therefore con-
cluded that the wave section must vanish at the ori-
gin, a condition not satisfied by any of the solutions
for the lowest partial wave.

Unfortunately, the conclusion is incorrent. If the
n s are regarded as differential operators acting on

distributions, it is sufficient that the test sections
should vanish at the origin. Since wave sections in
R —[Oj with compact support do vanish as r~O
(the support cannot "touch" the origin), it is con-
sistent to set 5(x)=0.

On the other hand, we may also regard n;as self-.
adjoint operators (observables) acting on the Hilbert
space of wave sections.

The situation then becomes subtle owing to
domain problems'; this is particularly so for corn-
mutators. However, it is important to recognize
that such subtleties in the Jacobi identity may be

u„(r)u„(r')
G(r, r';E) =

E„—E

v„ r v~ r'
+ E (A6)

f —1 dE 1 dE
df . +

2m.i E' 2ni — ( —E)'

XtrG(r, r+0;E) (A7)

since

QzrQnr VnrVnr

E„)0 En E„(o
(A8)

Actually, (A6) is divergent; however, we may still
use it to represent ri(s) as
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is convergent for sufficiently large Re s.
The other form (A5) for G(r, r'; E) then gives

do'( E) 1

dE f(E+i0 8)
(A12)

—1 dE 1 dE
dr +

2mi c+ Es 2n.i c

w2(r;E*, 8'}w i(r;E,8)

fa( E,8,8')

Using the definitions (5.7} and (5.8} and the
analyticity of PE, we may bring (A10) into the form

by (5.23}. Comparing (4.1) and (4.2) with (5.7) and
(5.18), we find

f —f der( E)w i (r;E,8)w i (r;E,8)

dk[uk&(r)uk&(r) —v~8(r)vks(r)]
m'

—1 p dE 1 dE
2mi c+ E' 2ni . — ( E)'— +(bound state) . (A13)

w i(r;E~,8}wi(r;E,8)

fa ( E,8,8')

We may now take the limit R —+oo and pinch the
contour to find

ri(s) = f dr f der(E) f d—o(E)'
Xwi(r;E, 8)wi(r;E, 8) ~E

~

(Al 1)

where

Hence, as s ~0, (Al 1) reduces to (A3) as desired.
It is not hard to see now why we need to take the

limit R~ae before s~O. For finite R, there is a
charge distribution near r=R (as well as r=O)
which must be sent off to infinity first.

The remark also allows us to resolve a paradox as-
sociated with the zero-mass limit. The Witten for-
mula (4.20} is independent of M; on the other hand,
there should be no 8 dependence for M=O. The
answer ' is that the total charge remains fixed as
M~O, but it becomes spread over a volume of
0(M ) so that the charge density goes to zero.
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